
CHAPTER 1

Lie Groups

1. Connected and simply connected Lie groups

L 1.1. Let G be a Lie group and G0 the connected component of the identity e of
G. Then G0 is a normal subgroup of G and G/G0 is a discrete group.

P. For all g ∈ G0 we have that gG0 is connected, open and closed since
G0 has these properties and the product is an homeomorphism. Since g ∈ gG0 we
have that gG0 = G0. Similarly (G0)−1 is connected, open and closed containing e
so that (G0)−1 = G0. It follows that G0 is a subgroup of G. Moreover for all g ∈ G
we have that gGg−1 is connected, open and closed. Since e ∈ gGg−1 we have that
gGg−1 = G, i.e. G0 is normal.

Again because of the fact that multiplication by an element g ∈ G is an home-
omorphism, we have that the cosets of G0 are the connected components of G, so
that G/G0 is discrete. �

L 1.2. Any open subgroup H of a Lie group G is closed and therefore contains
G0.

P. The complement G \H is the union of the cosets of H different from H
itself, which means that it is an open subset of G. �

L 1.3. Any connected Lie group G is generated by any open neighborhood of the
identity e.

P. The subgroup generated by an open set is open, by the lemma above
it is closed, thus equal to G (who is connected). �

T 1.4. Let G be a Lie group acting transitively via α on a smooth connected
manifold X. Then we have that:

(1) G0 acts transitively on X as well.
(2) For all x ∈ X we have that G/G0 � Gx/Gx ∩ G0.
(3) If Gx is connected for some x ∈ X, then G is connected.

P. (1) The map αx : G → X; g 7→ α(g)x is surjective and of constant
rank equal to dim(X). Since the rank is a local notion, we have that αx
restricted to G0 has full rank so that it stays surjective on a neighborhood
of x. This means that the orbit of x under the action of G0 contains a
neighborhood of x so that each orbit is open and closed, thus equal to X
(which is connected).

(2) The group G0 acts transitively on X, hence for every g ∈ G we can choose
an element g′ ∈ G0 such that g′x = g−1x. This means that gg′ ∈ gG0

∩ Gx
and so GxG0 = G. The conclusion follows.
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(3) It should follow from point 2.
�

E 1.5. Clearly SL1(K) is connected. Moreover the stabilizer of the vector
(1, 0, ..., 0) ∈ Kn under the natural action of SLn(K) is homeomorphic to SLn−1(K) ×
Kn−1, since an element of this set is of the form:

(
1 v
0 A

)
where A ∈ SLn−1(K) and v ∈ Kn−1. The stabilizer of the point (1, 0, ..., 0) is then

connected by induction hypothesis, thus the theorem above says that SLn(K) is
connected.

Likewise we have that SOn(R) is connected since the stabilizer of its action on
the sphere is SOn−1(R).

2. Simply connected Lie groups and universal cover

D 1.6. A Lie group homomorphism f : G → H is a covering homo-
morphism if it satisfies one of the following equivalent conditions:

(1) The homomorphism f maps diffeomorphically a neighborhood of eG into
a neighborhood of eH.

(2) The subgroup Ker f is discrete.
(3) The homomorphism f is a covering map.
(4) The differential deG f is an isomorphism between the tangent algebras.

E 1.7. Consider the adjoint representation Ad : SL2(C) → End(sl2(C)).
Since Ad(A)X = AXA−1, we have that Ad(A) preserve the quadratic form a2

− bc,
hence Ad(SL2(C)) ⊂ O3(C). Observing that Ker(Ad) = Z(SL2(C)) = {I,−I} we find
that SL2(C)→ O3(C) is a covering homomorphism.

L 1.8. Let G be a connected Lie group. If N is a normal discrete subgroup, then
N ⊂ Z(G).

P. For any n ∈ N consider the map fn : G→ N; g 7→ gng−1. The set Im f is
connected, but N is discrete so that Im f is a point. Since n ∈ Im f we conclude that
Im f = {n}, i.e. N ⊂ Z(G). �

T 1.9. Any connected Lie group G is isomorphic to a group G̃/N, where G̃
is a simply connected Lie group and N is a discrete central subgroup of G̃. Furthermore
if (G̃1,N1) is another such pair, then there exists a Lie group isomorphism f : G̃ → G̃1
sending N to N1.

P. Recall that if we are given two simply connected covers p : X̃ → X,
q : Ỹ → Y, and if we are given a map between the base spaces f : X → Y and two
points x̃0 ∈ X̃, ỹ0 ∈ Ỹ such that f (p(x̃0)) = q(ỹ0), then there exists a unique map



2. SIMPLY CONNECTED LIE GROUPS AND UNIVERSAL COVER 3

f̃ : X̃→ Ỹ with f̃ (x̃0) = ỹ0 and making the following diagram commute:

X̃
p

��

f̃ //___ Ỹ
q

��
X

f
// Y

In fact for any other point x̃1 ∈ X̃ we can choose a path from x̃0 to x̃1. The
composite f ◦ p gives a path in Y from f (p(x̃0)) to f (p(x̃1)) which lifts to a path in Ỹ.
This last path α gives a well defined image f̃ (x1) = α(1).

Let now p : G̃→ G be a topological smooth simply connected cover. Let ẽ be a
point in p−1(eG). Apply the fact above to get the two following diagrams:

G̃ × G̃
p×p

��

µ̃ // G̃
p

��
G × G µ

// G

G̃
p

��

ĩ //___ G̃
p

��
G

i
// G

where µ is the product in G and i is the inverse map of G. Using the uniqueness of µ̃
and ĩ together with the fact that µ is a product and i is the inverse, we can prove that
µ̃ defines a group law on G̃ with inverse given by ĩ: The maps µ̃1 : G̃× G̃× G̃→ G̃;
(x̃, ỹ, z̃) 7→ µ̃(µ̃(x̃, ỹ), z̃) and µ̃2 : G̃ × G̃ × G̃ → G̃; (x̃, ỹ, z̃) 7→ µ̃(x̃, µ̃(ỹ, z̃)) both cover
the map µ : G × G × G→ G; (x, y, z) 7→ xyz so that they are the same. Similarly for
ĩ. It follows that G � G̃/N as announced.

We have still to prove the uniqueness up to isomorphism of G̃ and N. Let
(G̃1,N1) be another such pair. Applying again the fact stated at the beginning of
this proof, we find the following diagram:

G̃

p

��

f̃ //____ G̃1

p1

��
G̃/N f

// G̃1/N1

where f is the obvious isomorphism. Switching the roles of G̃ and G̃1 and using
the uniqueness of these maps, we have that f̃ is an homeomorphism. Applying
one more time the uniqueness of the map between the simply connected cover, we
can see that f̃ is also a group homomorphism (sending N to N1): The two maps
G̃ × G̃ → G̃1 given by (x̃, ỹ) 7→ f̃ (x̃) f̃ (ỹ) and (x̃, ỹ) 7→ f̃ (x̃ỹ) both cover the map
G̃/N × G̃/N→ G̃1/N1; (x, y) 7→ f (x, y) = f (x) f (y), hence they are the same. �
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C 1.10. Under the same assumptions as the theorem above we have that
π1(G) � N.

P. Obviously π1(G) =Deck transformations= N. �

We recall now some basic facts about the foundamental group. Let p : X → Y
be locally trivial fibration with fiber Z. Assume that X and Y are connected. Let
i : Z → X be an inclusion and z0 ∈ Z a base point. Set x0 = i(z0) and y0 = p(i(z0)).
We have then an exact sequence of homotopy groups:

π1(Z)
i∗ // π1(X)

p∗ // π1(Y) d // π0(Z) // 0
where d is defined as follows: given a loop α in Y based at y0, choose a lift α̃

of α in X (such a lift exists since the fibration is locally trivial). Then the connected
component of α̃(1) does not depend on the homotopy type of α, for a homotopy
from α to βwill lift to a homotopy from α̃ to β̃, which clearly has to stay in the same
connected component.


