
THE LIE BRACKET ON THE TANGENT SPACE, AND THE
EXPONENTIAL MAP

The goal of this note is to compare a few different definitions of the Lie bracket
on the tangent space to a Lie group at the identity.

1. Definitions

We will always denote the elements of the Lie group G by g, h, . . . , and the
elements of the tangent space g by X, Y, . . . . The identity element of G will be
denoted by e.

1.1. Taylor expansions. The first definition is given via local coordinates and
Taylor series expansion of the commutator.

Definition 1.1. Choose some smooth local coordinate system centered at the iden-
tity element. Let X, Y ∈ g be vectors with small norm. Consider the elements g
and h of G whose local coordinates coincide with the components of X and Y ,
respectively. Consider the commutator (g, h) = ghg−1h−1. If ||X||, ||Y || are suffi-
ciently small, then (g, h) is still in the same coordinate neighbourhood. Consider
the Taylor series expansion of the coordinates of (g, h) in terms of the coordinates
of g and h (i.e., in terms of the components of X and Y ). Define [X, Y ] to be the
second-order term in this expansion. Note that the second term of Taylor series
expansion is a bilinear form in the coordinates, so [X, Y ] is a bilinear form in X, Y ,
and now we can drop the assumption that ||X||, ||Y || are small.

1.2. Some differential geometry. The second definition involves derivations.

Definition 1.2. For any ring R, a derivation of R is a map D : R → R that
satisfies D(ab) = D(a)b + aD(b), where a, b ∈ R.

Recall the local ring Om of germs of smooth functions at a point m of a smooth
manifold.

Now, define a local derivation of the ring Om to be a map D : Om → R that
satisfies: D(fh) = f(m)D(h) + h(m)D(f), for f, h ∈ Om.

Note that every element X ∈ g naturally gives a local derivation of Om. Indeed,
let u : (−ε, ε) → G be any smooth path such that X is the tangent vector to u(t)
at t = 0. (Existence and uniqueness the germ of this path follows from ODE).

Then set
Df :=

d

dt
f(u(t))|t=0.

By chain rule, this is a linear combination of the partial derivatives of f with respect
to the local coordinates with coefficients that equal the coordinates of the vector
X.

Now we can make this global by extending X to a left-invariant vector field. Let
X be the left-invariant vector field on G such that X (e) = X. Any vector field
gives a derivation of the algebra of smooth functions on G (from X , we get a local
derivation at every point as above, and so overall we get a new function on G by
applying these local derivations at all points).
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Theorem 1.3. For any smooth manifold M , there is a one-to-one correspondence
between vector fields on M and derivations of C∞(M).

Definition 1.4. For two vector fields X , Y on M , define the Lie bracket by

[X ,Y]f := X (Yf)− Y(Xf), f ∈ C∞(M).

Remark 1.5. Note that by the above Theorem, this derivation corresponds to a
vector field, so the Lie bracket is an operation on vector fields.

Note also that this definition works for every manifold (no group structure re-
quired). The only place where we are going to use the group structure is to make an
operation just on the tangent space at one point (the identity) from this operation
on vector fields.

Definition 1.6. Let X, Y be elements of g. We define [X, Y ] by extending X and
Y to left-invariant vector fields X , Y, then taking the Lie bracket of these vector
fields (which is again a left-invariant vector field), and setting [X, Y ] to be the value
of [X ,Y] at e.

There are now a few things to prove: first, it would be nice to know that the
two definitions match. Second, we need to prove Jacobi identity to make sure that
we did get a Lie algebra. Rather than proving it all directly, we first introduce the
exponential map and the adjoint representation (note that we do not need to know
these facts to make the definitions below).

1.3. The exponential map. As before, let X ∈ g, and let X be the left-invariant
vector field that extends X. It follows from ODE that the little path u : (−ε, ε) → G
that is tangent to X at the identity extends to a function defined on all of R
(uniquely) that defines a path on G that is tangent to X at every point. We define
exp(X) := u(1). This was done in lecture carefully. By definition of the exponential,
we have

exp((t + s)X) = exp(tX) exp(uX), t, u ∈ R.

1.4. The adjoint representation. The group G acts on its tangent algebra, in
the following way: for every g ∈ G, consider the inner automorphism of G defined
by x 7→ gxg−1, x ∈ G. This is a smooth map from G to G that fixes e. Then its
differential at the point e is a linear operator on the tangent space at e. We denote
this operator by Ad(g). This way we get a map Ad : G → gl(g).

Now we are ready to state a few theorems.

2. Facts

First, note that though a priori (and as a map of smooth manifolds), Ad was
defined as a map from G to gl(g), in fact its image is contained in GL(g), and
Ad : G → GL(g) is a homomorphism of groups. Indeed, Ad(g1g2) is the tangent
homomorphism to conjugation by g1g2, which can be thought of as a composition
of conjugation by g2 and conjugation by g1.

The differential of the map Ad : G → GL(g) at e is a map from g to the tangent
space of GL(g) at I (where I is the identity matrix of the size dim g), i.e., to the
space gl(g). So, for every X ∈ g, deAd(X) is a linear operator from g to g.

Theorem 2.1.
de(Ad)(X)(Y ) = [X, Y ].
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(Note that this gives us the third interpretation of the Lie bracket on g).
Proof. If we use the Definition 1.6 as the definition of the Lie bracket, then this
statement is Proposition 8.2 in Bump.

If we use Definition 1.1, then this is proved in Onischik and Vinberg, pp. 23-24
(Problem 1.2.12 and the argument following it).

Since the adjoint representation was defined independently of the Lie bracket,
this theorem implies that the two definitions of the Lie bracket agree.

Example 2.2. The main example (since it also works for all linear groups) is the
exponential map from gl(V ) to GL(V ). It is the usual matrix exponential, defined
by the Taylor series:

exp(X) =
∑

k

Xk

k!
.

Note that if we just look at the first two terms of the Taylor series expansion of
exp near 0, we get: exp(X) = I + X + . . . . For linear groups, this gives a direct
proof of the fact that the two definitions of the Lie bracket agree.

Jacobi idenity: using the definition of the Lie bracket via derivations, it’s obvious
(very easy to check by hand). Without derivations, it follows from the fact that
the adjoint representation is a homomorphism of the tangent algebras (since it is a
differential of a homomorphism of groups) – this was the way we did it in lecture.

Finally, let us note that exponentiation commutes with homomorphisms, in the
following sense.

Let f : G → H be a homomorphism of Lie groups. Then we have proved that
for X ∈ g, f(expX) = exp((def)(X)), where exp on the right-hand side is the
exponential map for H.

In particular, we can apply this statement to the group homomorphism
Ad : G → GL(g). We get: Ad(expX) = exp((deAd)(X)). Note that the expo-
nential in the right-hand side is the exponential map from gl(g) to GL(g) (i.e., the
matrix exponential). Recall that (deAd)(X) is the linear operator on g of “brack-
eting with X”: (deAd)(X)(Y ) = adX(Y ) = [X, Y ]. Then we have an equality of
linear operators on g:

(1) Ad(exp X) = exp(adX) =
∞∑

k=0

(adX)k

k!
.

This equality was very useful in our proof of the classification of commutative Lie
groups. Here’s a sketch of the way we used it. Suppose we know that [X, Y ] = 0.
Then adX(Y ) = 0, and so (adX)k(Y ) = 0 for all k > 0, and therefore exp(adX)Y =
Y . Then from (1), Ad(expX)Y = Y .

From this, it follows that if X and Y commute, then

exp(X + Y ) = exp(X) exp(Y ).

(See Proposition 15.2 in Bump).

Remark 2.3. For linear groups, the statement that “Ad commutes with exp” reduces
to:

(expX)Y (expX)−1 = exp(adX)(Y ).
Note that this formula doesn’t make sense in general.

To prove it, note that as a linear map from g to g, adX is the sum of mul-
tiplication by X on the left (denote it by λX and multiplication by −X on the
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right (denote it by ρ−X). These two operations commute. Then it follows that
the exponential of their sum is a product of their exponentials, and our statement
follows, since exp(λX) is multiplication by exp(X) on the left and exp(ρ−X) is
multiplication by exp(−X) on the right.

Example 2.4. If X and Y do not commute, it is not true that exp([X, Y ]) =
(exp(X), exp(Y )).

For example, take X =
[

1 0
0 −1

]
, Y = [ 0 1

0 0 ]. Note that Y 2 = 0. Then we have
[X, Y ] = 2Y ; exp(X) =

[
e 0
0 e−1

]
, exp(Y ) = I + Y + Y 2

2 + · · · = I + Y = [ 1 1
0 1 ].

Finally, exp([X, Y ]) = exp(2Y ) = I + 2Y = [ 1 2
0 1 ], but (exp X, expY ) =

[
1 e2−1
0 1

]
.


