
Lie Theory - Lecture 3 - Orbits and Stabilizers

In the last lecture we saw what it meant for a lie group G to act on a
manifold X. We said that G acts on X if there exists a group homomorphism
α : G → Diff(X), such that the action map,

G×X → X sending (g, x) 7→ α(g)(x) is smooth.

Choosing a point x on the manifold X gives,

αx : G → X
: g 7→ α(g)(x)

Then the image of αx is equal to the orbit of x and the inverse image α−1
x (x)

is equal to the stabilizer of x. Moreover α has the following property.

Lemma For a given x ∈ X, ax is smooth of constant rank. By constant
rank we mean that the rank of dαx is the same at all points of G.

proof: αx is the restriction of a smooth map and so smooth. So we have the
following commutative diagram of smooth maps,

G
αx−−−→ X

lg

y yα(g)

G
αx−−−→ X

But since both of the vertical maps are diffeomorphisms the rank of αx must
be constant, by the chain rule. �

Any map with this property has some nice features.

Facts Let f : X → Y have constant rank, then it is locally linearizable.
That is in some local coordinates of the form f : Rn → Rm,

f(x1, . . . , xn) = (x1, . . . , xk, 0, . . . , 0)

where k is the rank of αx. In particular we have that,

1. ∀y ∈ Y, f−1(y) is a submfld of X and if x ∈ f−1(y) → Txf
−1(y) = ker(dxf)

2. Let x ∈ X then ∃ small open nbd O(x) 3 x such that f(O(x)) is a
submfld of Y . Moreover Tf(x)f(O(x)) = im(dxf)
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Note: As we saw with the embedding of the real line into the torus, f(X)
doesn’t have to be a submanifold of Y .

3. codimf−1(p) = rank of f and dim f(O(x)) = rank of f

Using these three facts we get the following theorem for αx.

Theorem Let α be an action on X as before. Then αx has constant rank
k and,

1. The stabilizer Gx = α−1
x (x) is a lie subgroup of codim k.

2. There exists an open nbd O(e) 3 e of the identity such that αx(O(e))
is a submfld of X, moreover,

Txαx(O(e)) = im(deαx)

3. If the orbit of x is a submfld then its dimention is k.

Proposition If G is a compact lie group acting on a manifold X then all
orbits are submanifolds of X.

proof: First of all recall that the orbit of x ∈ X is the image of the map αx.
Therefore it’s sufficent to prove that the image of αx is locally a submanifold.
Also by conjugation it is sufficient just to check a local neighborhood of one
point, let’s chose αx(e) = x.

By the theorem above αx(O(e)) is a submanifold, moreover αx(O(e)) =
αx(O(e) · Gx). Now let’s consider the rest of the image. The set C = G \
O(e) · Gx is a closed set in G so it is compact, hence αx(C) is compact and
so forms a closed subset of X.

The final step is to check that the sets αx(C) and αx(O(e)·Gx) are disjoint,
otherwise C contains elements of O(e) ·Gx. Hence αx(O(e)) is contained in
the compliment of the closed set αx(C) and so there is an open set U ⊂ X
such that U ∩ αx(G) = αx(O(e)) �

Examples We have seen some compact lie groups before,
- S1 × · · · × S1 the product of n circles is a compact lie group.
- On(R) is compact see homework.
- O(f, V ) the matrices preserving some symmetric bilinear form f , is a co-
mact ;lie group for the same reason
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On(R) can be realised as a stabilizer of the GLn(R) action of (X, B) 7→
X tBX on the symetric matricies, and since the orbit of a nondegenerate form
is open in the symetric matricies can deduce by the rank nullity theorem that
dim(On(R)) = n(n−1)

2
.

In a similar way the symplectic group Sp(n, V ) can be produced as the
stabilizer of a GLn(V ) action on the skew symmetric forms.
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