
Exercises for Math535.

Some of these exercises venture into the world of Lie groups, even though
otherwise we are not discussing Lie groups. This is done for the purposes of
developing/testing intuition for such concepts as connectedness and simple con-
nectedness. A Lie group is a smooth (real or complex) manifold with compatible
group structure (i.e. the multiplication and inverse maps are smooth). If G is
an algebraic group (say, defined over R), then G(R) and G(C) are real Lie
groups; G(C) is a complex Lie group for any algebraic group G defined over C.
A very useful resource (and the source of many exercises below) on Lie groups
is the book by Onischik and Vinberg, ”Lie groups and algebraic groups” (it is
referred to as ”OV” below). Please talk to me if you’d like to borrow it.

1
√
. Check that the co-multiplication map defined in Examples 2.1.4 (Springer)
for Ga and Gm indeed corresponds to addition and multiplication (respec-
tively) for the points Ga(k) = k and Gm(k) = k×.

2
√
. Prove that {exp(t [ 1 0

0 i ]) | t ∈ C} of GL2(C) is not an algebraic subgroup.
(Hint: there’s no polynomial f(x, y) such that f(et, eit) = 0 for all t). The
reason this example is interesting is that it is a Lie subgroup (that is, a
subgroup that is an image of a Lie group under an injective immersion),
but not an algebraic subgroup.

3
√
. Prove that there are no nontrivial homomorphisms of algebraic groups
from Gm to Ga, over an algebraically closed field of characteristic zero.

4
√
. Show that GLn(C) is connected, but GLn(R) has two connected compo-
nents (in the real topology).

5
√
. Show that Sp2n(C), Sp2n(R), and SOn(C) are connected in the real topol-
ogy.

Hint: one of the ways to prove such statements is using the following
Lemma:

Let G be a Lie group that acts transitively on a smooth manifold
X . Suppose the stabilizer of some point x ∈ X is connected.
Then G is connected.

Then consider the action of these groups on some convenient manifolds
(e.g. spheres in the case of the orthogonal group), so that the stabilizer
of a point would be a smaller orthogonal (respectively, symplectic) group;
and use induction.

6
√
. Find the dimensions of SOn and Sp2n. (Hint: consider the action of
GLn on the space of all symmetric (respectively, skew-symmetric) bilinear
forms; it is easy to prove there is an open orbit of that action).
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7
√
. Prove that the algebraic groups SOn and Sp2n are connected (in the sense
of algebraic groups), by finding a good set of generators (see Springer,
Exercises 2.2.9 (1) and (2)).

8
√
. We have shown that for algebraic groups, if G is connected, then the
commutator subgroup [G,G] is a closed algebraic subgroup. For Lie groups
over C a similar statement doesn’t hold. Find a better example, or show
that the following example works: Let H be the group of 3 × 3 upper
triangular martices, with 1’s on the diagonal. Let S1 = {z ∈ Z | |z| = 1}
be the unit circle on the complex plane, with the natural group structure.
Consider the subgroup N of H × S1 generated by the element:

n =
([

1 0 1
0 1 0
0 0 1

]

, c
)

,

where c is an element of S1 of infinite order. Let G = H × S1/N . Then
[G,G] is not a Lie subgroup. (this example comes from OV, Exercise 4 on
p.56).

9
√
. Show that the projective space Pn is an irreducible variety.

10
√
. Let G = PGL2 = GL/Z, where Z is the centre of GL2. It is an algebraic
group; there are two ways to think about it as an algebraic variety: as
a principal open subset of P

3 consisting of points [a : b : c : d] with
ad− bc 6= 0, or as an affine variety with the coordinate ring k[G] being the
subring of k[a, b, c, d]/(ad− bc− 1) that consists of even polynomials (we
will discuss later why this is so).

1. Construct any faithful finite-dimensional representation of G (Hint:
use the Lie algebra – to be discussed soon).

2. Let f(a, b, c, d) = a2/(ad− bc) – note that it is a well-defined regular
function on PGL2. Use this function to construct a faithful finite-
dimensional representation, as in the proof of Proposition 2.3.6 of
Springer.

3. Where does the argument of Theorem 2.3.7 fail for an elliptic curve?

11
√
. Prove that for an algebraic group G over the field F̄p (algebraic closure of
Fp), an element of G(F̄p) is semisimple if and only if its order is prime to
p, and unipotent if and only if its order is a power of p (first, show that
every element of G(F̄p) has finite order).

12∗. Let V be a vector space over an imperfect field F . Let us say that a linear
operator T : V → V is semisimple if every T -invariant subspace of V has a
T -invariant complement. Make an example of a linear operator that does
not have a Jordan decomposition, with this definition of ”semisimple”.

13
√
. Prove that any algebraic torus contains elements that are not contained
in any proper algebraic subgroup.
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14. Exercises 3.2.10 from Springer (everything that we did not prove in class).
Mostly, number (6).

15. Consider the algebraic group G = GL2.

(a) Prove that TeG is the 4-dimensional affine space (hint for the next
part: it is convenient to identify this space with the space M2 of
2× 2-matrices).

(b) Let g =
[

a b
c d

]

∈ GL2(k). Let φg : GL2 → GL2 be the inner auto-
morphism defined by g: φg(x) = gxg−1. Find (in terms of g) the
differential deφg.

16. Prove that de(Ad) = ad (that is, the differential at the identity of the
adjoint representation of an algebraic group on its Lie algebra is the adjoint
representation of the Lie algebra).

In the next few problems, (Φ, E) is an irreducible root system, ∆ is a base
for Φ, W is the Weyl group, σα is the reflection about the hyperplane Pα

orthogonal to α. The exercises 17-22 mostly come from Onischik-Vinberg,
p.175.

17. Prove that if the group Γ = Aut(∆) of the graph automorphisms of the
Dynkin diagram is trivial, then the element − Id belongs to W (where Id
is the identity on the space E).

18. Prove that for the types An (n ≥ 2), D2n+1, and E6, the element − Id is
not in W .

19. (a) Prove that the longest element in the Weyl group is unique.

(b) Prove that the longest element in W has order 2.

(c) Prove that if Φ is not of type An (n ≥ 2), D2n+1, or E6, then the
longest element is − Id.

20. Let Φ be a root system that has vectors of two different lengths. Then
denote by Φmax the root system that consists of the long roots, and by
Φmin – the root system that consists of the short roots.

(a) Prove that the rank of Φmin and of Φmax equals the rank of Φ.

(b) Prove that the highest root in Φ lies in Φmax.

21. (a) Prove that if Φ is of type F4, then both Φmax and Φmin are of type
D4.

(b) Prove that the Weyl group of type F4 is isomorphic to WD4
⋊ S3,

where WD4
is the Weyl group of D4.

22. Prove that if Φ is of type Bl, then Φmax is of type Dl, and Φmin is A1 ×
· · · ×A1 (l copies).
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