Math 502. Take-home final exam. Due Tuesday April 26. Principal series for $SL_2(\mathbb{F}_p)$.¹ Solutions to any 5 of these problems will be sufficient to get full credit.

The goal of this problem set is to explore the two irreducible components of the representation $(\pi_{\text{sgn}}, V) = \text{Ind}_B^G(\text{sgn})$. Let $G = \text{SL}_2(\mathbb{F}_p)$, let B be the standard Borel subgroup consisting of upper-triangular matrices, and let χ be the character of B obtained from the unique order two character of \mathbb{F}_p^{\times} :

$$\chi\left(\begin{bmatrix}a & x\\ 0 & a^{-1}\end{bmatrix}\right) = \begin{cases} 1 & \text{if } a \text{ is a square in} \mathbb{F}_p^{\times}, \\ -1 & \text{otherwise.} \end{cases}$$

Assume that p is an odd prime. Let

$$w = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$$

Let N be the subgroup of unipotent upper-triangular matrices. We will need Bruhat decomposition $G = B \coprod BwN$.

- (1) Prove that π_{sgn} is a direct sum of two irreducible representations. We will denote them by W_+ and W_- .
- (2) Show that π_{sgn} is the restriction to $\text{SL}_2(\mathbb{F}_p)$ of an irreducible representation of $\text{GL}_2(\mathbb{F}_p)$. Use this fact to show that the representations W_+ and $W_$ have equal dimensions (equal to $\frac{p+1}{2}$). A possibly unnecessary hint: use the proof of Proposition 24 in Section 8.1.
- (3) Recall that the vector space V of the representation π_{sgn} can be thought of as a space of complex-valued functions on G (with a certain property), on which G acts by right translations. Let

$$\varphi_1(g) = \begin{cases} \chi(g) & \text{if } g \in B\\ 0 & \text{otherwise.} \end{cases}$$

Let

$$\varphi_w(g) = \begin{cases} 0 & \text{if } g \in B\\ \chi(b) & \text{if } g = bwn, \text{ with } b \in B, n \in N \end{cases}$$

Given an additive character $\psi : \mathbb{F}_p \to \mathbb{C}$, we denote by ψ_N the corresponding character of N:

$$\psi_N\left(\left[\begin{smallmatrix}1&x\\0&1\end{smallmatrix}\right]\right) = \psi(x).$$

For each nontrivial additive character ψ of \mathbb{F}_p , let

$$\varphi_{\psi}(g) = \begin{cases} 0 & \text{if } g \in B\\ \chi(b)\psi_N(n) & \text{if } g = bwn, \text{ with } b \in B, n \in N. \end{cases}$$

Prove that these functions form a basis of the space of π_{sgn} . Note that these functions are eigenfunctions for N.

 $^{^{1}}$ Acknowledgement: most of these problems are borrowed from W. Casselman's personal notes; I thank him for sharing these notes.

(4) Let Ω_w be the linear functional on the space V defined by

$$\Omega_w: f \mapsto \frac{1}{\sqrt{q}} \sum_{x \in N} f(wx).$$

- (a) Prove that Ω_w is a homomorphism of *B*-representations between $\operatorname{Ind}_B^G(\chi)$ and the 1-dimensional representation χ^{-1} . (This works for an arbitrary character χ , not just for the sign character).
- (b) Let T be the automorphism of the representation π_{sgn} that corresponds to Ω_w from part (a) under Frobenius reciprocity, in the case that χ is the sign character. Prove that

$$Tf(g) = \sum_{n \in N} f(wng).$$

(5) Prove that (in the notation of the previous problem):

$$T\varphi_1 = \frac{1}{\sqrt{q}} \operatorname{sgn}(-1)\varphi_u$$
$$T\varphi_w = \sqrt{q}\varphi_w$$
$$T\varphi_\psi = G_{\chi,\psi}\varphi_\psi,$$

where $G_{\chi,\psi} = \frac{1}{\sqrt{q}} \sum_{x \neq 0} \chi(x) \psi(x)$ is the Gauss sum.

- (6) Recall from Homework 4 that $G_{\chi,\psi}G_{\chi^{-1},\psi} = \chi(-1)$. Show that $T^2 = \operatorname{sgn}(-1)I$, and that W_+ and W_- are the eigenspaces of T corresponding to the eigenvalues $\sqrt{\text{sgn}(-1)}$ and $-\sqrt{\text{sgn}(-1)}$, respectively.
- (7) Compute the characters of the representations W_+ and W_- (let us denote these characters by ρ_+ and ρ_- ; we have already proved that $\rho_+(I) =$ (a) Compute $\rho_{\pm}(-I)$. (b) Compute $\rho_{\pm}(-I)$.

 - (c) Compute the values on the four non-semi-simple conjugacy classes (Hint: the basis from Problem 3 may be useful for this).
 - (d) Prove that on the elliptic conjugacy classes the value of ρ_{\pm} is zero. (Hint: you can use the information about the cardinalities of the conjugacy classes from the table).

2