Lie Groups. Problem Set 4. Due Monday October 22.

- 1. Let \mathfrak{g} be a Lie algebra that is a semidirect sum of \mathfrak{g}_1 and \mathfrak{g}_2 (that is, as a vector space it is a direct sum, and \mathfrak{g}_1 is an ideal). Let us define the map $\beta : \mathfrak{g}_2 \to \mathfrak{gl}(\mathfrak{g}_1)$ by the formula $[X_2, X_1]_{\mathfrak{g}} = \beta(X_2)X_1$. Show that for every $X_2 \in \mathfrak{g}_2, \beta(X_2)$ is a derivation of \mathfrak{g}_1 .
- 2. (a) Show that $(GL_n(K))' = SL_n(K)$. (b) Show that $O_n(K)' = SO_n(K)$.
 - (c) Show that $U'_n = SU_n$.
- 3. Show that $SL_n(K)$ is semisimple.
- 4. Show that the radical of a complex Lie group coincides with the radical of the same group if you considered it as a real Lie group.
- 5. Show that any nontrivial connected solvable Lie group has a connected normal subgroup of codimension 1.
- 6. Show that weight subspaces corresponding to different weights are linearly independent.
- 7. Let *H* be a normal subgroup of *G*, and let χ be a character of *H*, and *R* – a representation of *G*. Prove that for any $g \in G$, $R(g)V_{\chi}(H) = V_{\chi^g}(H)$, where χ^g is another character of *H* defined by $\chi^g(h) = \chi(g^{-1}hg)$.