Lie Groups. Problem Set 5. Due Friday November 2.

- 1. Write down a map of rings that gives the multiplication map on the \mathbb{C} -points of \mathbb{G}_m .
- 2. Let $g = \begin{bmatrix} 1 & i \\ 0 & 1 \end{bmatrix} \in \mathfrak{sl}_2(\mathbb{C})$. Write down the map of the coordinate rings that gives the left translation by g on $\mathfrak{sl}_2(\mathbb{C})$.
- 3. Prove that $\{\exp(t \begin{bmatrix} 1 & i \\ 0 & 1 \end{bmatrix}) \mid t \in \mathbb{C}\}$ is a Lie subgroup of $\operatorname{GL}_2(\mathbb{C})$ but not an algebraic subgroup. (Hint: you can use the hint from the textbook. It is Problem 7 in Chapter 3, Section 1).
- 4. Let M be an algebraic variety embedded in a complex affine space, and let \overline{M} be its complex conjugate. Then there is an isomorphism $M^{\mathbb{R}}(\mathbb{C}) \cong M \times \overline{M}$, and every point $x \in M^{\mathbb{R}}(\mathbb{C})$ corresponds to the point $(x, \overline{x}) \in M \times \overline{M}$. (This is exercise 17 in Chapter 2, Section 3).
- 5. Write down explicitly the coordinate ring of SO_2 (over \mathbb{C}). Write down two different automorphisms of order 2 of this ring, and then for each automorphism, write the equations defining the affine variety (over \mathbb{R}) whose \mathbb{R} -points coincide with the set of fixed points of this automorphism.