Math 502. Problem Set 1. Due Tuesday January 18, 2011

- (1) Classify all degree 1 representations of the group $\mathbb{Z}/n\mathbb{Z}$, up to isomorphism.
- (2) (a) Give an example of a degree 3 representation of the group A_4 of even permutations.
 - (b) Is this representation irreducible?
- (3) Find explicitly an isomorphism between the right regular and the left regular representation of an arbitrary finite group G.
- (4) Let $G = \mathbb{Z}/4\mathbb{Z}$, and let us denote its generator by 1. Let V be a complex 2-dimensional vector space, and suppose we fixed a basis e_1, e_2 . Let ρ be the representation of G in V that maps 1 to the matrix $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. This representation decomposes as a direct sum of two degree 1 representations. Find them (in terms of the basis vectors e_1 and e_2). Could you have done the same over the field of real numbers? (note that in \mathbb{R}^2 , this matrix is the matrix of the counter-clockwise rotation by $\pi/2$, in the standard basis).
- (5) Let V be a two-dimensional vector space over the field of 2^n elements, where n is arbitrary. Let $\rho : \mathbb{Z}/2\mathbb{Z} \to \operatorname{GL}(V)$ be the representation defined by $\rho(1) = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ (where 1 is the non-trivial element of $\mathbb{Z}/2\mathbb{Z}$). Prove that this representation has an invariant one-dimensional subspace which has no invariant complement. Such representations are called *indecomposable*.
- (6) (ex. 2.2 in Serre) Let X be a finite set on which G acts, and let ρ be the corresponding permutation representation, and let χ_X be its character. Show that for an element $g \in G$, $\chi(g)$ is the number of elements of X fixed by g.