Problem Set 10 (and last) - all these problems are for extra credit; you do not have to turn it in. Due Tuesday April 8; no extensions: solutions will be posted right away.

1. Section 10.3, Problem 17.
2. Section 10.3, Problem 18.

Hint: We have proved in class, using Chinese Remainder Theorem for modules (Problem 17 in 10.3), that in the situation of this problem,

$$
M \simeq M /\left(p_{1}^{\alpha_{1}}\right) M \times \cdots \times M /\left(p_{n}^{\alpha_{n}}\right) M
$$

It remains to prove that $M_{p_{i}} \simeq M /\left(p_{i}^{\alpha_{i}}\right) M$. To do that, consider the annihilator of the ideal $\left(p_{i}^{\alpha_{i}}\right)$ in $M /\left(p_{1}^{\alpha_{1}}\right) M \times \cdots \times M /\left(p_{n}^{\alpha_{n}}\right) M$, and prove that it is exactly $M /\left(p_{i}^{\alpha_{i}}\right) M$.
3. (a) Prove that two vectors $\bar{v}_{1}, \bar{v}_{2}$ form a basis of the module $\mathbb{Z}^{2}$ if and only if the parallelogram spanned by them contains no lattice points. Suppose that $\bar{v}_{1}=\left\langle a_{1}, b_{1}\right\rangle$ and $\bar{v}_{2}=\left\langle a_{2}, b_{2}\right\rangle$. Let $A=\left[\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right]$. Prove that the above conditions are also equivalent to $\operatorname{det}(A)=1$.
(b) Let $N$ be a submodule of $\mathbb{Z}^{n}$, and let $A=\left(a_{i j}\right)_{i=1}^{n}$ be the relations matrix for the generators of $N$ with respect to the standard basis of $\mathbb{Z}^{n}$ (that is, the generators of $N$ are:

$$
\begin{aligned}
& y_{1}=a_{11} e_{1}+\ldots a_{1 n} e_{n} \\
& \ldots \\
& y_{n}=a_{n 1} e_{1}+\ldots a_{n n} e_{n}
\end{aligned}
$$

where $e_{j}=(0, \ldots 0,1,0 \ldots 0)$ with 1 in the $j$ th place $)$. Prove that

$$
\left|\mathbb{Z}^{n} / N\right|=|\operatorname{det}(A)|
$$

4. (a) Sketch the ideal generated by $1+2 i$ in $\mathbb{Z}[i]$. Find $|\mathbb{Z}[i] /(1+2 i)|$.
(b) Sketch the ideal generated by 2 in $\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$. Find $\left|\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right] /(2)\right|$.
(c) Let $\mathcal{O}$ be a quadratic integer ring, and let $(a) \subset \mathcal{O}$ be a principal ideal in it. Recall that we have the notion of norm on quadratic integer rings. Prove that $|\mathcal{O} /(a)|=|N(a)|$, where $|N(a)|$ is the absolute value of the norm of $a$.
Hint: First show that $\mathcal{O}$ is a free rank $2 \mathbb{Z}$-module. Then find a convenient set of generators of $(a)$ as a $\mathbb{Z}$-submodule, and use the previous problem.
