Lie Groups. Problem Set 1. Due Friday September 14.

- 1. Find all Lie subgroups of the additive Lie group K.
- 2. (a) Show that the real Lie group of orthogonal n × n-matrices O_n(ℝ) is compact. (Hint: use the algebraic equations defining this group.)
 (b) Show that the unitary group U_n of complex unitary n × n-matrices

is a *real* Lie group, and it is compact.

- 3. Show that $GL_n(K)$ acts on the Grassmannian of k-dimensional subspaces of K^n .
- 4. Let \mathbb{H} be the quaternions (a real division algebra). Show that the group $GL_n(\mathbb{H})$ with the differential (real) manifold structure it gets as an open subset of the real vector space of all $n \times n$ -matrices over the quaternions, is a real Lie group of dimension $4n^2$.
- 5. Let G be a Lie group, $g \in G$. Show that the centralizer $Z(g) = \{h \in G \mid hg = gh\}$ of the element g is a Lie subgroup.