Exercises for Math535.

- 1√. Write down a map of rings that gives the addition map on the C-points of \mathbb{G}_a . (Hint: this has to be a ring homomorphism $k[x] \to k[x] \otimes k[x]$.)
- 2^{\checkmark} . Let $g = \begin{bmatrix} 1 & i \\ 0 & 1 \end{bmatrix} \in \mathfrak{sl}_2(\mathbb{C})$. Write down the map of the coordinate rings that gives the left translation by g on $\mathfrak{sl}_2(\mathbb{C})$.
- 3^{\checkmark} . Prove that $\{\exp(t \begin{bmatrix} 1 & i \\ 0 & 1 \end{bmatrix}) \mid t \in \mathbb{C}\}$ is a Lie subgroup of $\operatorname{GL}_2(\mathbb{C})$ but not an algebraic subgroup. (Hint: you can use the hint from the textbook. It is Problem 7 in Chapter 3, Section 1).
- 4^{\checkmark} . Prove that there are no nontrivial homomorphisms of algebraic groups from \mathbb{G}_m to \mathbb{G}_a , over an algebraically closed field of characteristic zero.
- 5^{\checkmark} . Show that $\operatorname{GL}_n(\mathbb{C})$ is connected, but $\operatorname{GL}_n(\mathbb{R})$ has two connected components (in the real topology).
- 6^{\checkmark} . Show that U_n and $\operatorname{Sp}_{2n}(\mathbb{C})$, $Sp_{2n}(\mathbb{R})$ are connected in the real topology.
- $7\sqrt{}$. Show that SU_n and Sp_{2n}(ℂ), Sp_{2n}(ℝ) are simply connected (as real manifolds).
- 8√. Show that $\pi_1(SO_n(\mathbb{R})) = \mathbb{Z}/2\mathbb{Z}$ when $n \ge 3$ (the fundamental group is in the usual, topological, sense). Also note that $\pi_1(SO_2(\mathbb{R})) = \mathbb{Z}$.
- 9^{\checkmark} . Prove that if H is a subgroup of an algebraic group G, and \overline{H} is its Zariski closure, then \overline{H} is also an algebraic subgroup.
- 10^{*}. Recall that for algebraic groups, if G is connected, then the commutator subgroup [G, G] is a closed algebraic subgroup. For Lie groups over \mathbb{C} a similar statement doesn't hold. Find a better example, or show that the following example works: Let H be the group of 3×3 upper triangular martices, with 1's on the diagonal. Let $S^1 = \{z \in \mathbb{Z} \mid |z| = 1\}$ be the unit circle on the complex plane, with the natural group structure. Consider the subgroup N of $H \times S^1$ generated by the element:

$$n = \left(\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, c \right),$$

where c is an element of S^1 of infinite order. Let $G = H \times S^1/N$. Then [G, G] is not a Lie subgroup.

 $11\sqrt{}$. Show that the projective space \mathbb{P}^n is an irreducible variety.

- 12√. Prove that a subvariety X of \mathbb{P}^n over an algebraically closed field K of characteristic zero is irreducible iff $K[X]^{pr}$ has no zero divisors.
- 13√. Let V be a vector space (over an algebraically closed field of characteristic zero). Prove that the natural action of $\operatorname{GL}(V)$ on $\mathbb{P}(V)$ is algebraic.
- 14 \checkmark . Find $\pi_1(\mathrm{SO}_2(\mathbb{C}))$, and then $\pi_1(\mathrm{SO}_n(\mathbb{C}))$ (in their real manifold topology).
- $15\sqrt{}$. Prove that any commutative linear algebraic group is a direct product of a quasitorus and a vector group. Prove that any *connected* commutative linear algebraic group is a direct product of a torus and a vector group.
- $16\sqrt{}$. Prove that any algebraic torus contains elements that are not contained in any proper algebraic subgroup.
- 17 \checkmark . Show that the representation λ of G in \mathcal{D}_G that corresponds to the representation of G in \mathfrak{g} by left translations is given by the formula

$$\tilde{\lambda}(g)D = \lambda(g) \circ D \circ \lambda(g)^{-1},$$

where $D \in \mathcal{D}_G$, $g \in G$, and $\lambda(g)$ if the map $\lambda(g) : K[G] \to K[G]$ defined by $\lambda(g)(f)(x) = f(gx)$.

18 \checkmark . (exrcise 6 in Springer, Section 4.4.15 (p. 75 in Birkhäuser's "Modern Classics" edition)). Let $s \in M_n$ be an arbitrary matrix, and let $G = \{g \in \operatorname{GL}_n \mid gs({}^tg) = s\}$. Then G is a closed subgroup of GL_n . Prove that its Lie algebra is contained in $\{X \in \mathfrak{gl}_n \mid Xs + s({}^tX) = 0\}$.

$19^{\surd}.$ Reductive Lie algebras and nondegenerate bilinear forms

- 1. (OV Problem 5, Section 4.1.1, p. 137) Prove that if $\mathfrak{n} \subset \mathfrak{gl}(V)$ is a Lie algebra, and the bilinear form $\operatorname{Tr}(XY)$ vanishes on \mathfrak{n} , then \mathfrak{n} is solvable.
- 2. (OV Problem 6, p.137) Prove that if \mathfrak{n} is a unipotent ideal in $\mathfrak{g} \subset \mathfrak{gl}(V)$ (that is, an ideal consisting of nilpotent elements), then $(\mathfrak{n}, \mathfrak{g}) = 0$ (where $(X, Y) = \operatorname{Tr}(XY)$).
- 3. (OV Problems 10-11, p.138) Prove that if \mathfrak{g} is a reductive Lie algebra, then $\mathfrak{g} = \mathfrak{z}(\mathfrak{g}) \oplus [\mathfrak{g}, \mathfrak{g}]$.
- 4. (Jerome's example). There can exist a nondegenerate bilinear form on a solvable non-commutative Lie algebra. (Thus, it is essential that we are using the specific form Tr(XY) everywhere above). Consider the Lie algebra \mathfrak{g} that, as a vector space, is

$$\mathfrak{g} = \langle x \rangle \oplus \langle y \rangle \oplus \langle z \rangle \oplus \langle h \rangle,$$

with the Lie bracket defined by:

$$[x, y] = z$$
 $[h, x] = x$ $[h, y] = -y$, $[z, \cdot] = 0$.

One can define a nondegenerate bilinear form on it, with (x, y) = 1, and (h, z) = 1.

- 20. Compute the root lattice, coroot lattice, and π_1 for the root system of type A_2 .
- 21. Compute π_1 for the root system of type B_2 .
- 22. Assume that we know that the special orthogonal group SO_n is of type B_n when n is odd, and of type D_n when n is even. Assume also that: $\pi_1(\Phi)$ is $\mathbb{Z}/2\mathbb{Z}$ when Φ is a root system of type B_n , and for Φ of type D_n , we have $\pi_1(\Phi) = \mathbb{Z}/4\mathbb{Z}$ when n is odd, $\pi_1(\Phi) = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ when n is even. Prove that there exists a simply connected algebraic group that is a double cover of SO_n . This group is denoted by Spin_n.
- 22. Accidental isomorphisms. Everything is over \mathbb{C} . Prove that:
 - (a) Spin_3 is isomorphic to $\text{SL}_2 \simeq \text{Sp}_2$.
 - (b) Spin_5 is isomorphic to Sp_4 .
 - (c) Spin_6 is isomorphic to SL_4 .