
Exercises for Math535.

1
√

. Write down a map of rings that gives the addition map on the C-points
of Ga. (Hint: this has to be a ring homomorphism k[x] → k[x]⊗ k[x].)

2
√

. Let g = [ 1 i
0 1 ] ∈ sl2(C). Write down the map of the coordinate rings that

gives the left translation by g on sl2(C).

3
√

. Prove that {exp(t [ 1 i
0 1 ]) | t ∈ C} is a Lie subgroup of GL2(C) but not an

algebraic subgroup. (Hint: you can use the hint from the textbook. It is
Problem 7 in Chapter 3, Section 1).

4
√

. Prove that there are no nontrivial homomorphisms of algebraic groups
from Gm to Ga, over an algebraically closed field of characteristic zero.

5
√

. Show that GLn(C) is connected, but GLn(R) has two connected compo-
nents (in the real topology).

6
√

. Show that Un and Sp2n(C), Sp2n(R) are connected in the real topology.

7
√

. Show that SUn and Sp2n(C), Sp2n(R) are simply connected (as real man-
ifolds).

8
√

. Show that π1(SOn(R)) = Z/2Z when n ≥ 3 (the fundamental group is in
the usual, topological, sense). Also note that π1(SO2(R)) = Z.

9
√

. Prove that if H is a subgroup of an alegbraic group G, and H̄ is its Zariski
closure, then H̄ is also an algebraic subgroup.

10∗. Recall that for algebraic groups, if G is connected, then the commutator
subgroup [G, G] is a closed algebraic subgroup. For Lie groups over C a
similar statement doesn’t hold. Find a better example, or show that the
following example works: Let H be the group of 3 × 3 upper triangular
martices, with 1’s on the diagonal. Let S1 = {z ∈ Z | |z| = 1} be the unit
circle on the complex plane, with the natural group structure. Consider
the subgroup N of H × S1 generated by the element:

n =
([

1 0 1
0 1 0
0 0 1

]
, c

)
,

where c is an element of S1 of infinite order. Let G = H × S1/N . Then
[G, G] is not a Lie subgroup.

11
√

. Show that the projective space Pn is an irreducible variety.

1



12
√

. Prove that a subvariety X of Pn over an algebraically closed field K of
characteristic zero is irreducible iff K[X]pr has no zero divisors.

13
√

. Let V be a vector space (over an algebraically closed field of characteristic
zero). Prove that the natural action of GL(V ) on P(V ) is algebraic.

14
√

. Find π1(SO2(C)), and then π1(SOn(C)) (in their real manifold topology).

15
√

. Prove that any commutative linear algebraic group is a direct product of
a quasitorus and a vector group. Prove that any connected commutative
linear algebraic group is a direct product of a torus and a vector group.

16
√

. Prove that any algebraic torus contains elements that are not contained
in any proper algebraic subgroup.

17
√

. Show that the representation λ̃ of G in DG that corresponds to the repre-
sentation of G in g by left translations is given by the formula

λ̃(g)D = λ(g) ◦D ◦ λ(g)−1,

where D ∈ DG, g ∈ G, and λ(g) if the map λ(g) : K[G] → K[G] defined
by λ(g)(f)(x) = f(gx).

18
√

. (exrcise 6 in Springer, Section 4.4.15 (p. 75 in Birkhäuser’s “Modern
Classics” edition)).
Let s ∈ Mn be an arbitrary matrix, and let G = {g ∈ GLn | gs(tg) = s}.
Then G is a closed subgroup of GLn. Prove that its Lie algebra is contained
in {X ∈ gln | Xs + s(tX) = 0}.

19
√

. Reductive Lie algebras and nondegenerate bilinear forms

1. (OV Problem 5, Section 4.1.1, p. 137) Prove that if n ⊂ gl(V ) is a
Lie algebra, and the bilinear form Tr(XY ) vanishes on n, then n is
solvable.

2. (OV Problem 6, p.137) Prove that if n is a unipotent ideal in g ⊂
gl(V ) (that is, an ideal consisting of nilpotent elements), then (n, g) =
0 (where (X, Y ) = Tr(XY )).

3. (OV Problems 10-11, p.138) Prove that if g is a reductive Lie algebra,
then g = z(g)⊕ [g, g].

4. (Jerome’s example). There can exist a nondegenerate bilinear form
on a solvable non-commutative Lie algebra. (Thus, it is essential that
we are using the specific form Tr(XY ) everywhere above). Consider
the Lie algebra g that, as a vector space, is

g = 〈x〉 ⊕ 〈y〉 ⊕ 〈z〉 ⊕ 〈h〉,

with the Lie bracket defined by:

[x, y] = z [h, x] = x [h, y] = −y, [z, ·] = 0.
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One can define a nondegenerate bilinear form on it, with (x, y) = 1,
and (h, z) = 1.

20. Compute the root lattice, coroot lattice, and π1 for the root system
of type A2.

21. Compute π1 for the root system of type B2.

22. Assume that we know that the special orthogonal group SOn is of
type Bn when n is odd, and of type Dn when n is even. Assume also
that: π1(Φ) is Z/2Z when Φ is a root system of type Bn, and for Φ of
type Dn, we have π1(Φ) = Z/4Z when n is odd, π1(Φ) = Z/2Z×Z/2Z
when n is even. Prove that there exists a simply connected algebraic
group that is a double cover of SOn. This group is denoted by Spinn.

22. Accidental isomorphisms. Everything is over C. Prove that:

(a) Spin3 is isomorphic to SL2 ' Sp2.
(b) Spin5 is isomorphic to Sp4.
(c) Spin6 is isomorphic to SL4.
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