Math 502. Midterm assignment. Due Thursday March 3.

(1) Let G be a finite group. Prove that there is an isomorphism of $G \times G$ representations

$$
L^{2}(G) \simeq \bigoplus_{(\pi, V)} V^{*} \otimes V
$$

where $L^{2}(G)$ is the space of all complex-valued functions on G, on which $G \times G$ acts by $\left(g_{1}, g_{2}\right) \cdot f(x)=f\left(g_{1}^{-1} x g_{2}\right)$. On the right-hand side, the sum is over a complete set of representatives of the isomorphism classes of irreducible representations of G.

Hint: use matrix coefficients.

The rest of this assignment is devoted to the background on modules that we will need.

Definition 1. Let R be a ring (not necessarily commutative, and not necessarily with an identity). A left module over R is an abelian group M endowed with action by R (denoted by $(r, m) \mapsto r m$), satisfying the following conditions (the group operation on M is denoted by +):
(1) $(r+s) m=r m+s m$ for all $r, s \in R, m \in M$;
(2) $(r s) m=r(s m)$ for all $r, s \in R, m \in M$;
(3) $r(m+n)=r m+r n$ for all $r \in R, m, n \in M$;
(4) if R has the identity element 1 , then $1 m=m$ for all $m \in M$.

The definition of a right R-module is similar.
Please read about modules in any abstract algebra text, e.g. Dummit and Foote
"Abstract Algebra", 3d edition, 10.1-10.4. You'll need to feel comfortable with the following statements:

- \mathbb{Z}-modules are the same as abelian groups (and the homomorphisms of \mathbb{Z}-modules are homomorphisms of abelian groups);
- if $R=F$ is a field, then R-modules are the same as vector spaces over F (and the F-module homomorphisms are the same as the linear maps of vector spaces);
- if R is a polynomial ring $R=F[x]$ with F a field, then R-modules are the same as the pairs (V, A), where V is a vector space over F, and $A: V \rightarrow V$ is a linear operator (and the $F[x]$-module homomorphisms are the same as the maps $T: V \rightarrow V^{\prime}$ such that $\left.T \circ A=A^{\prime} \circ T\right)$.
We will also need the notion of an R-algebra:
Definition 2. Let R be a commutative ring with 1 . Then an R-algebra is a $\operatorname{ring} A$ with an identity, equipped with a ring homomorphism $f: R \rightarrow A$ such that $f\left(1_{R}\right)=1_{A}$, and the image $f(R)$ is contained in the centre of A (that is, $f(r) a=a f(r)$ for every $a \in A, r \in R)$.

Note that an R-algebra can be thought of as both left and right R-module: the module structure is given by $r a=a r=f(r) a$. This is the structure we refer to when we say that A is an R-module.

Please write up the following three exercises:
(2) Compute $\mathbb{Z} / m \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / n \mathbb{Z}$, where m, n are integers.
(3) Let A be a finite abelian group, think of it as a \mathbb{Z}-module. Prove that the extension of scalars from \mathbb{Z} to \mathbb{Q} of A is zero: $\mathbb{Q} \otimes_{\mathbb{Z}} A=\{0\}$.
(4) Let R, S be commutative rings with $R \subset S$ and $1_{S}=1_{R}$. Let I be an ideal in the polynomial ring $R\left[x_{1}, \ldots x_{n}\right]$. Prove that

$$
S \otimes_{R}\left(R\left[x_{1}, \ldots x_{n}\right] / I\right) \simeq S\left[x_{1}, \ldots, x_{n}\right] / I S\left[x_{1}, \ldots, x_{n}\right]
$$

as S-algebras.

