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A Cartan matrix is an integral matrix Cα,β indexed by a finite set∆, satisfying the conditions

(a) Cα,α = 2;
(b) Cα,β ≤ 0 for α 6= β;
(c) there exists a diagonal matrix D with positive diagonal entries such that CD is symmetric and
positive definite.

A root datum is a quadruple L = (L, ∆, L∨, ∆∨) in which (1) L is a free Z­module of finite rank and L∨

is its dual Hom(L, Z); (2) ∆ is a finite subset of L and ∆∨ is one of L∨; (3) implicit is a map α 7→ α∨

from∆ to∆∨ such that (〈α, β∨〉) is a Cartan matrix. In the literature, this is usually called a based root
datum. For my purposes it serves as a better beginning. I’ll say later something about the distinction.

A reductive group defined over C is an affine algebraic group whose algebraic representations are all

semi­simple—i.e. may be reduced into irreducible components. Examples identified in simple terms
as matrix groups are the special and general linear groups, symplectic groups, and orthogonal groups.

These groups are classified by root data. On the one hand, each such group determines a root datum,
and on the other to every root datum is associated such a group. I’ll begin with a few examples of how

root data arise from some classical groups, in order tomotivate the remainder of the paper, but this essay

is concerned principally with the second step, assembling the group from the datum. This assembly
takes place in several main steps: (1) constructing the root system and its Weyl group; (2) constructing

the Lie algebra from the root system; (3) finally, constructing the reductive group itself. I’ll not present

complete proofs, especially in the later parts, but I hope to make the reader comfortable with important
notions. Nearly all steps will be accompanied by explicit algorithms.

My original motivation in beginning this essay was to understand the ATLAS program written by the
late Fokko du Cloux, but the narrative took an unexpected turn. I hope to take up this matter again

sometime.

The principal reference I rely on for the parts on Lie algebra and group is [Cohen et al.:2004]. They rely

in turn primarily on [Carter:1972]. The construction of a root datum from a reductive group, which I

shall only mention briefly, can be found in [Borel:1963] and [Springer:1998]. The standard references on
root systems are [Bourbaki:1968] and [Humphreys:1972].
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As for notation, if L is the root datum above, let

L∆ = sublattice of L spanned by∆

L∆∨ = sublattice of L∨ spanned by∆∨

LR = the real vector space L ⊗ R .

To come: dominant roots (Prop. 25 on p. 165 in [B]), chains of r oots, WΘ and CΘ, associates, general
systems (not reduced) and relative roots, affine roots and gr oup, Coxeter element and polynomial
invariants (p. 169 etc. in [B]), Tits’ extended Weyl group, c onstruction of Lie algebra, structure
constants (some mention of Tits’ approach) the group, Tits s ystem, Bruhat decomposition, covering
by open cells.

Then general Coxeter groups, Kac-Moody algebras and groups
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Part I. Examples

1. Tori

The simplest complex reductive groups are complex tori, which are copies of some T = Tn = (C×)n.

The group T can be embedded in C2n as the closed affine variety xiyi − 1 = 0 for 1 ≤ i ≤ n. The
ring of affine functions on Tn is therefore that of all polynomials in the coordinates x±1

i . The algebraic

characters of T are the monomial maps (xi) 7→
∏

xmi

i , which form a free moduleX∗(T ) over Z of rank
n. This is its character group . The characters of T form a linear basis of the affine ring.

Proposition 1.1. Every algebraic representation of a complex torus is a direct sum of characters.[tori-reductive]

Proof. A representation of T is an algebraic homomorphism from T to GLn(C). Because it is algebraic,
we may write

π(t) =
∑

χ

cχ χ(t) ,

where each cχ is an n × nmatrix. Since π is a homomorphism and complex characters of any group are
linearly dependent (crucially used in Galois theory and sometimes called Dedekind’s Theorem), we can

deduce that

I =
∑

cχ, cχcρ =

{
cχ if χ = ρ
0 otherwise,

which implies that Cn is the direct sum of the images of the idempotent operators cχ, on which T acts as
χ.

One consequence of this is that tori are reductive. This is the only case in which this can be proven easily.

Elements of X∗(T ) are often expressed additively, in exponential notation. This is consistent with the
identification ofX∗(C×)with Z—thus for λ inX∗(T ) I’ll sometimes write t 7→ λ(t) but also sometimes
t 7→ tλ. In additive notation the product of characters λ and µ is written t 7→ tλ+µ.

The cocharacter group X∗(T ) of T is the group of all multiplicative homomorphisms from T1 to T .
These are maps of the form x 7→ (xmi), hence also make up a free Z­module of rank n. They also will be
often written as exponentials. This is canonically the dual ofX∗(T )—for λ inX∗(T ) and µ∨ the pairing
〈λ, µ∨〉with values in Z is defined by the formula

x〈λ,µ∨〉 =
(
xµ∨)λ

= λ
(
µ∨(x)

)
.

A torus is determined byX∗(T )—on the one hand its affine ring is the group algebra of X∗(T ), and on
the other

T (C) = Hom
(
X∗(T ), C×

)
= X∗(T ) ⊗ C

× .

The root datum corresponding to T is
(
X∗(T ), ∅, X∗(T ), ∅

)
. In general, the L in a root datum isX∗(T )

for some complex torus T , and L∨ isX∗(T ).
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2. The general linear groups

Let G = GLn(C) be the group of invertible n × n complex matrices, and let T be the subgroup of
diagonal matrices, which is isomorphic toTn. The Lie algebra ofG is the vector space g = gln of all n×n
matrices, and T acts on it by conjugation. It acts trivially on its own Lie algebra t. The other eigenspaces

are parametrized by pairs i 6= j—the space gi,j is spanned by the elementary matrix Ei,j with a single
non­zero entry 1 in position (i, j). We have

t Ei,j t−1 = (ti/tj)Ei,j if t = (ti) ,

so the non­trivial eigencharacters are the maps

λi,j : (tk) 7→ ti/tj ,

which are called the roots of g with respect to T .

Let εi be the character of T taking (tk) to ti. The εi form a basis ofX
∗(T ). In additive notation we have

tλi,j = tεi/tεj = tεi−εj so λi,j = εi − εj .

The positive roots are those corresponding to the (i, j) with i < j (upper right). The root spaces gi,j

associated to positive roots are those in the Lie algebra n of the subgroupN of upper triangular unipotent
matrices. This is the unipotent radical of the subgroup B of all upper triangular matrices in G, whose
Lie algebra is b = t + n.

In multiplicative notation we have
ti
tj

=
ti

ti+1

· · · tj−1

tj

and in additive

λi,j = εi − εj =
∑

i≤k<j

εk − εk+1 =
∑

i≤k<j

λk,k+1 .

The n− 1 roots αk = λk,k+1 make up the set∆ of simple roots of g. The equation above says that every
positive root is a non­negative integral combination of simple roots.

Dual to the basis εi of X
∗(T ) is the basis ε∨i of X∗(T ), taking x to the diagonal matrix t with tk = 1 for

i 6= k and ti = 1. Thus for n = 4

ε∨2 : x 7→




1 · · ·
· x · ·
· · 1 ·
· · · 1


 .

It is the basis dual to (εi) in the usual sense, since writing additively we have

〈εi, ε
∨
j 〉 = δi,j

and writing multiplicatively we have

εi

(
ε∨j (x)

)
= xδi,j .

For each pair i 6= j define the coroot
λ∨

i,j = ε∨i − ε∨j .

and for 1 ≤ i < n set α∨
i = λ∨

i,i+1. Thus λ
∨
i,j(x) is the diagonal matrix (tk) for which

tk =

{
x if k = i

1/x k = j
1 otherwise.
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The Cartan matrix of this group is the matrix (〈αi, α
∨
j 〉). It can be calculated explicitly by calculating

conjugations:

〈αi, α
∨
i 〉 = 2

〈αi, α
∨
i+1〉 = −1

〈αi+1, α
∨
i 〉 = −1

〈αi, α
∨
j 〉 = 0 for |j − i| > 1 ,

so the Cartan matrix is

C =




2 −1 · . . . · ·
−1 2 −1 . . . · ·
· −1 2 . . . · ·

. . . . . .
· · · . . . 2 −1
· · · . . . −1 2




.

It is manifestly symmetric. It is also positive definite, since it is the matrix (αi •αj) if the inner product
is that inherited from the Euclidean norm

∥∥∥
∑

xiεi

∥∥∥
2

=
∑

x2
i .

The root datum of G is the quadruple
(
X∗(T ), ∆, X∗(T ), ∆∨

)
,

Closely related to the groupGLn are the groups SLn, matrices of determinant 1, and PGLn, the quotient

of GLn by scalar matrices. The only essential difference for these is the specification of the torus T . In
the first case it is the group of diagonal matrices (tk)with

∏
tk = 1, and in the second the quotient of Tn

by scalars. In both cases T is isomorphic to Tn−1. The sets∆ and∆∨ are inherited naturally fromGLn.

For SLn, the latticeX∗(T ) has the α∨
i as basis, while for PGLn the latticeX∗(T ) has the αi as basis.

Motivation for the definition of the coroots λ∨
i,j might seem at this point a bit deficient. The real point

is that associated to every root λ = λi,j is a unique homomorphism I’ll call λ∗ from SL2(C) to G taking
the diagonal matrices of SL2 into T and mapping E1,1 in SL2 to Ei,j in GLn. Explicitly

λ∗:

[
a b
c d

]
7−→ (gk,ℓ)

where

gk.ℓ =






1 if k = ℓ but k 6= i, j
0 k 6= ℓ, i, j
a k = i, ℓ = i
b k = i, ℓ = j
c k = j, ℓ = i
d k = j, ℓ = j

.

Thus for n = 4, i = 1, j = 3we have

λ∗:

[
a b
c d

]
7→




a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1


 .

The map λ∨ is the composition of λ∗ with

x 7−→
[

x ·
· 1/x

]
.
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Why isG = GLn(C) reductive? Since its centre is a torus, we may express an algebraic representation as
a direct sumof spaces onwhich the centre acts by a single character. Each of these is stable underG, sowe
must show that any algebraic representation ofG on which the scalar matrices act as scalars decomposes
into a direct sum of irreducible reresentations. This reduces to the same claim for representations of SLn,
and is a special case of a general theorem, forwhich I refer to §III.7 of [Jacobson:1962]. In structural terms,
every affine algebraic group that does not contain a unipotent normal subgroup is reductive. Thus the

symplectic group introduced in the next section is also reductive.

3. The symplectic groups

The symplectic group Sp2n is that of all 2n×2nmatricesX preserving a non­degenerate anti­symmetric
form such as

∑
(xiyi+n − yixi+n) or, after a coordinate change, satisfying the equation

tX J X = J

where

J = Jn =

[
0 −ω
ω 0

]
with ω = ωn =




· · · · 1
· · · 1 ·

. . .
· 1 · · ·
1 · · · ·


 .

Sometimes I replaces ω, but there is a good reason for the choice here, as we’ll see in a moment.

The Lie algebra of this group is the tangent space of this group at I . As for any algebraic group, it may
be calculated by a very useful trick. An algebraic group defined overC determines also a group defined

over any ring extension of C, and in particular the nil-ring C[ε] = C ⊕ C·ε with ε2 = 0. The tangent
space may be identified with the linear space of all matrices X such that I + εX lies in G

(
C[ε]

)
. Here

this gives us the condition
t(I + εX)J(I + εX) = J

J + ε(tXJ + JX) = J
tXJ + JX = 0 .

This symplectic group contains a copy of GLn made up of matrices

[
X

ω−1· tX−1·ω

]

for arbitraryX in GLn(k), and also unipotent matrices

[
I X
0 I

]

withωX symmetric (that is to say, symmetricwith respect to reflection in the SW­NE axis). The subgroup
T of diagonal matrices in Sp2n, which are those like




a1 · · · · ·
· a2 · · · ·
· · a3 · · ·
· · · a−1

3 · ·
· · · · a−1

2 ·
· · · · · a−1

1



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(n = 3 here) is a maximal algebraic torus, of dimension n, with coordinates εi inherited from GLn. The
roots are in these terms the

±εi ± εj (i < j)

±2εi

and the co­roots
±ε̂i ± ε̂j (i < j)

±ε̂i .

It is significant that the two systems differ in the factor 2.

The simple roots are the αi = εi − εi+1 for i < n along with αn = 2εn. The first n − 1 arise from the
embedding of GLn mentioned above, while the last comes about from a different embedding of SL2:

[
a b
c d

]
7−→




In−1 · · ·
· a b ·
· c d ·
· · · In−1


 .

The Cartan matrix is

C =




2 −1 · . . . · ·
−1 2 −1 . . . · ·
· −1 2 . . . · ·

. . . . . . . . .
· · · . . . 2 −1
· · · . . . −2 2




.

It is not symmetric, but multiplication on the right by the diagonal matrix (di)with

di =
{

1 if i < n
2 if i = n

makes it into the symmetric matrix

C =




2 −1 · . . . · ·
−1 2 −1 . . . · ·
· −1 1 . . . · ·

. . . . . . . . .
· · · . . . 2 −2
· · · . . . −2 4




,

which is also (αi •αj) and hence positive definite. Here the inner product is, as for GLn, inherited from

the Euclidean inner product
εi • εj = δi,j .

The positive roots again correspond to upper nilpotent matrices, corresponding to the subgroup of
unipotent upper triangular matrices. This is what motivates the choice of ω in the definition of J .

What has been shown in this section and the previous one holds very generally. If G is a connected
complex reductive group, there exists inG a maximal complex torus T which is its own centralizer. The
adjoint action of T on g decomposes into the direct sum of the trivial action on t and a direct sum of
one­dimensional eigenspaces gλ. The λ in X∗(T ) that appear are called the roots of the group. Every
root together with an isomorphism u: C ∼= gλ gives rise to a unique homomorphism from SL2(C) to G
with the image of the diagonal matrices contained in T , compatible with the identification ofE1,1 in SL2

and u(1) in G. Restricted to the diagonal matrices, this defines λ∨. If we fix a Borel subgroup B of G
containing T , we are in effect choosing positive roots as those occurring in the nilpotent radical of b. All
positive roots may be expressed as integral non­negative combinations of simple roots. If∆ is the set of
simple roots, the root datum of G is (X∗(T ), ∆, X∗(T ), ∆∨).
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Part II. Root systems

4. Cartan matrices

Recall that a Cartan matrix is an integral matrix Cα,β indexed by a finite set∆, satisfying the conditions

(a) Cα,α = 2;
(b) Cα,β ≤ 0 for α 6= β;
(c) there exists a diagonal matrix D with positive diagonal entries such that CD is symmetric and
positive definite.

The last condition implies that Cα,β = 0 if and only if Cβ,α = 0. The first two conditions are trivial
to verify, but the last is not at all trivial. If C is a Cartan matrix, then so also is every 2 × 2 diagonal
submatrix

C =

[
2 Cα,β

Cβ,α 2

]
.

I’ll look at these first. If C is a Cartan matrix then Cα,β and Cβ,α are non­positive integers, and some

[
2 Cα,β

Cβ,α 2

] [
dα 0
0 dβ

]
=

[
2dα Cα,βdβ

Cβ,αdα 2dβ

]

with dα, dβ > 0will be symmetric and positive definite. If it is symmetric then it will be positive definite
if and only if its determinant

dαdβ(4 − Cα,βCβ,α) > 0

which implies that, swapping α and β if necessary, either both Cα,β = Cβ,α = 0 or Cβ,α = −1,
−3 ≤ Cα,β ≤ −1. Hence:

Proposition 4.1. Up to transposition the only 2 × 2 Cartan matrices are[twobytwoCartan]

[
2 0
0 2

]

and [
2 −n

−1 2

]

with 1 ≤ n ≤ 3.

The first case here is uninteresting and need not be considered further. In the second, the product CD is
then [

2dα −cdβ

−dα 2dβ

]
.

The condition onD is invariant under positive scalar multiplication, so we may assume dβ = 1/2. Since
CD is to be symmetric, this forces dα = c/2, making the product

[
c −c/2

−c/2 1

]
,

which is indeed positive definite. At this point, what we know about n × n Cartan matrices C is that
each diagonal 2 × 2 submatrix of CD is proportional to one of four types lised above. The condition on
diagonal 2 × 2 submatrices is thus simple to check. But the full condition on the signature is not easy to
verify, and what one really does in practice is to consult a list of all possibilities, discovered a long time

ago.

There is a convenient way to display this list. Every Cartan matrix corresponds to its Dynkin diagram .
It is a partially oriented, labeled graph. The nodes of this graph are the elements in ∆. There is an edge
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betweenα and β ifCα,β 6= 0. It is directed fromα to β with labelm ifCα,β = −m. The labels are usually
indicated by multiple links.

The possible Cartan matrices have all been classified. A Cartan matrix is called reducible if∆ = ∆1⊔∆2

withCα,β = 0 for all α ∈ ∆1, β ∈ ∆2, otherwise irreducible. A Cartan matrix is irreducible if and only if
its Dynkin graph is connected. Relabeling if necessary, any Cartan matrix may be written as a direct sum

of Cartan matrices that are irreducible. So it suffices to classify the irreducible Cartan matrices. Here is
the list, following the conventions of [Bourbaki:1968].

• An

This is the root system corresponding to SLn.

Ci,j =





2 if i = j
−1 if |i − j| = 1

0 if |i − j| > 1

C =




2 −1 · . . . · ·
−1 2 −1 . . . · ·
· −1 2 . . . · ·

. . . . . . . . .
· · · . . . 2 −1
· · · . . . −1 2




α1 α2 αn−1 αn

• Bn

This is the Cartan matrix of the orthogonal group of the quadratic form




0 0 ωn

0 1 0
ωn 0 0


 .

C =




2 −1 · . . . · ·
−1 2 −1 . . . · ·
· −1 2 . . . · ·

. . . . . . . . .
· · · . . . 2 −2
· · · . . . −1 2




α1 α2 αn−1 αn
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• Cn

This is the root system corresponding to Sp(2n).

C =




2 −1 · . . . · ·
−1 2 −1 . . . · ·
· −1 2 . . . · ·

. . . . . . . . .
· · · . . . 2 −1
· · · . . . −2 2




α1 α2 αn−1 αn

• Dn

This is the root system of the orthogonal group of the form

[
0 ωn

ωn 0

]
.

C =




2 −1 . . . · · · ·
−1 2 . . . · · · ·

. . .
· · . . . 2 −1 · ·
· · . . . −1 2 −1 −1
· · . . . · −1 2 ·
· · . . . · −1 · 2




α1 α2

αn−2

αn−1

αn

• E6

C =




2 · −1 · · ·
· 2 · −1 · ·

−1 · 2 −1 · ·
· −1 −1 2 −1 ·
· · · −1 2 −1
· · · · −1 2




α1 α3 α4 α5 α6

α2
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• E7

C =




2 · −1 · · · ·
· 2 · −1 · · ·

−1 · 2 −1 · · ·
· −1 −1 2 −1 · ·
· · · −1 2 −1 ·
· · · · −1 2 −1
· · · · · −1 2




α1 α3 α4 α5 α6 α7

α2

• E8

C =




2 · −1 · · · · ·
· 2 · −1 · · · ·

−1 · 2 −1 · · · ·
· −1 −1 2 −1 · · ·
· · · −1 2 −1 · ·
· · · · −1 2 −1 ·
· · · · · −1 2 −1
· · · · · · −1 2




α1 α3 α4 α5 α6 α7 α8

α2

• F4

C =




2 −1 · ·
−1 2 −2 ·
· −1 2 −1
· · −1 2




α1 α2 α3 α4
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• G2

C =

[
2 −1

−3 2

]

α1 α2

The Cartan matrices for An, Bn, Cn, Dn make up the infinite families, all of which have realizations as
relatively simple matrix groups. The last 5 cases are isolated and called exceptional . They do not have
simple matrix realizations.

It is useful to know thatC is a Cartan matrix if and only if its transpose tC is, and that condition (c) in the
definition of a Cartan matrix is equivalent to the condition that for some diagonal matrixDwith positive
entries DC is symmetric and positive definite. These assertions can both be verified easily by using D
to define a positive definite inner product on C∆. As a consequence, (L, ∆, L∨, ∆∨) is a root datum if
and only if its dual (L∨, ∆∨, L, ∆) is. This duality is at the heart of Langlands’ conjectures regarding
the interpretation of representations of reductive groups over local fields as well as conjectures about the
occurrence of automorphic forms.

5. The roots

One might wonder why a root datum L = (L, ∆, L∨, ∆∨) does not incorporate the entire set of roots of
a reductive Lie algebra. In fact, the usual definition of a root datum, as opposed to a based root datum,

does exactly this. In this definition, a set of roots is characterized axiomatically. But this is somewhat

awkward and also unecessary—one can construct the entire set of roots from L. This is because the set
of roots has a characteristic feature we haven’t seen yet—it possesses a high degree of symmetry. The

based root datum, in particular the Cartan matrix, is a more convenient starting point for computations.

We can see the symmetry easily in the example of GLn. Here, the roots are the εi − εj for 1 ≤ i, j ≤ n.
The symmetric groupSn, acting by permutations on the set of εi, permutes the roots as well. The roots

for Sp2n are also stable under a large group of linear transformations of L, the group generated by Sn

and the involutions εi 7→ ±εi.

There is a similar symmetry group in all cases. If (L, ∆, L∨, ∆∨) is a root datum with associated Cartan
matrix and α is in∆ then the linear transformation

sαλ = λ − 〈λ, α∨〉α

is a reflection, fixing the points λ of L in the hyperplane 〈λ, α∨〉 = 0 and taking α to −α. LetW be the
group generated by these reflections, the Weyl group of the datum. In the course of constructing the
datum of a reductive group, it is proven that the reflections sα take the set of roots to itself, and that

every root is the transform of a root in∆ by some w inW . For us, this property is a matter of definition.

I can give at least some idea of the connection between the reflectionsdefinedpurely in termsof theCartan

matrix and the roots. In the course of the construction of∆ and∆∨ are constructed homomorphisms λ∗

from SL2 to G. In SL2 we have the element

w =

[
0 −1
1 0

]
.

Let T1 be the group of diagonal matrices in SL2. The element λ∗(w) in G certainly conjugates λ∗(T1) to
itself. It turns out that the centralizer of λ∗(T1) is T , so λ∗(w) also conjugates T to itself, hence acts on
X∗(T ). In fact, it acts onX∗(T ) exactly as sα. In the case of GLn, sαi

swaps εi and εi+1.
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As I have already mentioned, the Weyl group W of the root datum is the group generated by the
reflections sα. The elements of L in theW­orbit Σ of∆ are called the roots of the datum.

Proposition 5.1. Both Σ andW are finite.[rootsfinite]

Proof. Define an inner product on L by means of the positive definite matrix CD

α •β = 〈α, β∨〉dβ in particular α •α = 2dα .

This inner product is non­degenerate on the subspace of L spanned by the simple roots. It follows
immediately from the definition that

〈α, β∨〉 = 2

(
α •β

β •β

)
,

so that the formula for reflection becomes

sα: λ 7→ λ − 2

(
λ •α

α •α

)
.

This means that sα is orthogonal with respect to this inner product. Each reflection has integral coordi­

nates, so the groupW takes the lattice spanned by∆ into itself. Since it also preserves lengths, the orbit
of∆ is contained in the lattice points of bounded length, hence finite. SinceW embeds into the group of
permutations of Σ, it too is finite.

This Weyl group is Sn in the case of GLn because Sn is generated by the elementary transpositions
swapping i and i + 1. (This can be proved most simply by induction.)

A root system in a real vector space V is a finite subset of non­zero vectorsR with these properties:

(a) there exists a map ρ 7→ ρ∨ from R to the linear dual V ∨ such that 〈ρ, σ∨〉 ∈ Z for all ρ, σ in R;
(b) the subspace of V annihilated by R∨ is complementary to the subspace spanned by R;
(c) the linear map

sρ: v 7→ v − 〈v, ρ∨〉ρ
is a reflection that takes R to itself.

In the rest of this section I’ll prove that LR together with Σ form a root system.

First, the map α 7→ α∨, which takes∆ to L∨, must be extended to a map defined on all of Σ.

Proposition 5.2. For every λ in Σ there exists a unique λ∨ in L∨ with these properties:[lambdavee]

(a) the linear map
sλ: µ 7−→ µ − 〈µ, λ∨〉λ

is a reflection;
(b) λ∨ lies in the integral linear span L∆∨ of∆∨ in L∨;
(c) the reflection sλ takes Σ to itself.

As for (a), it just means that 〈λ, λ∨〉 = 2, which guarantees that sλ takes λ to −λ in addition to fixing µ
in the hyperplane 〈µ, λ∨〉 = 0.

Proof. The specification of a candidate for λ∨ is not difficult. Recall that if T is any invertible linear
transformaion of V = LR, its contragredient T

∨ is defined by the formula

〈v, T∨u∨〉 = 〈T−1v, u∨〉 .

If λ = wα, the natural candidate for λ∨ isw∨α∨. It is not at all obvious that this definition depends only

on λ and not on the choices of α and w, but this will be shown momentarily.
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It is relatively easy to show that, with this definition, sλ takes Σ to itself. As before, let V = LR. Since w
inW takes Σ to itself, as does sα, the claim follows from:

Lemma 5.3. For w inW , α in∆, λ = wα,[rootreflect]

sλ = wsαw−1 .

Proof. For v in V
sλv = v − 〈v, w∨α∨〉wα

= w(w−1v − 〈w−1v, α∨〉α)

= wsαw−1v .

Since (xy)∨ = x∨y∨, in order to show that λ∨ lies in L∆∨ it suffices to show that (sα)∨ takes L∆∨ to

itself for all α in∆. To see this, define the reflection

sα∨ : u∨ 7−→ u∨ − 〈α, u∨〉α∨

on V ∨. The map sα∨ clearly takes L∆∨ to itself. So the claim follows from:

Lemma 5.4. For α in∆[alphalambda]

sα∨ = (sα)∨ .

Proof. For v in V , u∨ in V ∨

〈v, sα∨u∨〉 = 〈v, u∨ − 〈α, u∨〉α∨〉
= 〈v, u∨〉 − 〈v, α∨〉〈α, u∨〉

while
〈v, (sα)∨u∨〉 = 〈sαv, u∨〉

= 〈v, u∨〉 − 〈v, α∨〉〈α, u∨〉 .

So now we know that the above definition of λ∨ satisfies the required conditions. We do not yet know

the definition to be valid—i.e. that the definition of λ∨ as w∨α∨ is independent of the choice of w and α.
This follows from:

Lemma 5.5. Suppose R to be any finite subset spanning a real vector space V , ρ in R. There exists at[bourbaki-uniqueness]

most one reflection inGL(V ) taking ρ to −ρ, R to itself.

Proof. If there were two, their product T would takeR to itself and act as the identity on V moduloR·ρ.
Then

Tv = v + f(v)ρ

for some function f on LR which is necessarily linear and vanishes on ρ. Thus

T mv = v + mf(v)ρ

for all v. But since T preserves R, which spans V , it must be of finite order, and f must vanish
everywhere.

Lemma 5.6. For every λ in Σ there exists a unique λ∨ in L∆∨ such that the reflection sλ preserves Σ.[lambdavee]

Proof. If it lies in L∆∨ , it will vanish on the intersection of the kernels of the α∨ in LR, which is

complementary to the vector space V spanned by Σ. Since it preserves Σ it preserves V . The Lemma
implies there is at most one reflection that acts properly, and there will be exactly one λ∨ such that sλ is

that reflection.
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This concludes as well the proof of Lemma 5.6, which implies in turn:♣ [lambdavee]

Corollary 5.7. The set Σ, together with the map λ 7→ λ∨, is a root system in LR.[rootsys]

I’ll call a full root datum a quadruple (L, R, L∨, R∨) (together with an implicit map from R to R∨) in
which (1) L is a free Z­module and L∨ its dual; (2) the subset R in LR together with ρ 7→ ρ∨ is a root
system. In the literature, this is what is usually called a root datum. Root systems, which have no lattice

involved except that spanned by the roots, are designed to deal with Lie algebras. Several of these root
data may correspond to the same root system, just as several Lie groups may have the same Lie algebra.

We’ll see later how one can go back from a full root datum to a root datum—i.e. how to define∆ ⊆ Σ.

6. Root data of rank two

The rank of a root datum is the cardinality of ∆. Many results about general systems reduce to results
about systems of rank two, which I analyze in this section.

If the Cartan matrix for the pair α, β is [
2 −1

−n 2

]

then [
2 −1

−n 2

] [
dα 0
0 dβ

]
=

[
2dα −dβ

−ndα 2dβ

]
=

[
α •α α •β
α •β β •β

]
,

leading to

α •β = −(n/2)(α •α)

β •β = n (α •α) .

Therefore if α and β are connected by an edge in the Dynkin diagram, the value of a single α •α
determines α •β and β •β. If the Dynkin diagram is connected, the value of one α •α determines the
whole matrix (β • γ).

Let’s look next in more detail at the rank two cases, with notation as above. If θ is the angle between α
and β then

cos θ =
α •β

‖α‖ ‖β‖

=
−(n/2)(α •α)√

α •α
√

β •β

= −√
n/2 .

I’ll now discuss each of the three cases in some detail. In each case, the Cartan matrix is given first,

followed by a figure showing all the roots. The simple roots are in black; the other roots, which are
obtained by repeatedly applying reflections in the simple ones, are outlined. Also in each figure is

shown the acute cone {α∨ > 0} ∩ {β∨ > 0}, as well as the lines where roots vanish.
System A2.

C =

[
2 −1

−1 2

]

α

β

A2
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The product of the reflections sα and sβ is a rotation through 120◦. The groupW consists of

1, sα, sβ , sαsβ, sβsα, sαsβsα = sβsαsβ .

System C2 = B2.

C =

[
2 −1

−2 2

]

α

β

C2

The product of the reflections sα and sβ is a rotation through 90◦. The groupW consists of

1, sα, sβ , sαsβ , sβsα, sαsβsα, sβsαsβ , sαsβsαsβ = sβsαsβsα .

System G2.

C =

[
2 −1

−3 2

]

α

β

G2

The product of the reflections sα and sβ is a rotation through 60◦. The groupW consists of

1, sα, sβ , sαsβ , sβsα, sαsβsα, sβsαsβ, sαsβsαsβ ,

sβsαsβsα, sαsβsαsβsα, sβsαsβsαsβ, sαsβsαsβsαsβ = sβsαsβsαsβsα .

In each of the rank two cases, the product sαsβ is a rotation through an angle 2π/mα,β , where

mα,α = 1, 4 cos2(π/mα,β) = Cα,βCβ,α ,

and more explicitly

mα,β =





2 if Cα,βCβ,α = 0
3 Cα,βCβ,α = 1
4 Cα,βCβ,α = 2
6 Cα,βCβ,α = 3.
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For every Cartan matrix one may assign numbers according to this rule, defining what is called its
Coxeter matrix (mα,β), and we always have relations

s2
α = 1, (sαsβ)mα,β = 1 .

It is easy to see that these are equivalent to

s2
γ = 1 for γ ∈ ∆

sαsβ . . . = sβsα . . . (mα,β terms on each side) .

The second relation is called the braid relation .

Proposition 6.1. In rank two, the groupW is defined by the generators sα, sβ , and these relations.[genrel]

It is a Coxeter group .

Proof. I’ll show that if s1s2 . . . sn = 1 then the string s1⋄ . . . ⋄sn is equivalent to the empty string by
means of the given relations. This can be seen most easily by tracking the string around the unit circle. If

it doubles back, a deletion of a pair sγsγ shortens it. Thus, one may assume the path is a combination of

simple loops. But each loop is associated to either (sαsβ)mαmβ or its inverse, and may be eliminated.

The following may be proven by inspection:

Proposition 6.2. In each case, the closure of the region[fund2]

C = {α > 0} ∩ {β > 0}

is a strict fundamental domain forW .

As may this:

Proposition 6.3. Suppose λ, µ to be two roots, and let C = {λ > 0} ∩ {µ > 0}. If C contains no part of[abneg]

any root line ν = 0, then 〈λ, µ∨〉 ≤ 0.

In fact, it can be seen that some w{λ, µ} = {α, β}. This Proposition holds even if 〈α, β∨〉 = 0.

These three cases all have a further feature in common. Let ℓ(w) be the length of the shortest string of
reflections equal to w. For example, in the case of A2 the length of sαsβsα is 3. The following may also
be proved by inspection:

Proposition 6.4. If γ is in∆, then ℓ(sγw) > ℓ(w) if and only if γ > 0 on wC.[wal]

In other words, if and only if wC lies on the other side of the line γ = 0 from C.

Some of what I have said in this section applies to any pair of roots λ, µ. First of all, since µ∨ lies in

L∨, the pairing 〈λ, µ∨〉 is always an integer. SinceW preserves the metric and sµ is inW , it must be an
orthogonal reflection. Combining these two observations

2

(
λ •µ

µ •µ

)
= 〈λ, µ∨〉

must always be an integer. From this equation we get

〈λ, µ∨〉〈µ, λ∨〉 = 4 · (λ • µ)2

(λ •λ)(µ • µ)
.

But the cosine formula tells us that if θ is the angle θ between them then

cos2 θ =
(λ •µ)2

(λ •λ)(µ • µ)
,
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which implies that
〈λ, µ∨〉〈µ, λ∨〉

is 0, 1, 2, or 3 if λ and µ are linearly independent, and 4 otherwise.

Proposition 6.5. For any two linearly independent roots λ, µ the product 〈λ, µ∨〉〈µ, λ∨〉 is equal to 0, 1,[productC]

2, or 3.

Furthermore:

Corollary 6.6. Suppose that λ, µ are distinct roots with λ •µ 6= 0 and ‖µ‖ ≥ ‖λ‖. (a) If they are linearly[lengthratio]

indendent then
µ •µ

λ •λ
= 1, 2, or 3 .

(b) If they are proportional then µ = ±2λ.

Proof. We have

(µ •µ)〈λ, µ∨〉 = (λ •λ)〈µ, λ∨〉, µ •µ

λ •λ
=

〈µ, λ∨〉
〈λ, µ∨〉 .

But the right hand side can be only 1, 2, or 3.

Ifλ andµ are proportional, sayµ = cλwith c > 1, thenµ∨ = λ∨/c. Since 〈λ, µ∨〉 = 2/c and 〈µ, λ∨〉 = 2c
are both integers, c = 2.

Proposition 6.7. If the Cartan matrix is irreducible, then among the roots there are at most two lengths.[twolengths]

If λ and µ are two roots with ‖λ‖ < ‖µ‖ then the ratio ‖µ‖/‖λ‖ is either
√

2 or
√

3.

In the proof, we’ll need first:

Lemma 6.8. Assume the Cartan matrix to be irreducible. If λ and µ are two roots, there exists w inW[irrtrans]

such that wµ • λ 6= 0.

Proof of the Lemma. Since every root is a W ­transform of a simple root and W preserves lengths, we

may assume µ in∆. Let∆0 be the subset of α in∆ perpendicular toWλ, V0 the subspace of V spanned
by ∆0, and V1 its orthogonal complement, ∆1 the intersection of ∆ with V1. By assumption, µ lies in
∆1. Each of V0, V1 isW ­stable, and V = V0 ⊕ V1. If β is any element of∆, the −1 eigenspace of sβ has

dimension one, and hence must lie completely in either V0 or V1. Thus∆ = ∆0 ⊔∆1, and the two pieces
are orthogonal. Since∆ is irreducible and∆1 6= ∅,∆0 = ∅.
Proof of the Proposition 6.7. Suppose λ, µ, ν three roots of different lengths. SinceW preserves lengths,♣ [twolengths]

we may assume all lie in∆, and also by permuting and scaling that

1 = ‖λ‖ < ‖µ‖ < ‖ν‖ .

By Lemma 6.8, all three ratios ‖ν‖/‖λ‖ etc. must satisfy the condition of Corollary 6.6 and the remark♣ [irrtrans]♣ [lengthratio]

that follows it, which is possible only if

‖λ‖ = 1, ‖µ‖ =
√

2, ‖ν‖ = 2 .

Since the Dynkin diagram is connected, this tells us that there exists in it a linear chain of roots in which
the first node has length 1, the last length 2, and the intermediate ones length

√
2. So it remains to show

that such a Dynkin diagram does not correspond to a Cartan matrix. Of course we can just check the
list of possible Dynkin diagrams, but I offer it as an exercise that the associated Cartan matrix does not

satisfy condition (c). (Hint: the choice of diagonal matrix D should be clear. Then show that CD is not
invertible.)

In fact the Proposition is true if and only if no such Dynkin diagram is acceptable.

Corollary 6.9. If λ and cλ are both roots, then c = ±1.[reduced]
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That is to say, the system is said to be reduced .

Proposition 6.10. If∆ is irreducible, two roots lie in the sameW­orbit if and only if they have the same[samelength]

length.

Proof. We may suppose ‖λ‖ = ‖µ‖ = 1. By Lemma 6.8, we may suppose λ •µ 6= 0. Since the matrix♣ [irrtrans]

[
λ • λ λ • µ
λ •µ µ •µ

]

is positive definite and 2λ •µ must be an integer, λ •µ = ±1/2. If λ •µ = −1/2, we may replace µ by
sλµ. But now λ and µ fit exactly into the diagram above for A2 as α and β, and sλsµλ = µ.

7. Roots and the Weyl group

SupposeL to be a root datum. In this section, and only in this section, I shall use notation slightly different
from that used elsewhere. In the end the two systems of notation will be shown to be compatible. For
each α in∆, let sα be the simple reflection corresponding to α in∆ and let S be the set of all these simple
reflections. We know from the analysis of the systems of rank 2 that the sα in S satisfy the relations

s2
α = 1, (sαsβ)mα,β = 1 ,

where (mα,β) is the associated Coxeter matrix. DefineW to be the group defined by these generators sα

satisfying analogous relations, and let S be the set of sα. Themap sα 7→ sα determines a homomorphism

w 7→ w fromW toW .

I recall the definition ofW . It is the set of all stringsw = s1⋄ . . . ⋄sm (allowing the empty string) obtained

by concatenating elements of S, modulo a certain equivalence. I say that x ≡ y if either is obtained from
the other by (a) an insertion or deletion of a duplication sα⋄sα or (b) an insertion or deletion of a string
sα⋄sβ ⋄sα⋄sβ . . . in which there are 2mα,β terms all together. The product is defined by concatenation,

the identity element is the empty string. It is immediately apparent that the inverse of a string is that
string reversed. One easy consequence is that

sα⋄sβ . . . = sβ ⋄sα . . . (mα,β terms on each side).

For w in W , let ℓ(w) be the length of the shortest string in its equivalence class. For s in S, ℓ(s⋄w) is
either ℓ(w) + 1 or ℓ(w) − 1. Similarly ℓ(w⋄s) = ℓ(w) ± 1. I write s⋄w > w or s⋄w < w depending on
which case occurs. Let V = LR and define

C = {v ∈ V | v •α > 0 for all α ∈ ∆} .

The following is one of the fundamental facts about root systems. It is the main connection between the

geometry of roots and the combinatorics ofW .

Theorem 7.1. Suppose w to be inW , s = sα in S. Then[walext]

(a) if s⋄w > w then wC lies entirely in the region α > 0;
(b) if s⋄w < w then wC lies entirely in the region α < 0.

An important part of the proof is the case |S| = 2, which we have already seen (Proposition 6.4).♣ [wal]

Proof. The proof begins with an observation:

Lemma 7.2. Suppose Θ ⊂ ∆. Let T ⊆ S be the set of sα for α ∈ Θ, and letWT be the subgroup ofW[wtw]

generated by T . Every w in W may be written as x⋄y with (a) x ∈ WT , t⋄y > y for all t in T and (b)
ℓ(w) = ℓ(x) + ℓ(y).

I do not claim yet that x and y are unique, although that will be verified later on.

Proof of the Lemma. The following algorithm computes x and y:
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y := w
x := 1
while t⋄y < y for some t in T :

y := t⋄y
x := x⋄t

Since the length of y decreases in every iteration of the loop, the algorithm certainly stops. When it
does so, t⋄x > x for all t in T . In order to prove the Lemma, it suffices to verify that w = x⋄y with
ℓ(w) = ℓ(x) + ℓ(y) whenever entry into the loop is tested. These certainly hold at the first test, so it
remains to see that they are not destroyed in the loop. Equality w = x⋄y is certainly preserved since
t2 = 1. Since ℓ(w) = ℓ(x) + ℓ(y) to start and ℓ(w) = ℓ(x⋄t⋄t⋄y), we also have

ℓ(x) + ℓ(y) = ℓ(xt) + ℓ(ty)

= ℓ(x⋄t) + ℓ(y) − 1

ℓ(x) = ℓ(x⋄t) − 1

ℓ(x⋄t) = ℓ(x) + 1

ℓ(w) = ℓ(x⋄t) + ℓ(t⋄y)

so this equality is preserved in the loop.

This result will be made more precise later on, where we discuss the cosetsWΘ\W in more detail.

We now prove Theorem 7.1 by induction on ℓ(w). If w = 1 there is no problem. Suppose ℓ(w) > 1.♣ [walext]

Suppose s = sα. If y = s⋄w < w we must show that α is negative on wC. But then s⋄y > y, so by
induction α > 0 on yC. But then α < 0 on wC = s⋄yC since sα = −α.

Continue to suppose s = sα. and suppose s⋄w > w. It must be shown that α > 0 onwC. Choose t = sβ

such that t⋄w < w. Find x inWα,β and y inW satisfying the conditions of the Lemma. Since t⋄w < w,
ℓ(y) < ℓ(w). Since s⋄y > y and t⋄y > y, induction lets us see that yC is contained in the region Cα,β

where α > 0, β > 0. Since ℓ(w) = ℓ(x) + ℓ(y), ℓ(s⋄x) = ℓ(x) + 1, and this is still valid if ℓ is the length
inWα,β . From Proposition 6.4, we see that α > 0 on the region xCα,β , hence on wC = x⋄yC as well.♣ [wal]

Corollary 7.3. The canonical map fromW toW is an isomorphism.[coxetergroup]

Proof. Suppose w = 1. If w 6= 1 then s⋄w < w for some s = sα in S, which implies that α < 0 on
wC = C. Contradiction.

Hence from now on I may revert to earlier notation and identifyW withW .

Given an irreducible root datum L, the associated set of roots Σ is the W­orbit of ∆ in L. Define the
subset of positive roots Σ+ to be those roots λ such that λ •C > 0. In particular,∆ ⊂ Σ+. The negative

roots are those < 0 on C.

Corollary 7.4. Every root is either positive or negative.[posneg]

Proof. If λ = wα with α in ∆, then λ •C = α •w−1C, and according to the Theorem either α > 0 or
α < 0 on w−1C.

If λ is a non­negative combination of simple roots, it is certainly a positive root. Conversely:

Proposition 7.5. Every positive root may be expressed as a non­negative integral combination of simple[rootspos]

roots.

Proof. Since the simple roots are linearly independent, the domain C is a simplicial cone, and a general
result about convex cones asserts that any positive root is a non­negative linear combination of simple
roots. But the coordinates of any root are integral.

For every w inW let

Lw = {λ ∈ Σ+ |w−1λ < 0} .
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An equivalent condition is that λ < 0 on wC, or that λ = 0 separates C from wC. Thus Theorem 7.1♣ [walext]

asserts neither more nor less than that sαw > w if and only if α is not in Lw, or that sαw < w if and only
if α is in Lw.

Proposition 7.6. If α lies in∆ then[lw]

(a) Lsα
= {α};

(b) if sαw > w then Lsαw = w−1{α} ⊔ Lw.

Here as elsewhere ⊔means a disjoint union.
Proof. The hyperplane α = 0 is a wall of C, so α = 0 is the only root hyperplane that separates C
from sαC. Any other root vanishing there must be an integral multiple of α, but that is excluded by
Proposition 6.7. This proves (a).♣ [twolengths]

I leave (b) as an exercise.

Corollary 7.7. For w inW , |Lw| = ℓ(w).[lwlength]

Proof. By induction.

The complement of the union of root hyperplanes λ = 0 is partitioned into connected components called
Weyl chambers . One of these is the cone C. The following says that these chambers are a principal
homogeneous set forW , and a bit more.

Proposition 7.8. The closure C of the cone C is a strict fundamental domain of W .[funddom]

That is to say, every v in LR is theW ­transform of a unique vector in C.

Proof. The first step is to show that every v can be transformed byW to a point of C. This is done by
induction on the number of positive root hyperplanes separating v from C.

Suppose both v and w(v) lie in C with w 6= 1. I’ll prove by induction on ℓ(w) that w(v) = v. Say
x = sαw < w. Then C and wC lie on opposite sides of the hyperplane α = 0. But since v andw(v) both
belong to C , it must lie on that hyperplane. But then x(v) = v. Apply induction.

8. From root system to base

In this section and the next I’ll explain two different ways to construct a base ∆ from a root system
Σ—i.e. to go backwards along the route followed so far. The next section introduces a completely new
idea—new to this essay, that is to say, but not due to me.

Suppose that we are given a root system Σ in the real vector space V . I recall, this means Σ is a finite
subset of non­zero vectors with these properties:

(a) there exists a map λ 7→ λ∨ from Σ to the linear dual V ∨ such that 〈λ, µ∨〉 ∈ Z for all λ, µ in Σ;
(b) the subspace of V annihilated by Σ∨ is complementary to the subspace spanned by Σ;
(c) the linear map

sλ: v 7→ v − 〈v, λ∨〉λ
is a reflection that takes Σ to itself.

I shall assume further that, following Corollary 6.9, (d) the root system is reduced. This means that if λ♣ [reduced]

is a root then the only scalar multiples of λ that are also roots are ±λ. The Weyl group W of the root

system is that generated by all the sλ. All of these preserve the subspace of V perpendicular toΣ. Hence
if w inW acts trivially on Σ it acts trivially on all of V . ThereforeW is finite. There thus exists at least

one positive definite inner product preserved byW . Since each sλ is orthogonal, we have

〈λ, µ∨〉 = 2

(
λ •µ

µ •µ

)

for all roots λ, µ.
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Proposition 8.1. The roots span a lattice in V .[rootlattice]

I recall that a lattice in a real vector space is a discrete subgroup, necessarily a finitely generated free

Z­module.

Proof. If the Z span of the roots is not discrete, there would exist vectors in it arbitrarily close to 0. This
means that any linear function on V takes arbitrarily small values on the span. On the other hand, since
〈λ, µ∨〉 lies in Z, any coroot in R∨ defines a linear function on all of V taking only integral values.

Proposition 8.2. If U is a linear subspace of V then Σ ∩ U ,is a root system in U .[subspaceroots]

Proof. Immediate.

The root hyperplanes λ = 0 partition V , their complement is the disjoint union of convex conical sets
called chambers. This configuration is invariantwith respect to each of the reflections sλ, hence preserved
byW . Let C be one of these, and let∆ be the roots α that are> 0 on C such that α = 0 is a wall of C (of
codimension one).

Theorem 8.3. The set∆ is linearly independent, and (〈α, β∨>〉) is a Cartan matrix. The associated set of[cartanfromroots]

roots is Σ.

Proof. In several steps. The first step is to show that 〈α, β∨〉 ≤ 0 for α 6= β in∆. The open region C has
α = 0 and β = 0 as walls. The region C is convex, so we can find points A on the first and B on the
second such that the open line segment between them lies in C. It does not cross any root hyperplanes
at all. By Proposition 8.2 the roots in the linear span of α and β make up a root system, so we can apply♣ [subspaceroots]

Proposition 6.3 to deduce that 〈α, β∨〉 ≤ 0.♣ [abneg]

The next step is one in linear algebra.

Proposition 8.4. Suppose A = {ai} to be a set of vectors in a Euclidean vector space such that (a)[gaussab]

ai • aj ≤ 0 for i 6= j; (b) there exists a single vector ρ such that ai • ρ > 0 for all i. LetM be the matrix
(ai • aj). There exists a unipotent lower triangular matrix L with non­negative entries and an invertible
diagonal matrix E wih positive entries such that

L M tL = E .

In particular, the set A is linearly independent.

Proof. A careful application of Gauss elimination. Along the way we’ll need a simple fact: Suppose
u • v ≤ 0, u • ρ > 0, and v • ρ > 0. Let u⊥ be the projection of u onto the hyperplane perpendicular to v.
Then u⊥ • ρ > 0 also. For if u = u0 + u⊥, then the projection of u along v is

u0 =
u • v

v • v
v = −cv

with c ≥ 0. But then
u⊥

• ρ = v • ρ + c u • ρ > 0 .

Now to prove the Proposition. Let A be the matrix whose columns are the vectors ai in A. The matrix

M = (ai • aj) is then the same as
tAQA ifQ is the matrix defining the dot product. Let a⊥

1 = a1, but for

i > 1 let
a⊥

i = ai + ℓia1 where ℓi = − ai • a1

a1 • a1

,

the projection of ai onto the space perpendicular to a1. By assumption, ℓi ≥ 0. If ℓ is the column matrix
with entries ℓi and

L =

[
1 tℓ
ℓ I

]

then
L M tL = M⊥ .
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whereM⊥ is the matrix (a⊥
i • a⊥

j ). The only non­zero entry in the first row or column of the matrixM⊥

is a1 • a1 > 0. According to the Lemma, the vectors a = a⊥
i still satisfy the condition a • ρ > 0, so we

may now continue by induction on the set a⊥
2 , etc.

To prove Theorem 8.3, we take ρ to be any vector in C.♣ [cartanfromroots]

There is one other easy consequence of Proposition 8.4. Suppose∆ spansV , and letC be theCartanmatrix♣ [gaussab]

determining it. For some positive diagonal matrix we know that CD is positive definite and symmetric,
satisfying the hypotheses of Proposition 8.4, so its inverse, which is D−1C−1, has non­negative entries,♣ [gaussab]

hence so does C−1. But the rows of C−1 are the coordinates with respect to∆, of the basis (̟α) dual to
∆. Therefore:

Proposition 8.5. The closure C of the fundamental domain is contained in the closed cone spanned by[cincpos]

∆.

Furthermore, a root is positive if and only if its dot­product with each ̟α is non­negative. Since this is

dot­product is the coordinate of the root in the basis ∆, this proves very explicitly that every positive
root is a non­negative combination of simple roots.

I have remarked that root systems, as opposed too root data, are designed to deal with Lie algebras, not
groups. However, every root system gives rise to certain canonical root data. Define L∆ to be the lattice

in V spanned by∆, which is contained in the lattice (L∆∨)∨ of v in V such that 〈v, λ∨〉 is integral. Both
of these define root data. In some cases, for example the systems En, these are not distinct.

9. Positive roots and linear orders

The approach in the previous section is geometric, characterizing the set∆ in terms of the partition of V
by root hyperplanes. This one will explain an alternate method, often seen in older literature.

Given a coordinate system on the real vector space V , wemay define a total order on V by this condition:

(xi) < (yi) if for some j we have xi = yi for i < j but xj = yj .

In other words, this is lexicographic or dictionary order. The point (xi) is positive if its first non­zero
coordinate is positive. I’ll call an order defined in this way a linear order . A linear order is translation
invariant, also invariant with respect to positive scalar multiplication, and conversely every total order

so invariant is a linear order.

If (L, ∆, L∨, ∆∨) is a root datum such that ∆ spans V = LR, then ∆ is a basis of V , and according to
Corollary 7.4 and Proposition 7.5 the positive roots are those which are positive with respect to the linear♣ [posneg]♣ [rootspos]

order determined by this basis. The converse of this is the main result of the rest of this section:

Proposition 9.1. Suppose Σ to determine a root system on V , on which a linear order has been given.[linearorder]

The set of positive roots with respect to this order is the set of positive roots associated to some chamber
of the partition determined by Σ.

Proof. It will take several steps. The following lemma will be used more than once.

Proposition 9.2. If λ, µ are roots and 〈λ, µ∨〉 > 0, then λ − µ is also a root.[differenceofroots]

Proof. We may assume λ and µ to be linearly independent. Since λ − µ is a root if and only if µ − λ is
one, we may swap λ and µ if necessary to make 〈λ, µ∨〉 = −1. But then sµλ = λ − µ is a root.

Suppose now a linear order to be given. For each j define αj inductively to be the smallest root in V not
in the subspace spanned by the αi with i < j. Let∆ be the set of all αi.

For i 6= j, we have αi •αj ≤ 0. Otherwise, say i < j. By the Lemma, αj − αi is also a root, but it is also

less than αj , contradicting the definition.
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Next I claim that every positive root is a non­negative linear combination of the αi. I’ll prove it by
induction on the order of the roots. If λ is minimal, it is α1 itself. Otherwise, suppose it is true for all

roots less than λ. Suppose λ to be in the linear span of the αi with i ≤ j, but not for i < j. If λ = αi we

are through. Otherwise λ > αj . I claim that for some αi with i ≤ j we must have λ−αi equal to a root.
If so, we are through, because λ − αi will be less than λ. But if not, then by the Lemma λ •αi ≤ 0 for all
i, and hence by Proposition 8.5 it will be a non­positive linear combination of the αi, which contradicts♣ [cincpos]

that it is a positive root.

The definition of positive roots in terms of a linear order has one attractive feature—that the set of all

roots is the disjoint union of positive and negative roots is immediate. On the other hand, an annoying
feature is that the linear order is by no means determined by the choice of positive roots, so it is not

intrinsic to a datum.

There is one useful application of the proof. Let Σj be the roots in the linear span of the αi for i ≤ j.

Suppose Λ = {λi} to be a set of linearly independent roots, and for each j let Λj be the subset of λi[wtransformroots]

with i ≤ j. There exists w in W such that wΛi ⊆ Σi. 9.3.

10. Constructing roots

The set of roots is the orbit of ∆ with respect to the group generated by the reflections sα for α in ∆.
How can we construct it, and more precisely construct it along with other relevant data?

The roots can be described explicitly for each of the known systems. This is done, for example, in

[Bourbaki:1968]. So we could simply make up a list of roots for each system, or at least a way to
reconstruct Bourbaki’s list. But more interesting for our purposes is an algorithm that constructs the

roots directly from the Cartanmatrix. For one thing, thiswill turn out to take a negligible amount of time.
And for another, building the roots will give us some additional structure we’ll find useful subsequently.

There is one immediate simplification. If λ is a root, so is −λ. Therefore we only have to construct the
positive roots. This is not obviously very hard. We know that every positive root is a non­negative
integral combination

λ =
∑

α∈∆

λαα ,

so we start with the elements of∆ itself, for which exactly one coefficient is non­zero, and keep applying
reflections sα to positive roots until we get nothing new. The formula for sα is

sα: λ 7−→ λ − 〈λ, α∨〉α ,

so that

(sαλ)β =

{
λα − ∑

β λβ〈β, α∨〉 if β = α
λβ otherwise.

The first formula can be simplified by ignoring all β with 〈β, α∨〉 = 0. This gives us

(sαλ)α = −λα −
∑

β∼α

λβ〈β, α∨〉

in which the sum is over those β linked to α in the Dynkin diagram.

This is simple, but for reasons that will soon appear, I prefer to keep track of the array (〈λ, α∨〉) along
with that of coefficients (λα). This makes calculating (sαλ)α immediate, but it means that when we
calculate sαλwe must also calculate the numbers

〈sαλ, β∨〉 = 〈λ − 〈λ, α∨〉α, β∨〉
= 〈λ, β∨〉 − 〈λ, α∨〉〈α, β∨〉 .
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This leads to

〈sαλ, β∨〉 =






−〈λ, α∨〉 if β = α
〈λ, β∨〉 − 〈λ, α∨〉〈α, β∨〉 β ∼ α
〈λ, β∨〉 otherwise.

If
λ =

∑
λαα

its height is
∑

λα. Thus the height of every simple root is 1. As we calculate roots, we are going to
arrange things so we only move up in height. This is easy to do. In calculating sαλ only the coefficient
of α changes, and

(sαλ)α = λα − 〈λ, α∨〉 .

Therefore sαλ has height greater than that of λ if and only if 〈λ, α∨〉 < 0. I’ll write λ ≺ sαλ in this
situation.

The positive roots associated to a root datum are the nodes of a structure I call the root graph . It is an
oriented, labeled graph. The obvious choice for the bottom layer of the graph consists of the nodes in∆,
but for mild convenience I create below these a dummy node ∅ of height 0, with an edge labeled by sα

directed from ∅ to each α in∆. Then, there is an edge from λ to µ if µ = sαλ ≻ λ for α in∆, labeled by
sα. The following figure ilustrates this graph for A3, with three simple roots α, β, γ.

∅

αα β γ

α + β β + γ

α + β + γ

sα

sα

sα

sβ

sβ sβ

sγ

sγ

sγ

Incidentally, the entire table of simple root reflections can be read off from this graph—if there is no edge

leading from or to λ labeled by α, then sαλ = λ.

Paths from ∅ correspond to strings of simple reflections, the labels of the edges in the path. There will be
in general several paths from ∅ to a given root, corresponding possibly to several strings. For example,
from ∅ to α + β + γ in A3 we have the paths

sαsβsγ

sβsαsγ

sγsβsα

sβsγsα .

I want to distinguish exactly one of the possible paths from ∅ to a root λ. First of all, assume that ∆ is
ordered or, equivalently, indexed by integers 1, 2, . . . . To each root λ in the root graph pick out that
path from ∅ to λ which, when read backwards, is lexicographically least. Thus among the four paths to
α + β + γ the third is the distinguished one, since α < γ and β < γ (recall, we are reading the string
backwards).
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In the figure above, distinguished paths are coloured dark.

We can therefore construct positive roots by constructing distinguished paths in the root graph. The

advantage is that these paths can be constructed one edge at a time—given a path to λ, we calculate all
the µ = sαλ ≻ λ (verifying, in computation, 〈λ, α∨〉 < 0). If α is minimal in ∆ such that 〈µ, α∨〉 > 0,
the the path continuing from λ to µ is distnguished, and we register µ as a root.

This process requires that we maintain two lists, one of all roots we have so far enountered, and another
of those roots whose upward reflections have not been examined. The first list only grows, but the

second grows and shrinks. I’ll call the first the root list , the second the process list . To start, we put the
simple roots on both lists. Then, as long as the process list is not empty, we remove an element λ from
it. We then scan through the reflected roots µ = sαλ ≻ λ, and if the distinguished path continues to µ,
we add it to both the root list and the process list. The process list is dynamic—items are both removed
and added to it as time goes on. Programming deals with several different types of dynamic lists, and

for technical reasons I use queues or FIFO (First In, First Out) lists. In this way, when I remove an item

to be processed, all roots of smaller height have already been processed.

Incidentally, there is a single root of greatest height, called the dominant root α̃. For every β in ∆,
sβα̃ ≺ α̃. It is not the only root with this property, but it does dominate every other root in the sense that
λβ ≤ α̃β for all roots λ and all β.

11. The Weyl group

The Weyl group W of a root system is that generated by the reflections sα with α in ∆. In this section
I’ll describe how to construct a list of all elements ofW . The basic idea is rather similar to the method
of listing all roots—we keep applying simple reflections to the identity element to get all elements of the

Weyl group, taking care to construct each element only once.

As with roots, we’ll represent eachw inW by a string of simple reflections sα, in this case by expressions

for w as a product of simple roots of least length. Such a product is called a reduced expression for w.
There may be several, but there is a simple way to pass from one to the other. Let S be the set of all
simple reflections sα. It turns out that the groupW is defined by S together with relations

s2
α = 1 (sαsβ)mα,β = 1

where (mα,β) is the Coxeter matrix of the system that we have seen above. These last relations may be
replaced by the braid relations

sαsβ . . . = sβsα . . . (mα,β terms on each side) .

Thus two product expressions give the same w inW if and only if one can be converted to the other by
a sequence of these relations. For example, in the Weyl group of A3 the expressions sαsβsα and sβsαsβ

represent the same element. In general, in passing from one expression to another we might expect the

length of the expression to go up, but [Tits:1968] has shown that two reduced expressions for the same
w may be obtained from each other by braid relations alone.

As with roots, I define a graph whose nodes are elements of W , with an edge from w to wsα if
ℓ(wsα) > ℓ(w), in which case I write w ≺ wsα. For example, here is the graph for A2:
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sβ sα

sα sβ

sαsβ

Apath in the graph from 1 tow is distinguished, as before, if when read backwards it is lexicographically
least among the paths from 1 to w. In the figure, distinguished paths are dark. So we can list elements
ofW by listing distinguished paths.

How can we find edges in the graph of W ? How tell whether or not a given path is distinguished?
Answering both questions comes down to a fundamental property linking the geometry of the roots

with the combinatorics ofW : for any w inW , ℓ(wsα) > ℓ(w) if and only if w−1C lies on the other side
of the hyperplane α = 0 from C. This happens if 〈α, x〉 < 0 for all x inside w−1C. Since a root is either
positive throughout the interior of C or negative throughout, this happens if and only if 〈α, w−1x〉 < 0
for one x inside C. For this x I choose a vector ρ such that 〈α, ρ〉 = 1 for all α in ∆. So now we have
this criterion: wsα ≻ w if and only if 〈α, w−1ρ〉 < 0. Because ρ lies in the interior of the fundamental
domain C, the map from w to w−1ρ is a bijection.

Therefore, as we construct our paths and elements w, we maintain the current value of w−1ρ. When we
ascend in the graph, we calculate (wsα)−1ρ = sαw−1ρ. Thus a distinguished path to w continues to
µ = wsα if and only if 〈α, w−1ρ〉 < 0 and α is least in∆with 〈α, sαw−1ρ〉 < 0.

We buildW by following paths in the Bruhat graph subject to this restriction, much as we constructed
the roots. We use this to make a list of all ofW , as we did for the list of roots.

Then we can go through and calculate reflection tables for each w inW , to give the complete structure
ofW .

This process is relatively inefficient. For one thing, it becomes quickly apparent that the amount of work

involved goes up rapidly with the rank of the root system, as you’d expect. For one thing, performing
reflections involve doing arithmetic on vectors of dimension equal to the rank. There are faster methods.

We’ll see one in the next section.

12. Cosets

The process described in the previous section for making a list of elements in a Weyl groupW depends

on identifying admissible paths in a directed graph with elements of the group, and then constructing all

such paths. (An admissible path is one that is compatible with orientation and starts at the base node.)
The problem is, there are as many nodes in the graph as there are elements of theWeyl group—the graph

is a tree. But there are other graphs forwhich admissible pathsmay be identifiedwith elements ofW , and
they can be smaller. For example, in he figures below I display first of all the graph for A2 constructed

in the previous section, and next to it a smaller graph whose admissible paths also parametrizeS3.
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sβ sα

sα sβ

sα

sβ sα

sα

sβ

This will turn out to be a special case of a general phenomenon. Here the saving is not great, but for
arbitrary An we’ll see the number of nodes in the graph shrink from (n + 1)! to n(n + 1)/2 + 1.

There are some rather sophisticated ways to construct such a graph, but the simplest one uses an idea
due to Fokko du Cloux, and depends on the cosets of a Weyl group with respect to smaller Weyl groups

contained in it. Suppose |∆| = n. For 1 ≤ k ≤ n let ∆k be the subset of i initial simple roots, let Sk be

the set of simple reflections sα for α in∆k, and letWk be the subgroup ofW generated by Sk. Let Σ be
the set of all roots of the system, and let Σk be those which are linear combinations of the simple roots

in∆k. The groupWk is the Weyl group of the root datum (L, ∆k, L∨, ∆∨
k ), and Σk is the corresponding

set of roots.

To each w inW is associated the subsetRw of Σ, the set of λ > 0 such that wλ < 0. ThusRw = Lw−1 . If
w = sα then Rw = {α}, and Rw may be calculated inductively by means of the formula

Rxy = Ry ⊔ y−1Rx if ℓ(xy) = ℓ(x) + ℓ(y) .

Thus |Rw| = ℓ(w).

Proposition 12.1. Suppose Θ ⊆ ∆. (a) An elementw ofW lies inWΘ if and only ifRw ⊆ Σ+
Θ
. (b) Every[coset]

w inW may be factored uniquely as xy with y inWΘ and xΘ > 0.

Thus if [W/WΘ] is the subset of all w inW with wΘ > 0, the projection from it toW/WΘ is a bijection,

and [W/WΘ] is a set of distinguished representatives ofW/WΘ. Hence the product map is a bijection of

[W/WΘ] × WΘ withW . In particular, sm lies in in [Wm/Wm−1], and w lies in [Wm/Wm−1] if and only
if the distinguished expression for w is of the form si1 . . . sm, with all ij ≤ m. Arguing inductively, we
deduce that if the size of S is n, the product map

[Wn/Wn−1] × . . . [W1/W0] → W

is a bijection. The sizes of cosets are rather small, compared to the size ofW . IfW = Sn, for example,

then |Wm/Wm−1| = m.

Associated to each coset is a graph analogous to the Bruhat graph forW itself. The nodes are elements
of [Wm/Wm−1], and there is an edge from w to sαw if w and sαw are both in [Wm/Wm−1] with
ℓ(sαw) > ℓ(w). The base of the graph is the image of identity ofW . There is still a notion of distinguished
path, but with respect to left multiplication by elementary reflections: w ≺ x = sαw is distinguished if
α is least with sαx ≺ x. For example, here are the graphs of all the cosets of S5, in which all edges are

distinguished:
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[S5/S4]:
sδ sγ sβ sα

[S4/S3]:
sγ sβ sα

[S3/S2]:
sβ sα

[S2/S1]:
sα

The graph of distinguished edges is a tree contained in the full graph of the coset.

It is relatively easy tomultiply on the left by s inSm on [Wm/Wm−1]: either sw lies again in [Wm/Wm−1]
or it is equal to wt for t in Sm−1. In practice, we can carry out this calculation by using the relationship

between w−1ρ and product expressions. Thus we can list these cosets without much trouble. We can
then make the tree of distinguished edges for eachXm, tacking on elements of Sm at the left by looking
w−1ρ. A fair amount of calculation will be involved, but cosets are small so this is not a serious problem.

We nowmake up a graph by combining all the graphs Γm of the cosets, by amalgamating all the identity
nodes of the Γm into a single base node. In addition, for each node x of Γm other than the identity and

for each k > m we add an edge labeled by sk from x to the node sk of Γk. The number of nodes is
1 +

∑
i≤n(|Γi| − 1). The paths in this new graph startinga t the base is in bijection with elements ofW ,

but the product expressions are in some reversed from the ones we got before—the paths now accepted

are thoe where each si is least among the s in S with sw < w. That is to say, we have swapped left and
right multiplication by elements of S. What follows is the graph for A5:

sβ

sγ sγ

sδ sδ sδ

sα

sβ

sγ

sδ

sγ

sβ sα

sβ sα

sα

Using this graph to traverse theWeyl group is very fast. TraversingE8 (with 696, 729, 600 elements!) on
my laptop takes about 15minutes, whereas doing this by the method described in the previous section
wasn’t obviously feasible at all.

We can also use the coset lists to multiply on the left by an element of S. We can build into the coset graph
a table of left multiplications attached to each node. Given s in S and x in the coset, there are restricted
possibilities for sx. Either sx > x and sx is again in the coset, with an insertion of s to the left of sm;

or sx < x in which case sx is definitely in the coset with a deletion to the left of sm; or sx = xt with
t < sm. If w is represented as

∏
wi with wi in [Wi/Wi−1] then we can find sw by repeated multiplying

in the cosets.


