CHAPTER 1

Lie Groups

1. Connected and simply connected Lie groups

LEMMA 1.1. Let G be a Lie group and G^0 the connected component of the identity e of G. Then G^0 is a normal subgroup of G and G/G^0 is a discrete group.

PROOF. For all $g \in G^0$ we have that gG^0 is connected, open and closed since G^0 has these properties and the product is an homeomorphism. Since $g \in gG^0$ we have that $gG^0 = G^0$. Similarly $(G^0)^{-1}$ is connected, open and closed containing e so that $(G^0)^{-1} = G^0$. It follows that G^0 is a subgroup of G. Moreover for all $g \in G$ we have that gGg^{-1} is connected, open and closed. Since $e \in gGg^{-1}$ we have that $gGg^{-1} = G$, i.e. G^0 is normal.

Again because of the fact that multiplication by an element $g \in G$ is an homeomorphism, we have that the cosets of G^0 are the connected components of G, so that G/G^0 is discrete.

Lemma 1.2. Any open subgroup H of a Lie group G is closed and therefore contains G^0 .

PROOF. The complement $G \setminus H$ is the union of the cosets of H different from H itself, which means that it is an open subset of G.

Lemma 1.3. Any connected Lie group G is generated by any open neighborhood of the identity e.

Proof. The subgroup generated by an open set is open, by the lemma above it is closed, thus equal to G (who is connected).

Theorem 1.4. Let G be a Lie group acting transitively via α on a smooth connected manifold X. Then we have that:

- (1) G^0 acts transitively on X as well.
- (2) For all $x \in X$ we have that $G/G^0 \cong G_x/G_x \cap G^0$.
- (3) If G_x is connected for some $x \in X$, then G is connected.
- PROOF. (1) The map $\alpha_x : G \to X$; $g \mapsto \alpha(g)x$ is surjective and of constant rank equal to dim(X). Since the rank is a local notion, we have that α_x restricted to G^0 has full rank so that it stays surjective on a neighborhood of x. This means that the orbit of x under the action of G^0 contains a neighborhood of x so that each orbit is open and closed, thus equal to X (which is connected).
- (2) The group G^0 acts transitively on X, hence for every $g \in G$ we can choose an element $g' \in G^0$ such that $g'x = g^{-1}x$. This means that $gg' \in gG^0 \cap G_x$ and so $G_xG^0 = G$. The conclusion follows.

1

2 1. LIE GROUPS

(3) It should follow from point 2.

EXAMPLE 1.5. Clearly $SL_1(\mathbb{K})$ is connected. Moreover the stabilizer of the vector $(1,0,...,0) \in \mathbb{K}^n$ under the natural action of $SL_n(\mathbb{K})$ is homeomorphic to $SL_{n-1}(\mathbb{K}) \times \mathbb{K}^{n-1}$, since an element of this set is of the form:

$$\begin{pmatrix} 1 & v \\ 0 & A \end{pmatrix}$$

where $A \in SL_{n-1}(\mathbb{K})$ and $v \in \mathbb{K}^{n-1}$. The stabilizer of the point (1, 0, ..., 0) is then connected by induction hypothesis, thus the theorem above says that $SL_n(\mathbb{K})$ is connected.

Likewise we have that $SO_n(\mathbb{R})$ is connected since the stabilizer of its action on the sphere is $SO_{n-1}(\mathbb{R})$.

2. Simply connected Lie groups and universal cover

Definition 1.6. A Lie group homomorphism $f: G \to H$ is a covering homomorphism if it satisfies one of the following equivalent conditions:

- (1) The homomorphism f maps diffeomorphically a neighborhood of e_G into a neighborhood of e_H .
- (2) The subgroup *Ker f* is discrete.
- (3) The homomorphism f is a covering map.
- (4) The differential $d_{e_G}f$ is an isomorphism between the tangent algebras.

EXAMPLE 1.7. Consider the adjoint representation $Ad: SL_2(\mathbb{C}) \to End(sl_2(\mathbb{C}))$. Since $Ad(A)X = AXA^{-1}$, we have that Ad(A) preserve the quadratic form $a^2 - bc$, hence $Ad(SL_2(\mathbb{C})) \subset O_3(\mathbb{C})$. Observing that $Ker(Ad) = Z(SL_2(\mathbb{C})) = \{I, -I\}$ we find that $SL_2(\mathbb{C}) \to O_3(\mathbb{C})$ is a covering homomorphism.

Lemma 1.8. Let G be a connected Lie group. If N is a normal discrete subgroup, then $N \subset Z(G)$.

PROOF. For any $n \in N$ consider the map $f_n : G \to N$; $g \mapsto gng^{-1}$. The set Imf is connected, but N is discrete so that Imf is a point. Since $n \in Imf$ we conclude that $Imf = \{n\}$, i.e. $N \subset Z(G)$.

Theorem 1.9. Any connected Lie group G is isomorphic to a group \widetilde{G}/N , where \widetilde{G} is a simply connected Lie group and N is a discrete central subgroup of \widetilde{G} . Furthermore if (\widetilde{G}_1, N_1) is another such pair, then there exists a Lie group isomorphism $f: \widetilde{G} \to \widetilde{G}_1$ sending N to N_1 .

PROOF. Recall that if we are given two simply connected covers $p: \widetilde{X} \to X$, $q: \widetilde{Y} \to Y$, and if we are given a map between the base spaces $f: X \to Y$ and two points $\tilde{x_0} \in \widetilde{X}$, $\tilde{y_0} \in \widetilde{Y}$ such that $f(p(\tilde{x_0})) = q(\tilde{y_0})$, then there exists a unique map

 $\tilde{f}: \widetilde{X} \to \widetilde{Y}$ with $\tilde{f}(\tilde{x}_0) = \tilde{y}_0$ and making the following diagram commute:

$$\widetilde{X} - \frac{\widetilde{f}}{f} > \widetilde{Y}$$

$$\downarrow q$$

$$X \xrightarrow{f} Y$$

In fact for any other point $\tilde{x}_1 \in \widetilde{X}$ we can choose a path from \tilde{x}_0 to \tilde{x}_1 . The composite $f \circ p$ gives a path in Y from $f(p(\tilde{x}_0))$ to $f(p(\tilde{x}_1))$ which lifts to a path in \widetilde{Y} . This last path α gives a well defined image $\tilde{f}(x_1) = \alpha(1)$.

Let now $p : \overline{G} \to G$ be a topological smooth simply connected cover. Let \tilde{e} be a point in $p^{-1}(e_G)$. Apply the fact above to get the two following diagrams:

$$\widetilde{G} \times \widetilde{G} \xrightarrow{\widetilde{\mu}} \widetilde{G}$$

$$\downarrow p$$

$$G \times G \xrightarrow{\mu} G$$

$$\widetilde{G} - \frac{\widetilde{i}}{-} > \widetilde{G}$$

$$\downarrow p$$

$$\downarrow q$$

$$G \longrightarrow G$$

where μ is the product in G and i is the inverse map of G. Using the uniqueness of $\widetilde{\mu}$ and \widetilde{i} together with the fact that μ is a product and i is the inverse, we can prove that $\widetilde{\mu}$ defines a group law on \widetilde{G} with inverse given by \widetilde{i} : The maps $\widetilde{\mu}_1:\widetilde{G}\times\widetilde{G}\times\widetilde{G}\to\widetilde{G}$; $(\widetilde{x},\widetilde{y},\widetilde{z})\mapsto \widetilde{\mu}(\widetilde{\mu}(\widetilde{x},\widetilde{y}),\widetilde{z})$ and $\widetilde{\mu}_2:\widetilde{G}\times\widetilde{G}\times\widetilde{G}\to\widetilde{G}$; $(\widetilde{x},\widetilde{y},\widetilde{z})\mapsto \widetilde{\mu}(\widetilde{x},\widetilde{\mu}(\widetilde{y},\widetilde{z}))$ both cover the map $\mu:G\times G\times G\to G$; $(x,y,z)\mapsto xyz$ so that they are the same. Similarly for \widetilde{i} . It follows that $G\cong\widetilde{G}/N$ as announced.

We have still to prove the uniqueness up to isomorphism of \widetilde{G} and N. Let $(\widetilde{G_1}, N_1)$ be another such pair. Applying again the fact stated at the beginning of this proof, we find the following diagram:

$$\widetilde{G} - - \stackrel{\widetilde{f}}{-} > \widetilde{G}_{1}$$

$$\downarrow p_{1}$$

$$\widetilde{G}/N \xrightarrow{f} \widetilde{G}_{1}/N_{1}$$

where f is the obvious isomorphism. Switching the roles of \widetilde{G} and $\widetilde{G_1}$ and using the uniqueness of these maps, we have that \widetilde{f} is an homeomorphism. Applying one more time the uniqueness of the map between the simply connected cover, we can see that \widetilde{f} is also a group homomorphism (sending N to N_1): The two maps $\widetilde{G} \times \widetilde{G} \to \widetilde{G_1}$ given by $(\widetilde{x}, \widetilde{y}) \mapsto \widetilde{f}(\widetilde{x})\widetilde{f}(\widetilde{y})$ and $(\widetilde{x}, \widetilde{y}) \mapsto \widetilde{f}(\widetilde{x}\widetilde{y})$ both cover the map $\widetilde{G}/N \times \widetilde{G}/N \to \widetilde{G_1}/N_1$; $(x, y) \mapsto f(x, y) = f(x)f(y)$, hence they are the same.

4 1. LIE GROUPS

Corollary 1.10. Under the same assumptions as the theorem above we have that $\pi_1(G) \cong N$.

Proof. Obviously $\pi_1(G)$ =Deck transformations= N.

We recall now some basic facts about the foundamental group. Let $p: X \to Y$ be locally trivial fibration with fiber Z. Assume that X and Y are connected. Let $i: Z \to X$ be an inclusion and $z_0 \in Z$ a base point. Set $x_0 = i(z_0)$ and $y_0 = p(i(z_0))$. We have then an exact sequence of homotopy groups:

$$\pi_1(Z) \xrightarrow{i_*} \pi_1(X) \xrightarrow{p_*} \pi_1(Y) \xrightarrow{d} \pi_0(Z) \longrightarrow 0$$

where d is defined as follows: given a loop α in Y based at y_0 , choose a lift $\tilde{\alpha}$ of α in X (such a lift exists since the fibration is locally trivial). Then the connected component of $\tilde{\alpha}(1)$ does not depend on the homotopy type of α , for a homotopy from α to β will lift to a homotopy from $\tilde{\alpha}$ to $\tilde{\beta}$, which clearly has to stay in the same connected component.