Growing list of problems for Math534.

All Lie algebras are assumed to be finite-dimensional and over \mathbb{C} , unless otherwise specified. The references are: [H] – Humphreys; [FH] – Fulton & Harris.

The exercises not marked with a check mark are to be discussed during the next problem session in class.

- 1. Show that the Lie algebras \mathfrak{sl}_n , \mathfrak{so}_n (with n > 2), \mathfrak{sp}_n have the property $[\mathfrak{g}, \mathfrak{g}] = \mathfrak{g}$. (this is Exercise 9 on p. 5 of [H]).
 - 2. Show that the derived algebra of \mathfrak{gl}_n is \mathfrak{sl}_n (this is [H], Exercise 2 on p.9)
- $2.\sqrt{1}$ 1. Humphreys, Exercise 7 on p.5.
 - 2. Humphreys, Exercise 3 on p.10.
- 4. Humphreys, Exercise 3 on p.20
- 5. Humphreys, Exercise 4 on p.20
- 6. Humphreys, Exercise 1 on p.24.
- 7. Let $G = \operatorname{SL}_2(\mathbb{R})$ be the group of real 2×2 matrices with determinant 1, and let $K = \operatorname{SO}_2(\mathbb{R})$ be the subgroup of real matrices preserving the quadratic form $Q(x, y) = x^2 + y^2$; we consider the both groups with their natural (real) topology. Let $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{R})$ be the Lie algebra of real 2×2 matrices of trace 0. Let $\mathbf{H} = \{x + iy \mid y > 0\}$ be the upper half-plane in \mathbb{C} . Let $C^{\infty}(\mathbf{H})$ be the space of (real)-smooth functions on \mathbf{H} . Recall that $\operatorname{SL}_2(\mathbb{R})$ acts on \mathbf{H} by:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot z = \frac{az+b}{cz+d}.$$

- (a) Prove that there is a natural homeomorphism from the quotient $SL_2(\mathbb{R})/SO_2(\mathbb{R})$ to **H**. (Hint: consider the stabilizer of *i* under the action of $SL_2(\mathbb{R})$ on **H**). (This is in fact a diffeomorphism of real manifolds).
- (b) The homeomorphism from part (a) induces the isomorphism between the space of continuous functions on **H** and continuous K-invariant (i.e., such that f(k⁻¹g) = f(g) for every k ∈ K, g ∈ G) functions on G.
- (c) Prove that when $X \in \mathfrak{g}$ is sufficiently close to 0, the matrix $\exp(X)$ is defined and is an element of G close to 1.
- (d) Prove that the action $X \cdot f = \frac{d}{dt}|_{t=0} f(\exp(-tX) \cdot z)$ makes $C^{\infty}(\mathbf{H})$ into a g-module. Denote this representation by ρ .

(e) Let $\{X, Y, H\}$ be the standard basis of \mathfrak{g} . Prove that the Casimir operator $\rho(X)\rho(Y) + \rho(Y)\rho(X) + \frac{1}{2}\rho(H)^2$ coincides with the Laplace operator on \mathbf{H} , i.e. that it acts on $C^{\infty}(\mathbf{H})$ by:

$$f \mapsto cy^2 \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \right),$$