Math 423/502. Problem Set 5 (final problem set on Representation theory).
(1) (ex. 2.2 in Serre) Let X be a finite set on which G acts, and let ρ be the corresponding permutation representation, and let χ be its character. Show that for an element $g \in G, \chi(g)$ is the number of elements of X fixed by g.
(a) Let V be a 3-dimensional vector space. Show that $\mathrm{Sym}^{2} V$ is isomorphic to the space of homogeneous polynomials of degree 2 in 3 variables.
(b) Let (ρ, W) be the 3-dimensional irreducible representation of A_{4}. Find the decomposition of $\mathrm{Sym}^{2} W$ into irreducibles.
(2) Gauss sums. Let p be a prime, and let $\chi:(\mathbb{Z} / p \mathbb{Z})^{\times} \rightarrow S^{1}$ be a nontrivial character of the multiplicative group $(\mathbb{Z} / p \mathbb{Z})^{\times}$. We can extend χ to a function on $\mathbb{Z} / p \mathbb{Z}$ by letting $\chi(0)=0$.

Prove that the group $\mathbb{Z} / p \mathbb{Z}$ is self-dual. Then consider the Fourier transform of the function χ on $\mathbb{Z} / p \mathbb{Z}$ (note that we started with a function that is a character of the multiplicative group, but the Fourier transform is on the additive group $\mathbb{Z} / p \mathbb{Z})$. The Fourier transform $\widehat{\chi}: \mathbb{Z} / p \mathbb{Z} \rightarrow \mathbb{C}$ is:

$$
\widehat{\chi}(x)=\sum_{y \in \mathbb{Z} / p \mathbb{Z}} \chi(y) e^{-2 \pi i x y / p}=\sum_{y \in(\mathbb{Z} / p \mathbb{Z})^{\times}} \chi(y) e^{-2 \pi i x y / p} .
$$

Let

$$
G(\chi)=\sum_{y \in(\mathbb{Z} / p \mathbb{Z})^{\times}} \chi(y) e^{2 \pi i y / p}
$$

The sum $G(\chi)$ is called a Gauss sum.
(a) Prove that $\widehat{\chi}(x)=\chi(-1) G(\chi) \bar{\chi}(x)$.
(b) Prove that $\overline{G(\chi)}=\chi(-1) G(\bar{\chi})$.
(c) Prove that $|G(\chi)|=\sqrt{p}$ (note that this implies that there are a lot of cancellations in the sum: a naive estimate of its magnitude would be $|G(\chi)| \leq p-1$, since it's a sum of $p-1$ roots of unity).
(3) Given a group G, let R_{G} denote its right regular representation. Prove that

$$
R_{G \times H} \cong R_{G} \otimes R_{H}
$$

(4) Let k be an arbitrary field. Let A, B be k-algebras. An (A, B) - bimodule is a k-vector space V with both left A-module structure and a right B module structure which satisfy $(a v) b=a(v b)$ for all $a \in A, b \in B, v \in V$. Note that any left A-module is automatically an (A, k)-bimodule, and any right A-module is a (k, A)-bimodule.

Recall that if V is an (A, B)-bimodule, and W is a left B-module, then one can form the tensor product $V \otimes_{B} W$ - it is the k-vector space

$$
\left(V \otimes_{k} W\right) /\langle v b \otimes w-v \otimes b w \mid v \in V, b \in B\rangle
$$

and $V \otimes_{B} W$ has a left A-module structure.
If A, B, C are three k-algebras, and if V is an (A, B)-bimodule, and W is an (A, C)-bimodule, then the vector space $\operatorname{Hom}_{A}(V, W)$ (this is the space of all left A-module homomorphisms from V to W) becomes a (B, C) bimodule (in a canonical way) by setting $(b f)(v)=f(v b)$ and $(f c)(v)=$ $f(v) c$ for all $b \in B, f \in \operatorname{Hom}_{A}(V, W), v \in V$, and $c \in C$.

Now let A, B, C, D be four k-algebras, and let V be a (B, A)-bimodule, W be a (C, B)-bimodule, and $X-\mathrm{a}(C, D)$-bimodule. Prove that $\operatorname{Hom}_{B}\left(V, \operatorname{Hom}_{C}(W, X)\right) \cong \operatorname{Hom}_{C}\left(W \otimes_{B} V, X\right) \quad$ as $(A, D)-$ bimodules.

Hint: The isomorphism is given by $f \mapsto\left(w \otimes_{B} v \mapsto f(v) w\right)$ for all $v \in V$, $w \in W$, and $f \in \operatorname{Hom}_{B}\left(V, \operatorname{Hom}_{C}(W, X)\right)$.
(5) Projector onto the fixed vectors. Let (ρ, V) be a representation of G, and let K be a subgroup of G.
(a) Prove that the vectors fixed by $\rho(k)$ for every $k \in K$ form a linear subspace of G. Denote this subspace by V^{K}.
(b) Let $P: V \rightarrow V$ be the linear operator defined by the formula

$$
P v:=\frac{1}{|K|} \sum_{k \in K} \rho(k) v
$$

Prove that P is a projector onto V^{K}.
(c) Prove that P is the unique projector onto V^{K} that commutes with $\rho(k)$ for all $k \in K$.
(d) Show that $\operatorname{ker}(P)$ is the linear span of $\{\pi(k) v-v \mid v \in V\}$.

