Math 502. Problem Set 1. Due Tuesday January 18, 2011
(1) Classify all degree 1 representations of the group $\mathbb{Z} / n \mathbb{Z}$, up to isomorphism.
(2) (a) Give an example of a degree 3 representation of the group A_{4} of even permutations.
(b) Is this representation irreducible?
(3) Find explicitly an isomorphism between the right regular and the left regular representation of an arbitrary finite group G.
(4) Let $G=\mathbb{Z} / 4 \mathbb{Z}$, and let us denote its generator by 1 . Let V be a complex 2 -dimensional vector space, and suppose we fixed a basis e_{1}, e_{2}. Let ρ be the representation of G in V that maps 1 to the matrix $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. This representation decomposes as a direct sum of two degree 1 representations. Find them (in terms of the basis vectors e_{1} and e_{2}). Could you have done the same over the field of real numbers? (note that in \mathbb{R}^{2}, this matrix is the matrix of the counter-clockwise rotation by $\pi / 2$, in the standard basis).
(5) Let V be a two-dimensional vector space over the field of 2^{n} elements, where n is arbitrary. Let $\rho: \mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathrm{GL}(V)$ be the representation defined by $\rho(1)=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ (where 1 is the non-trivial element of $\mathbb{Z} / 2 \mathbb{Z}$). Prove that this representation has an invariant one-dimensional subspace which has no invariant complement. Such representations are called indecomposable.
(6) (ex. 2.2 in Serre) Let X be a finite set on which G acts, and let ρ be the corresponding permutation representation, and let χ_{X} be its character. Show that for an element $g \in G, \chi(g)$ is the number of elements of X fixed by g.

