Math 502. Problem Set 4. Due Tuesday March 15.

(1) Gauss sums. Let p be a prime, and let $\chi : (\mathbb{Z}/p\mathbb{Z})^{\times} \to S^1$ be a nontrivial character of the multiplicative group $(\mathbb{Z}/p\mathbb{Z})^{\times}$. We can extend χ to a function on $\mathbb{Z}/p\mathbb{Z}$ by letting $\chi(0) = 0$. Recall that the group $\mathbb{Z}/p\mathbb{Z}$ is self-dual (this was essentially proved in Homework 1). Consider the Fourier transform of the function χ on $\mathbb{Z}/p\mathbb{Z}$ (note that we started with a character of the multiplicative group to get this function, but the Fourier transform is happenning on the additive group $\mathbb{Z}/p\mathbb{Z}$). The Fourier transform $\hat{\chi} : \mathbb{Z}/p\mathbb{Z} \to \mathbb{C}$ is:

$$\widehat{\chi}(x) = \sum_{y \in \mathbb{Z}/p\mathbb{Z}} \chi(y) e^{-2\pi i x y/p} = \sum_{y \in (\mathbb{Z}/p\mathbb{Z})^{\times}} \chi(y) e^{-2\pi i x y/p}.$$

Let

$$G(\chi) = \sum_{y \in (\mathbb{Z}/p\mathbb{Z})^{\times}} \chi(y) e^{2\pi i y/p}.$$

The sum $G(\chi)$ is called a Gauss sum.

- (a) Prove that $\widehat{\chi}(x) = \chi(-1)G(\chi)\overline{\chi}(x)$.
- (b) Prove that $\overline{G(\chi)} = \chi(-1)G(\overline{\chi})$.
- (c) Prove that $|G(\chi)| = \sqrt{p}$ (note that this implies that there are a lot of cancellations in the sum: a naive estimate of its magnitude would be $|G(\chi)| \le p 1$, since it's a sum of p 1 roots of unity).
- (2) Let G be a compact group, and let $f \in C(G)$ (where C(G) denotes the space of continuous functions on G) be a left and right G-finite function (that is, the subspace of C(G) spanned by left and right translates of f is finite-dimensional). Prove that there are only finitely many irreducible representations (π, V) of G such that $\pi(f) \neq 0$.
- (3) Let k be an arbitrary field. Let A, B be k-algebras. An (A, B)- bimodule is a k-vector space V with both left A-module structure and a right Bmodule structure which satisfy (av)b = a(vb) for all $a \in A, b \in B, v \in V$. Note that any left A-module is automatically an (A, k)-bimodule, and any right A-module is a (k, A)-bimodule.

Recall that if V is an (A, B)-bimodule, and W is a left B-module, then one can form the tensor product $V \otimes_B W$ – it is the k-vector space

 $(V \otimes_k W) / \langle vb \otimes w - v \otimes bw \mid v \in V, b \in B \rangle,$

and $V \otimes_B W$ has a left A-module structure.

If A, B, C are three k-algebras, and if V is an (A, B)-bimodule, and W is an (A, C)-bimodule, then the vector space $\text{Hom}_A(V, W)$ (this is the space of all left A-module homomorphisms from V to W) becomes a (B, C)-bimodule (in a canonical way) by setting (bf)(v) = f(vb) and (fc)(v) = f(v)c for all $b \in B$, $f \in \text{Hom}_A(V, W)$, $v \in V$, and $c \in C$.

Now let A, B, C, D be four k-algebras, and let V be a (B, A)-bimodule, W be a (C, B)-bimodule, and X – a (C, D)-bimodule. Prove that

$$\operatorname{Hom}_B(V, \operatorname{Hom}_C(W, X)) \cong \operatorname{Hom}_C(W \otimes_B V, X)$$
 as (A, D) – bimodules.

Hint: The isomorphism is given by $f \mapsto (w \otimes_B v \mapsto f(v)w)$ for all $v \in V$, $w \in W$, and $f \in \operatorname{Hom}_B(V, \operatorname{Hom}_C(W, X))$.

- (4) Exercise 6.4 in Serre (p. 50).
- (5) For what values of a, b ∈ Q is x = a + b√d an algebraic integer, if
 (a) d=2
 (b) d=3

 - (c) d=5 ?