
Lie Theory - Lecture 4 - Quotients

First we apply the theorem from the last lecture to the case where a lie
group acts on another lie group.

f : G → H a lie group map, then G acts on H by α(g)(h) = f(g) · h

The kernal of f is then equal to the stabilizer of eH and the image of f is
equal to the orbit of eH . Hence we can apply the theorem about orbits and
stabilizers from the last lecture,

Theorem Let f : G → H be a lie group map then,
1. ker(f) is a normal lie subgroup and Te ker(f) = ker(def)
2. If f(G) is a lie subgroup in H then Tef(G) = im(def)

In order to define quotients of lie groups we introduce the following notion,

Definition We call a smooth map p : X → Y a factorization map if it has
the properties such that

a) U ⊂ X is open in X iff p(U) is open in Y
b) Given a function f on X, p∗(f) = f ◦ p is smooth ⇒ f is smooth

Here is an important fact about factorization maps,

Lemma Supose we have the following comutative diagram X

q

��

p // Y

ϕ
~~~~

~~
~~

~~

Z

if p is a factorization map, and q is smooth, then ϕ is smooth.

Corollary Given X

q

��

p // Y

ϕ
~~~~

~~
~~

~~

Z

if p, q are both factorization maps and ϕ is a

bijection then ϕ is a diffeomorphism.

proof: By the lemma both ϕ and its inverse are smooth. �

An equivalent statement of this would be that given a map p : X → Y
there is a unique differential sturcture on Y that makes p a factorization
map. This is seen from the diagram,

X

p

��

p // Y1

id~~
~~

~~
~

~~
~~

~~
~

Y2

the identity map on the underling top. sp. must be a diffeo
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Theorem (Quotients) Let H be a lie subgroup of G. Then the set G/H
has the structure of a smooth manifold such that the projection,

p : G → G

H
is a factorization map and

1. p is a locally trivial fibration with fibre H.
2. The canonical action of G on G/H is smooth.
3. If H is normal in G then G/H is a lie group.

proof:
Part 1. Define the topology on G/H as U is open iff p−1(U) ⊂ G is open.

This topology must be hausdorff. Take g1H and g2H to be two distinct
cosets, so g−1

1 g2 /∈ H. Now since H is closed we have by continuity of the
multiplication and inverse functions that there exist nbds of g1, g2 such that

O(g1)
−1 ·O(g2) doesn’t meet H

therefore O(g1)H ∩O(g2)H = ∅ and the space is hausdorff. Now we want to
explain the differential structure. We will consider a nbd O(eG) 3 eG, take a
submanifold S transversal to H at eG and define the smooth map

φ : S ×H → G sending (s, h) 7→ s · h

at the identity the derivative is deφ = des+deh which is a linear isomorphism,
therefore locally φ is a diffeomorphism. We can now give an open nbd of the
identity in G/H the differential structure obtained from S. Then we can
use shifts to transport the differential structure elsewhere over all of G/H.
Finally p can be seen to be a factorization map from its local behavior.

Part 2. Consider the following commutative diagram

G×G

p×id
��

p◦µ

%%LLLLLLLLLL
µ // G

p

��
G×G/H

λ
// G/H

the map p◦µ is smooth and the map p×id is a factorization map so applying
the lemma to the lower triangle gives that the action λ of G on G/H is
smooth.

Part 3. Must show group operations are smooth, this is exactly the same
as Part 2, e.g. we replace p× id with the factorization map p× p to get,

G×G

p×p
��

p◦µ

&&NNNNNNNNNNN
µ // G

p

��
G/H ×G/H // G/H �
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