## Math 502. Take-home final exam. Due Tuesday April 26. <br> Principal series for $S L_{2}\left(\mathbb{F}_{p}\right) .{ }^{1}$

Solutions to any 5 of these problems will be sufficient to get full credit.
The goal of this problem set is to explore the two irreducible components of the representation $\left(\pi_{\text {sgn }}, V\right)=\operatorname{Ind}_{B}^{G}(\operatorname{sgn})$. Let $G=\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$, let $B$ be the standard Borel subgroup consisting of upper-triangular matrices, and let $\chi$ be the character of $B$ obtained from the unique order two character of $\mathbb{F}_{p}^{\times}$:

$$
\chi\left(\left[\begin{array}{ll}
a & x \\
0 & a^{-1}
\end{array}\right]\right)= \begin{cases}1 & \text { if } a \text { is a square } \operatorname{in} \mathbb{F}_{p}^{\times} \\
-1 & \text { otherwise }\end{cases}
$$

Assume that $p$ is an odd prime. Let

$$
w=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] .
$$

Let $N$ be the subgroup of unipotent upper-triangular matrices. We will need Bruhat decomposition $G=B \coprod B w N$.
(1) Prove that $\pi_{\mathrm{sgn}}$ is a direct sum of two irreducible representations. We will denote them by $W_{+}$and $W_{-}$.
(2) Show that $\pi_{\mathrm{sgn}}$ is the restriction to $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ of an irreducible representation of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$. Use this fact to show that the representations $W_{+}$and $W_{-}$ have equal dimensions (equal to $\frac{p+1}{2}$ ). A possibly unnecessary hint: use the proof of Proposition 24 in Section 8.1.
(3) Recall that the vector space $V$ of the representation $\pi_{\text {sgn }}$ can be thought of as a space of complex-valued functions on $G$ (with a certain property), on which $G$ acts by right translations. Let

$$
\varphi_{1}(g)= \begin{cases}\chi(g) & \text { if } g \in B \\ 0 & \text { otherwise }\end{cases}
$$

Let

$$
\varphi_{w}(g)= \begin{cases}0 & \text { if } g \in B \\ \chi(b) & \text { if } g=b w n, \text { with } b \in B, n \in N\end{cases}
$$

Given an additive character $\psi: \mathbb{F}_{p} \rightarrow \mathbb{C}$, we denote by $\psi_{N}$ the corresponding character of $N$ :

$$
\psi_{N}\left(\left[\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right]\right)=\psi(x) .
$$

For each nontrivial additive character $\psi$ of $\mathbb{F}_{p}$, let

$$
\varphi_{\psi}(g)= \begin{cases}0 & \text { if } g \in B \\ \chi(b) \psi_{N}(n) & \text { if } g=b w n, \text { with } b \in B, n \in N\end{cases}
$$

Prove that these functions form a basis of the space of $\pi_{\text {sgn }}$. Note that these functions are eigenfunctions for $N$.

[^0](4) Let $\Omega_{w}$ be the linear functional on the space $V$ defined by
$$
\Omega_{w}: f \mapsto \frac{1}{\sqrt{q}} \sum_{x \in N} f(w x)
$$
(a) Prove that $\Omega_{w}$ is a homomorphism of $B$-representations between $\operatorname{Ind}_{B}^{G}(\chi)$ and the 1-dimensional representation $\chi^{-1}$. (This works for an arbitrary character $\chi$, not just for the sign character).
(b) Let $T$ be the automorphism of the representation $\pi_{\text {sgn }}$ that corresponds to $\Omega_{w}$ from part (a) under Frobenius reciprocity, in the case that $\chi$ is the sign character. Prove that
$$
T f(g)=\sum_{n \in N} f(w n g)
$$
(5) Prove that (in the notation of the previous problem):
\[

$$
\begin{aligned}
T \varphi_{1} & =\frac{1}{\sqrt{q}} \operatorname{sgn}(-1) \varphi_{w} \\
T \varphi_{w} & =\sqrt{q} \varphi_{w} \\
T \varphi_{\psi} & =G_{\chi, \psi} \varphi_{\psi}
\end{aligned}
$$
\]

where $G_{\chi, \psi}=\frac{1}{\sqrt{q}} \sum_{x \neq 0} \chi(x) \psi(x)$ is the Gauss sum.
(6) Recall from Homework 4 that $G_{\chi, \psi} G_{\chi^{-1}, \psi}=\chi(-1)$. Show that $T^{2}=$ $\operatorname{sgn}(-1) I$, and that $W_{+}$and $W_{-}$are the eigenspaces of $T$ corresponding to the eigenvalues $\sqrt{\operatorname{sgn}(-1)}$ and $-\sqrt{\operatorname{sgn}(-1)}$, respectively.
(7) Compute the characters of the representations $W_{+}$and $W_{-}$(let us denote these characters by $\rho_{+}$and $\rho_{-}$); we have already proved that $\rho_{+}(I)=$ $\rho_{-}(I)=\frac{p+1}{2}$ (where $I$ is the identity).
(a) Compute $\rho_{ \pm}(-I)$.
(b) Compute $\rho_{ \pm}\left(\left[\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right]\right)$.
(c) Compute the values on the four non-semi-simple conjugacy classes (Hint: the basis from Problem 3 may be useful for this).
(d) Prove that on the elliptic conjugacy classes the value of $\rho_{ \pm}$is zero. (Hint: you can use the information about the cardinalities of the conjugacy classes from the table).


[^0]:    ${ }^{1}$ Acknowledgement: most of these problems are borrowed from W. Casselman's personal notes; I thank him for sharing these notes.

