Math 502. Problem Set 2. Due Tuesday February 1.
(1) Exercise 2.6 in Serre (it is in Section 2.3, p.17).
(2) Let $Z(G)=\{g \in G \mid g h=h g \forall h \in G\}$ be the centre of the group G. Let (ρ, W) be a finite-dimensional irreducible representation of G. Prove that for any element $g \in Z(G), \rho(g)$ is multiplication by a scalar.
(3) Given a group G, let R_{G} denote its right regular representation. Prove that

$$
R_{G \times H} \cong R_{G} \otimes R_{H} .
$$

Hint: see 1.6 in the posted chapter of Kostrikin-Manin.
(4) Let V be a 3-dimensional vector space. Show that $\mathrm{Sym}^{2} V$ is isomorphic to the space of homogeneous polynomials of degree 2 in 3 variables.
(5) Let (ρ, W) be the 3 -dimensional irreducible representation of A_{4}. Find the decomposition of $\mathrm{Sym}^{2} W$ into irreducibles.
(6) Let (ρ, V) be a representation of G, and let K be a subgroup of G.
(a) Prove that the vectors fixed by $\rho(k)$ for every $k \in K$ form a linear subspace of G. Denote this subspace by V^{K}.
(b) Let $P: V \rightarrow V$ be the linear operator defined by the formula

$$
P v:=\frac{1}{|K|} \sum_{k \in K} \rho(k) v .
$$

Prove that P is a projector onto V^{K}.
(c) Prove that P is the unique projector onto V^{K} that commutes with $\rho(k)$ for all $k \in K$.
(d) Show that $\operatorname{ker}(P)$ is the linear span of $\{\pi(k) v-v \mid v \in V\}$.

