Lie Groups. Problem Set 3. Due Wednesday October 9.

1. Let k, l be positive integers, $n=k+l$. Let us define the group $O(k, l)$ to be the group of all (real) matrices that preserve the quadratic form $x_{1}^{2}+\cdots+$ $x_{k}^{2}-x_{k+1}^{2}-\cdots-x_{n}^{2}$. This is a Lie group of dimension $n(n-1) / 2$. Let us denote by $S O(k, l)$ the subgroup that consists of matrices with determinant 1.
(a) Show that $S O(k, l)$ is an open subgroup of index 2 in $O(k, l)$.
(b) Show that every element $A \in O(k, l)$ has nonzero $k \times k$-minor that is made from the first k rows and the first k columns.
(c) Show that this minor can be either positive or negative, and therefore $S O(k, l)$ is not connected (there are two connected components).
2. Show that $G L_{n}(\mathbb{C})$ is connected, but $G L_{n}(\mathbb{R})$ has two connected components.
3. Show that U_{n} and $S p_{n}$ are connected.
4. Show that $S U_{n}$ and $S p_{n}$ are simply connected.
5. Show that $\pi_{1}\left(S O_{n}\right)=\mathbb{Z} / 2 \mathbb{Z}$ when $n \geq 3$.
