Math 423/502. Optional problem set on linear algebra.

Please do not hand in.
V will always denote a complex vector space, and $I: V \rightarrow V$ - the identity map. If we say $A: V \rightarrow V$, we always mean a linear operator on V. Let V, W be two vector spaces. We denote by $\operatorname{Hom}(V, W)$ the vector space of all linear operators from V to W.

1. Jordan canonical form, and miscellaneous problems

(1) Let $A: V \rightarrow V$ be a linear map. Assume that $A^{n}=I$ for some n. Show that V has a basis of eigenvectors for A (that is, the matrix of A can be diagonalized).
(2) ${ }^{*}$ Let A_{s} be the diagonal part of the canonical Jordan form of A, and let $A_{n}=A-A_{s}$. Prove that there exist polynomials P and Q, such that $A_{s}=P(A), A_{n}=Q(A)$.
(3) Commuting linear operators.
(a) Suppose $A, B: V \rightarrow V$ are diagonalizable linear operators (i.e. each of them has a basis of eigenvectors). Show that there exists a common basis of eigenvectors for A and B.
(b) Suppose a linear operator A has distinct eigenvalues, and suppose $A B=B A$. Prove that there exists a polynomial P, such that $B=$ $P(A)$. Is this assertion true if we do not assume that the eigenvalues of A are distinct?
(c) In general, let $V_{\lambda}=\cup_{m} \operatorname{ker}(A-\lambda I)^{m}$ (call it the generalized eigenspace of A), and suppose $B: V \rightarrow V$ commutes with A. Show that the generalized eigenspaces of A are B-invariant.
(4) Projectors.
(a) Let $p: V \rightarrow V$ be a linear operator satisfying $p^{2}=p$ (such operators are called projectors). Show that there is a direct sum decomposition $V=\operatorname{ker}(p) \oplus \operatorname{Im}(p)$. (Thus, you can think of p as a projection onto its image along its kernel).
(b) Let W be a linear subspace of V. Show that there is a one-to-one correspondence between projectors p with $\operatorname{Im}(p)=W$, and direct complements of W.
(c) Suppose $A: V \rightarrow V$ commutes with p. Show that $\operatorname{ker}(p)$ and $\operatorname{Im}(p)$ are A-invariant subspaces.

2. Dual vector spaces and bilinear forms

Let V^{*} denote the linear dual of V, i.e., the space of linear functionals on V.
(5) (a) Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis of V. Prove that there exists a basis $\left\{e_{1}^{*}, \ldots, e_{n}^{*}\right\}$ of V^{*} with the property $e_{i}^{*}\left(e_{j}\right)=\delta_{i j}$. Such a basis is called the dual basis to $\left\{e_{1}, \ldots, e_{n}\right\}$.
(b) Let $\left\{e_{1}, \ldots, e_{n}\right\}$ and $\left\{e_{1}^{*}, \ldots, e_{n}^{*}\right\}$ be dual bases of V and V^{*}, respectively. Suppose that $A: V \rightarrow V$ is a linear operator with the matrix $M=\left(a_{i j}\right)$ with respect to the basis $\left\{e_{1}, \ldots, e_{n}\right\}$. Let $A^{*}: V^{*} \rightarrow V^{*}$ be the dual linear operator, defined by the property:

$$
A^{*}(w)(v)=w(A v), \quad \forall w \in W, v \in V
$$

Show that the matrix of A^{*} with respect to the basis $\left\{e_{1}^{*}, \ldots, e_{n}^{*}\right\}$ is $\left(a_{j i}\right)=M^{T}$.
(6) Prove that for any matrix A, the rank of A equals the rank of A^{T}.
(7) A sequence of linear maps $V \xrightarrow{A} W \xrightarrow{B} U$ is called exact (in the middle term) if $\operatorname{ker}(B)=\operatorname{Im}(A)$. A longer sequence is called exact if it is exact in every term.

Prove that the sequence $0 \rightarrow V \xrightarrow{A} W \xrightarrow{B} U \rightarrow 0$ is exact if and only if the dual sequence $0 \rightarrow U^{*} \xrightarrow{B^{*}} W^{*} \xrightarrow{A^{*}} V^{*} \rightarrow 0$ is exact.
(8) Let $B: V \times V \rightarrow \mathbb{C}$ be a linear functional (such linear functionals are called bilinear forms on V). Find the condition on B that guarantees that the $\operatorname{map} w \mapsto(v \mapsto B(v, w))$ is an isomorphism from V to V^{*}. (Note that there is no canonical isomorphism from V to V^{*}, but any nice enough bilinear form can be used to make such an isomorphism).
(9) Prove that $\operatorname{Hom}(V, W) \cong \operatorname{Hom}\left(W^{*}, V^{*}\right)$.
(10) Show that there is a canonical isomorphism $V^{* *} \rightarrow V$.

3. TEnsor Products

(11) Let $f: V \times W \rightarrow V \otimes W$ be the canonical map: $f(v, w)=v \otimes w$. Prove that it is universal in the following sense:
for any vector space U, and any bilinear map $B: V \times W \rightarrow U$, there exists a unique linear operator $C: V \otimes W \rightarrow U$ such that $B=C \circ f$.

This is called the universal property of the tensor product. It is not hard to prove that any two objects satisfying such a universal property have to be isomorphic, and thus one can use the universal property as the definition of the tensor product.
(12) Prove that $V^{*} \otimes W$ is canonically isomorphic to $\operatorname{Hom}(V, W)$. (Hint: use the universal property of the tensor product).
(13) (a) Let $A: V_{1} \rightarrow V_{2}$ be a linear map of vector spaces. Let W be an arbitrary vector space. Then we can construct the linear map

$$
A \otimes I: V_{1} \otimes W \rightarrow V_{2} \otimes W
$$

where $I: W \rightarrow W$ is the idenity map. Prove that if $A: V_{1} \rightarrow V_{2}$, $B: V_{2} \rightarrow V_{3}$ are linear operators, then $(B \circ A) \otimes I=(B \otimes I) \circ(A \otimes I)$. (Note: this property tells us that "tensoring with W " is a functor from the category of vector spaces over \mathbb{C} to itself.)
(b) Suppose $0 \rightarrow V_{1} \xrightarrow{A} V_{2} \xrightarrow{B} V_{3} \rightarrow 0$ is an exact sequence of linear maps of vector spaces, and let W be an arbitrary vector space. Prove that the sequence

$$
0 \rightarrow V_{1} \otimes W \xrightarrow{A \otimes I} V_{2} \otimes W \xrightarrow{B \otimes I} V_{3} \otimes W \rightarrow 0
$$

is exact as well. (In the language of functors and categories, this says that "the tensor multiplication functor is exact". Note that this is true for vector spaces over a field, but not for modules over a ring).

4. Symmetric and exterior powers

For the definitions of higher symmetric and exterior powers, please see, for example, Sections 5 and 6 in Kostrikin-Manin (the posted reference).
(14) Recall our definition of the space $\mathrm{Alt}^{2} V$ (see Serre, Section 1.6). Prove that $\mathrm{Alt}^{2} V \cong \wedge^{2} V$.
(15) Prove that

$$
\begin{aligned}
\operatorname{Sym}^{m}(V \oplus W) & =\bigoplus_{a=0}^{m} \operatorname{Sym}^{a} V \otimes \operatorname{Sym}^{m-a} W \\
\wedge^{m}(V \oplus W) & =\bigoplus_{a=0}^{m} \wedge^{a} V \otimes \wedge^{m-a} W
\end{aligned}
$$

(16) Let V be an n-dimensional vector space, and $A: V \rightarrow V$ - a linear map. Then $\wedge^{n} V$ is a 1-dimensional vector space, and thus $\wedge^{n} A: \wedge^{n} V \rightarrow \wedge^{n} V$ is multiplication by scalar. Prove that this scalar equals $\operatorname{det}(A)$.

