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(n-colorings of graphs) A finite graph G of size N is a set of vertices i € {1,2,..., N}
and a collection of edges (i, j) connecting vertex i with vertex j. An n-coloring of g
is an assignment of one of n colors to each vertex in such a way that vertices connected
by an edge have distinct colors. Let F be any field containing at least n elements. If
we introduce a variable x; for each vertex i and represent the n colors by choosing a set
S of n distinct elements from F, then an n-coloring of G is equivalent to assigning a
value x; = o; foreachi = 1,2,..., N where o; € S and o; # «; if (i, j) is an edge
in G. If f(x) = [[,es(x — @) is the polynomial in F[x] of degree n whose roots are
the elements in S, then x; = «; for some o; € S is equivalent to the statement that x;
is a solution to the equation f(x;) = 0. The statement o; # «; is then the statement
that f(x;) = f(x;) but x; # x;, so x; and x; satisfy the equation g(x;, xj) = 0, where
g(x;, x;) is the polynomial (f (x;) — f(x;))/(xi — x;j) in F[x;, x;]. It follows that finding
an n-coloring of G is equivalent to solving the system of equations

{f(xi)=0, fori=1,2,...,N,
g(x;,x;) =0, foralledges (i, j)inG

(note also we may use any polynomial g satisfying o; # «; if g(e;, ;) = 0). It follows by
“Hilbert’s Nullstellensatz” (cf. Corollary 33 in Section 15.3) that this system of equations
has a solution, hence G has an n-coloring, unless the ideal I in F[x1, x2, ..., xy] generated
by the polynomials f(x;) fori =1,2,..., N, together with the polynomials g(x;, x;) for
all the edges (i, j) in the graph G, is not a proper ideal. This in turn is equivalent to the
statement that the reduced Grébner basis for I (with respect to any monomial ordering) is
simply {1}. Further, when an n-coloring does exist, solving this system of equations as in
the examples following Proposition 29 provides an explicit coloring for G.

There are many possible choices of field F and set S. For example, use any field F
containing a set S of distinct n™ roots of unity, in which case f(x) = x — 1 and we may
take g(x;, xj) = (x]' — x;‘)/(xi —xj) = xi”_1 + xf_zxj 4+ 4 x,-x]'.'_2 + x]'.l_l, or use
any subset S of F = FF,, with a prime p > n (in the special case n = p, then, by Fermat’s
Little Theorem, we have f(x) = x? — x and g(x;, x;) = (x; — x;))?~' — ).

Consider a possible 3-coloring of the graph G with eight vertices and 14 edges (1, 3),
(1,4), (1,5), 2,4), 2,7), (2,8), (3,4), (3,6), (3,8), (4,5), (5,6), (6,7), (6,8), (7, 8).
Take F = F3 with ‘colors’ 0, 1, 2 € F3 and suppose vertex 1 is colored by 0. In this case
fX)=xx—-DHx—-2) = %3 — x € F3[x] and g(xi, xj) = xl-z + xix; +xj2 —1.IfIis
the ideal generated by x1, xt?’ —xi,2 <i < 8and g(x;, x;) for the edges (i, j) in G, show
that the reduced Grobner basis for I with respect to the lexicographic monomial ordering
xX; > xp > -+ > xg is {x1, x2, x3 + x38, x4 + 2xg, X5 + X8, X6, X7 + X8, x% + 2}. Deduce
that G has two distinct 3-colorings, determined by the coloring of vertex 8 (which must be
colored by a nonzero element in F3), and exhibit the colorings of G.

Show that if the edge (3, 7) is added to G then the graph cannot be 3-colored.

Take F = F5 with four ‘colors’ 1,2,3,4 € Fs, so f(x) = x* — 1 and we may use
g(xi, xj) = xl.3 + xl-zxj + xisz + xj3. Show that the graph G with five vertices having 9
edges (1, 3), (1,4), (1,5), (2,3), (2,4), (2,5), 3,4), (3,5), (4,5) (the “complete graph
on five vertices” with one edge removed) can be 4-colored but cannot be 3-colored.

Use Grobner bases to show that the graph G with nine vertices and 22 edges (1, 4), (1, 6),
(1,7),(1,8),2,3), (2,4), 2,6), 2,7, (3,5, 3.7, 3,9, 4,5, (4,6), 4,7), (4.9),
(3.6), (5,7), (5,8), (5,9), (6,7), (6,9), (7,8) has precisely four 4-colorings up to a
permutation of the colors (so a total of 96 total 4-colorings). Show that if the edge (1, 5)
is added then G cannot be 4-colored.
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