Lie Theory - Lecture 4 - Quotients

First we apply the theorem from the last lecture to the case where a lie group acts on another lie group.

 $f: G \to H$ a lie group map, then G acts on H by $\alpha(g)(h) = f(g) \cdot h$

The kernal of f is then equal to the stabilizer of e_H and the image of f is equal to the orbit of e_H . Hence we can apply the theorem about orbits and stabilizers from the last lecture,

Theorem Let $f: G \to H$ be a lie group map then,

1. $\ker(f)$ is a normal lie subgroup and $T_e \ker(f) = \ker(d_e f)$

2. If f(G) is a lie subgroup in H then $T_e f(G) = \operatorname{im}(d_e f)$

In order to define quotients of lie groups we introduce the following notion,

Definition We call a smooth map $p: X \to Y$ a *factorization map* if it has the properties such that

a) $U \subset X$ is open in X iff p(U) is open in Y

b) Given a function f on X, $p^*(f) = f \circ p$ is smooth $\Rightarrow f$ is smooth

Here is an important fact about factorization maps,

Lemma Suppose we have the following comutative diagram $X \xrightarrow{p} Y$ if p is a factorization map, and q is smooth, then φ is smooth. $q \bigvee_{\varphi} \varphi$

Corollary Given $X \xrightarrow{p} Y$ if p, q are both factorization maps and φ is a $\begin{array}{c} Z \\ q \\ Z \end{array}$ bijection then φ is a diffeomorphism.

proof: By the lemma both φ and its inverse are smooth.

An equivalent statement of this would be that given a map $p : X \to Y$ there is a unique differential sturcture on Y that makes p a factorization map. This is seen from the diagram,

Theorem (Quotients) Let H be a lie subgroup of G. Then the set G/H has the structure of a smooth manifold such that the projection,

$$p: G \to \frac{G}{H}$$
 is a factorization map and

- 1. p is a locally trivial fibration with fibre H.
- 2. The canonical action of G on G/H is smooth.
- 3. If H is normal in G then G/H is a lie group.

proof:

Part 1. Define the topology on G/H as U is open iff $p^{-1}(U) \subset G$ is open. This topology must be hausdorff. Take g_1H and g_2H to be two distinct cosets, so $g_1^{-1}g_2 \notin H$. Now since H is closed we have by continuity of the multiplication and inverse functions that there exist nodes of g_1, g_2 such that

 $O(g_1)^{-1} \cdot O(g_2)$ doesn't meet H

therefore $O(g_1)H \cap O(g_2)H = \emptyset$ and the space is hausdorff. Now we want to explain the differential structure. We will consider a nbd $O(e_G) \ni e_G$, take a submanifold S transversal to H at e_G and define the smooth map

$$\phi: S \times H \to G$$
 sending $(s, h) \mapsto s \cdot h$

at the identity the derivative is $d_e \phi = d_e s + d_e h$ which is a linear isomorphism, therefore locally ϕ is a diffeomorphism. We can now give an open nbd of the identity in G/H the differential structure obtained from S. Then we can use shifts to transport the differential structure elsewhere over all of G/H. Finally p can be seen to be a factorization map from its local behavior.

Part 2. Consider the following commutative diagram

$$\begin{array}{c|c} G \times G \xrightarrow{\mu} G \\ p \times id & p^{\circ \mu} \\ G \times G/H \xrightarrow{\rho \circ \mu} G/H \end{array}$$

the map $p \circ \mu$ is smooth and the map $p \times id$ is a factorization map so applying the lemma to the lower triangle gives that the action λ of G on G/H is smooth.

Part 3. Must show group operations are smooth, this is exactly the same as Part 2, e.g. we replace $p \times id$ with the factorization map $p \times p$ to get,

$$\begin{array}{c|c} G \times G & \xrightarrow{\mu} & G \\ & & & & \\ p \times p & & & & \\ G/H \times G/H & \longrightarrow G/H & & & \\ \end{array}$$