Problem Set 1. Due Thursday January 12.

$\mathrm{AM}=$ Atiyah-Macdonald.
(1) (a) Prove that if $p \neq 2$ and -1 is not a square in \mathbb{F}_{p}, then the function $t \mapsto\left(\frac{t^{2}-1}{t^{2}+1}, \frac{2 t}{t^{2}+1}\right)$ defines a bijection between \mathbb{F}_{p} and the set of solutions to the equation $x^{2}+y^{2}=1$ over \mathbb{F}_{p} with the exception of the solution $(1,0)$.
(b) Prove that if -1 is a square in \mathbb{F}_{p}, then the equation $x^{2}+y^{2}=1$ has $p-1$ solutions in \mathbb{F}_{p}^{2}.
(2) (a) Prove that if in a ring R every element is either nilpotent or invertible, then R is a local ring.
(b) Prove that $\mathbb{C}[x] /\left(x^{2}\right)$ is a local ring.
(3) Let $C(X, x)$ be the ring of germs of real-valued continuous functions at a point x on a topological space X. By definition, a germ of continuous functions at x is the equivalence class of functions, where functions f : $X \rightarrow \mathbb{R}$ and $g: X \rightarrow \mathbb{R}$ are called equivalent if there exists an open neighbourhood U containing x such that f and g coincide on U. The set of germs of continuous functions at $x \in X$ can be given the ring structure by point-wise addition and multiplication of functions (check that this gives well-defined operations on germs!) Prove that $C(X, x)$ is a local ring.
(4) Exercise 2 on p. 10 of AM.
(5) Exercise 4 on p. 11 of AM.
(6) Exercise 5 on p. 11 of AM.
(7) Exercise 7 on p. 11 of AM.
(8) Exercise 9 on p. 11 of AM.
(9) Exercise 10 on p. 11 of AM.
(10) Exercise 12 on p. 11 of AM.

