
Math 423/502. Optional problem set on linear algebra.
Please do not hand in.

V will always denote a complex vector space, and I : V → V – the identity map.
If we say A : V → V , we always mean a linear operator on V . Let V , W be two
vector spaces. We denote by Hom(V,W ) the vector space of all linear operators
from V to W .

1. Jordan canonical form, and miscellaneous problems

(1) Let A : V → V be a linear map. Assume that An = I for some n. Show
that V has a basis of eigenvectors for A (that is, the matrix of A can be
diagonalized).

(2) * Let As be the diagonal part of the canonical Jordan form of A, and let
An = A − As. Prove that there exist polynomials P and Q, such that
As = P (A), An = Q(A).

(3) Commuting linear operators.
(a) Suppose A,B : V → V are diagonalizable linear operators (i.e. each

of them has a basis of eigenvectors). Show that there exists a common
basis of eigenvectors for A and B.

(b) Suppose a linear operator A has distinct eigenvalues, and suppose
AB = BA. Prove that there exists a polynomial P , such that B =
P (A). Is this assertion true if we do not assume that the eigenvalues
of A are distinct?

(c) In general, let Vλ = ∪m ker(A−λI)m (call it the generalized eigenspace
of A), and suppose B : V → V commutes with A. Show that the
generalized eigenspaces of A are B-invariant.

(4) Projectors.
(a) Let p : V → V be a linear operator satisfying p2 = p (such operators

are called projectors). Show that there is a direct sum decomposition
V = ker(p)⊕ Im(p). (Thus, you can think of p as a projection onto its
image along its kernel).

(b) Let W be a linear subspace of V . Show that there is a one-to-one cor-
respondence between projectors p with Im(p) = W , and direct com-
plements of W .

(c) Suppose A : V → V commutes with p. Show that ker(p) and Im(p)
are A-invariant subspaces.

2. Dual vector spaces and bilinear forms

Let V ∗ denote the linear dual of V , i.e., the space of linear functionals
on V .

(5) (a) Let {e1, . . . , en} be a basis of V . Prove that there exists a basis
{e∗1, . . . , e∗n} of V ∗ with the property e∗i (ej) = δij . Such a basis is
called the dual basis to {e1, . . . , en}.
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(b) Let {e1, . . . , en} and {e∗1, . . . , e∗n} be dual bases of V and V ∗, respec-
tively. Suppose that A : V → V is a linear operator with the matrix
M = (aij) with respect to the basis {e1, . . . , en}. Let A∗ : V ∗ → V ∗

be the dual linear operator, defined by the property:

A∗(w)(v) = w(Av), ∀w ∈W, v ∈ V.

Show that the matrix of A∗ with respect to the basis {e∗1, . . . , e∗n} is
(aji) = MT .

(6) Prove that for any matrix A, the rank of A equals the rank of AT .

(7) A sequence of linear maps V
A−→ W

B−→ U is called exact (in the middle
term) if ker(B) = Im(A). A longer sequence is called exact if it is exact in
every term.

Prove that the sequence 0 → V
A−→ W

B−→ U → 0 is exact if and only if

the dual sequence 0→ U∗ B∗

−−→W ∗ A∗

−−→ V ∗ → 0 is exact.

(8) Let B : V ×V → C be a linear functional (such linear functionals are called
bilinear forms on V ). Find the condition on B that guarantees that the
map w 7→ (v 7→ B(v, w)) is an isomorphism from V to V ∗. (Note that there
is no canonical isomorphism from V to V ∗, but any nice enough bilinear
form can be used to make such an isomorphism).

(9) Prove that Hom(V,W ) ∼= Hom(W ∗, V ∗).

(10) Show that there is a canonical isomorphism V ∗∗ → V .

3. Tensor products

(11) Let f : V ×W → V ⊗W be the canonical map: f(v, w) = v ⊗ w. Prove
that it is universal in the following sense:

for any vector space U , and any bilinear map B : V ×W → U , there
exists a unique linear operator C : V ⊗W → U such that B = C ◦ f .

This is called the universal property of the tensor product. It is not hard
to prove that any two objects satisfying such a universal property have to
be isomorphic, and thus one can use the universal property as the definition
of the tensor product.

(12) Prove that V ∗ ⊗W is canonically isomorphic to Hom(V,W ). (Hint: use
the universal property of the tensor product).

(13) (a) Let A : V1 → V2 be a linear map of vector spaces. Let W be an
arbitrary vector space. Then we can construct the linear map

A⊗ I : V1 ⊗W → V2 ⊗W,

where I : W → W is the idenity map. Prove that if A : V1 → V2,
B : V2 → V3 are linear operators, then (B ◦A)⊗ I = (B⊗ I) ◦ (A⊗ I).
(Note: this property tells us that “tensoring with W” is a functor from
the category of vector spaces over C to itself.)
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(b) Suppose 0→ V1
A−→ V2

B−→ V3 → 0 is an exact sequence of linear maps
of vector spaces, and let W be an arbitrary vector space. Prove that
the sequence

0→ V1 ⊗W
A⊗I−−−→ V2 ⊗W

B⊗I−−−→ V3 ⊗W → 0

is exact as well. (In the language of functors and categories, this says
that “the tensor multiplication functor is exact”. Note that this is true
for vector spaces over a field, but not for modules over a ring).

4. Symmetric and exterior powers

For the definitions of higher symmetric and exterior powers, please see,
for example, Sections 5 and 6 in Kostrikin-Manin (the posted reference).

(14) Recall our definition of the space Alt2 V (see Serre, Section 1.6). Prove
that Alt2 V ∼= ∧2V .

(15) Prove that

Symm(V ⊕W ) =

m⊕
a=0

Syma V ⊗ Symm−aW ;

∧m(V ⊕W ) =

m⊕
a=0

∧aV ⊗ ∧m−aW.

(16) Let V be an n-dimensional vector space, and A : V → V – a linear map.
Then ∧nV is a 1-dimensional vector space, and thus ∧nA : ∧nV → ∧nV is
multiplication by scalar. Prove that this scalar equals det(A).


