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Cooperation is a conundrum that has challenged researchers across disci-
plines and over many generations. In mathematical models, cooperation sim-
ply refers to behavioral actions that bene# t others at some cost to an actor. 
Prima facie, defectors always outperform cooperators, but groups of coop-
erating individuals fare better than groups of noncooperating defectors. 
However, each individual faces the temptation to defect in order to avoid 
the costs of cooperation while free- riding on the bene# ts produced by others. 
This generates a con$ ict of interest between the individual and the group 
known as a social dilemma (Dawes 1980; Hauert et al. 2006).

Social dilemmas are abundant in nature. For example, musk oxen create 
defense formations to protect their young from wolves (Hamilton 1971). 
However, each ox would be better o+  and avoid potential injury by standing 
in the second line— but if every individual behaves in this way, their defense 
formation breaks down and the group becomes prone to attacks by wolves. 
A similar con$ ict of interest occurs in sentinel behavior in meerkats 
(Clutton- Brock et al. 1999): a few individuals are on the lookout for predators 
and warn foraging group members of impending danger. Spotting the pred-
ators # rst returns a direct bene# t to the sentinels because they get a head 
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start on # nding shelter. At the same time, the costs for keeping watch de-
pend on the individuals’ hunger. From time to time sentinels abandon their 
position and get replaced by other individuals. Other prominent examples 
of social dilemmas occur in predator inspection behavior in # sh (Milinski 
1987; Magurran and Higham 1988; Pitcher 1992), in phages competing for 
reproduction (Turner and Chao 1999, 2003), or in microorganisms produc-
ing extra cellular products such as enzymes in yeast (Greig and Travisano 
2004), bio# lms (Rainey and Rainey 2003), or antibiotic re sis tance (Neu 1992).

Social dilemmas also occurred on an evolutionary scale and life could 
not have unfolded without the repeated incorporation of entities of lower 
complexity or degrees of self- organization into higher- level entities. Major 
transitions such as the formation of chromosomes out of replicating DNA 
molecules, the transition from single cells to multicellular organisms, or the 
change from individuals to societies all require cooperation (Maynard- Smith 
and Szathmáry 1995). Finally, humans have taken the problem of coopera-
tion to yet another level (Hardin 1968) when it comes to social welfare such 
as health care or pension plans and, even more importantly, to global issues 
concerning natural resources such as drinking water, clean air, # sheries, or 
climate change (Milinski et al. 2006).

In order to analyze individual behavior in social dilemmas or other 
types of interactions, the economist Oscar Morgenstern and the mathemati-
cian John von Neumann developed a mathematical framework termed game 
theory (von Neumann and Morgenstern 1944). The most prominent game 
to study cooperation in social dilemmas is the prisoner’s dilemma (Flood 
1958; Axelrod and Hamilton 1981). In the prisoner’s dilemma, two individu-
als decide whether to cooperate or to defect. Cooperation incurs costs, c, to 
the actor while the bene# ts of cooperation, b, accrue exclusively to the op-
ponent with b > c. Defection does not incur costs to the actor and produces 
no bene# ts for the opponent. Thus, if both players cooperate, each receives 
b − c, whereas if both defect, neither receives anything. If only one cooperates 
and the other defects, the cooperator is left with the costs, − c, while the defec-
tor receives the full bene# t, b. In this situation, defection should dominate 
because individuals are better o+  defecting, irrespective of the opponent’s 
decision. Consequently, two rational players will opt for defection and end 
up with nothing, as opposed to the more favorable reward, b − c, for mutual 
cooperation.
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Evolutionary Dynamics

The predicted dominance of defection in social dilemmas, however, con-
trasts with abundant evidence of cooperation in nature. Ever since Darwin 
(Darwin 1859), the evolution, and maintenance of cooperation has posed a 
major challenge to evolutionary biologists and social scientists. The theo-
retical foundation for addressing the problem of cooperation rests on Ham-
ilton’s kin selection theory (Hamilton 1964) and Maynard Smith’s adaptation 
of game theory to evolutionary scenarios (Maynard Smith and Price 1973), 
by linking game theoretical payo+ s with biological # tness. In evolutionary 
biology, # tness denotes the single determinant of evolutionary success and 
essentially re$ ects the reproductive output of individuals over their life 
span. Thus, under Darwinian selection, behavioral traits (or strategies) of 
individuals with high # tness are more likely to be passed on to future 
generations.

Replicator Dynamics

Consider a population with a fraction x cooperators (and 1 − x defectors). If 
individuals randomly engage in prisoner’s dilemma interactions, the aver-
age payo+ s for defectors is f D = xb (with probability x the defector interacts 
with a cooperator and obtains the bene# t b); for cooperators it is fC = xb − c 
(with probability x the cooperator interacts with another cooperator and 
receives b but always pays the costs of cooperation c); and for the entire 
population f̄  = xfc + (1 − x)f D = x(b − c). Selection prescribes that strategies that 
perform better than the population on average increase in abundance. In 
the simplest case this leads to the replicator equation (Hofbauer and Sig-
mund 1998):

 x· = x( fc − f̄  ) (1)

which states that the change in frequency of cooperators (x· denotes the 
time derivative of the fraction of cooperators) is proportional to the pay-
o+   di+ erence between cooperators and the population average. Since 
fc  −  f̄   = −c(1 − x) < 0, cooperators decrease over time and eventually disap-
pear (x* = 0 is the only stable # xed point).

In order to model the promotion and maintenance of cooperation 
among unrelated individuals, a variety of approaches have been proposed 
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over the last few de cades. In par tic u lar, cooperation can be established 
through conditional behavioral rules in repeated encounters (Trivers 1971). 
If behavioral actions are re$ ected in an individual’s reputation, repeated in-
teractions are not required to establish cooperation (Nowak and Sigmund 
1998). Moreover, punishment of defectors (Yamagishi 1986; Sigmund, Hau-
ert, and Nowak 2001), or voluntary interactions (Hauert et al. 2002, 2007), 
also promote and sustain cooperation. Finally, spatial extension and limited 
local interactions can enhance cooperation, which is the topic of the second 
part of this chapter.

Another complementary approach to address the problem of coopera-
tion is to reconsider the mathematical implementation of the social dilemma. 
In contrast to the theoretical e+ ort expended on studying the prisoner’s di-
lemma, it receives surprisingly little support from empirical evidence in bio-
logical systems. In fact, in all of the prominent examples of social dilemmas 
listed above, it remains largely unresolved whether individuals indeed engage 
in prisoner’s dilemma type interactions. Instead, another game, called the 
snowdrift game (Sugden 1986; Hauert and Doebeli 2004), seems to be a bio-
logically appealing alternative to the prisoner’s dilemma (Doebeli and Hauert 
2005). The anecdotal story behind the snowdrift game states that two driv-
ers are caught in a blizzard and trapped on either side of a snowdrift. Each 
driver has the option to remove the snowdrift and start shoveling or to re-
main in the cozy warmth of the car. If both cooperate and shovel, they both 
get home while sharing the labor, but if only one shovels, again both get 
home, but the cooperator has to do all the work. If no one shovels, neither 
gets anywhere, and they have to wait for spring to melt the snowdrift. In con-
trast to the prisoner’s dilemma, the best strategy now depends on the co-
player’s decision: if the other driver shovels, it is best to shirk, but when facing 
the potential for a lazy counterpart, it is better to start shoveling instead of 
remaining stuck in the snow.

The snowdrift game potentially seems to apply whenever individuals 
generate a valuable public resource. For example, in antibiotic re sis tance (Neu 
1992) bacteria (Staphylococci) secrete an enzyme, β- lactamase, that destroys 
penicillin. The production of this enzyme is costly to the bacterium, while 
the resulting protection represents a public resource that bene# ts not only 
the enzyme- producing bacterium but also its fellow bacteria. Thus, in the 
vicinity of enzyme producers it pays for a bacterium to throttle enzyme 
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production and increase replication, but in the absence of the enzyme, pro-
tection against penicillin becomes vital.

The evolutionary dynamics of the snowdrift game can again be analyzed 
using the replicator equation. For mutual cooperation the costs are shared 
and each individual receives b − c/2, whereas a cooperator facing a defector 
obtains b − c. The payo+ s for defectors remain the same as in the prisoner’s 
dilemma, with b against a cooperator and zero for mutual defection. Thus, 
the average payo+  of cooperators becomes fC = b − c(1 − x/2), and the average 
payo+  for defectors remains fD = xb. A short calculation shows that, in the 
snowdrift game, the replicator equation admits another # xed point that is 
stable (obtained by setting  fC = f̄  ) at x* = 1 − r, where r = c/(2b − c) denotes the 
cost- to- net- bene# t ratio of mutual cooperation. Consequently, cooperators 
and defectors coexist in the snowdrift game. Nevertheless, the con$ ict of 
interest persists because a population at x* is still worse o+  than if everybody 
had cooperated. Hence, the snowdrift game represents a relaxed social di-
lemma as compared to the prisoner’s dilemma.

Adaptive Dynamics

In nature, the problem of cooperation may not always be adequately ad-
dressed by limiting the analysis to two distinct strategic types— the coop-
erators and the defectors. Instead, in many situations, it might be more 
appropriate to consider continuous degrees of cooperation such as time and 
e+ ort expended in producing a public resource. In such continuous games, 
the strategy or trait u of an individual denotes its cooperative investment 
and can vary between zero and an upper limit umax. The # tness costs and 
bene# ts are determined by the increasing functions C(u) and B(u), respec-
tively, such that an increase in the cooperative trait u both raises costs and 
increases bene# ts. Moreover, no cooperation (u = 0) neither provides bene-
# ts nor incurs costs, C(0) = B(0) = 0.

In the continuous prisoner’s dilemma, the payo+  of an individual with 
trait u interacting with a trait v individual is written as Q(u,v) = B(v) − C(u). 
This means that the bene# ts are determined by the opponent’s trait, whereas 
the costs are determined by the individual’s own trait. Thus, the only way 
to improve the payo+  is to lower the costs, and hence the degree of coopera-
tion, because C(u) < C(u + Δu) for Δu > 0. Consequently, evolution, when 
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modeled on the dynamics of continuous prisoner’s dilemma interactions, 
selects lower investors such that cooperation gradually declines and eventu-
ally disappears.

The situation is rather di+ erent in the continuous snowdrift game (Doe-
beli, Hauert, and Killingback 2004). In the previous section the snowdrift 
game was introduced by assuming constant bene# ts and costs that are shared 
among cooperators. Mathematically, this is equivalent to assuming that costs 
are constant and bene# ts depend on the number of cooperators. In the con-
tinuous snowdrift game, the payo+  to an individual with trait u interacting 
with a trait v individual then becomes P(u,v) = B(u + v) − C(u). If B(u) > C(u) 
holds at least for small u, it seems that evolution should select intermediate 
degrees of cooperation. However, it turns out that the evolutionary dynam-
ics of the continuous snowdrift game are much richer.

The evolution of the trait u can be analyzed using the adaptive dynamics 
framework (Dieckmann and Law 1996; Metz et al. 1996; Geritz et al. 1998). 
This assumes a homogeneous resident population with trait u. Occasion-
ally, an initially rare mutant trait v appears and attempts to invade. The # t-
ness of the mutant type is given by P(v, u)— interactions with its own type, 
P(v,v), can be neglected because the mutant is rare. According to the replica-
tor equation, the mutant increases in abundance if P(v, u) exceeds the average 
population payo+ — namely, the # tness of the resident, P(u, u)— interactions 
of the resident with the mutant are again neglected because the mutant is 
rare. Thus, the growth rate of the mutant v is given by fu(v) = P(v, u) − P(u, u) 
and is called the invasion # tness because for fu(v) > 0 invasion succeeds, but 
fails for fu(v) < 0. If mutations are small, such that v is close to u, it follows 
that whenever invasion succeeds (  fu(v) > 0), the mutant v eventually takes 
over and becomes the new resident (Geritz et al. 1998). Mutations are as-
sumed to be rare, such that mutants always face a homogeneous resident 
population. Under these assumptions, the selection gradient D(u) deter-
mines whether more or less cooperative mutants can invade.1 For D(u) > 0 
mutants with v > u can invade and cooperation increases, but it decreases for 
D(u) < 0. Thus, the evolutionary change of cooperation is given by the ca-
nonical equation of adaptive dynamics, u· = D(u) (Metz et al. 1996). Of par tic-
u lar interest are singular traits u*, for which the selection gradient vanishes, 
D(u*) = 0, and hence denote # xed points of the adaptive dynamics (u· = 0). If 
no singular trait u* exists in the interval (0, umax), then either cooperation 
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keeps decreasing, D(u) < 0, as in the continuous prisoner’s dilemma, or it 
keeps increasing until umax is reached. The latter refers to situations where 
the social dilemma is fully relaxed and cooperation merely evolves as a by- 
product (Connor, 1996). Both cases are possible in continuous snowdrift 
games (see Figure 5.1).

The Origin of Cooperators and Defectors

The dynamics of cooperation become more interesting if the continuous 
snowdrift game admits singular traits. A singular trait u* can be convergent 
stable such that traits in the vicinity of u* converge to u* (see Figure 5.2a and 
b), or unstable and traits near u* evolve away (see Figure 5.2c). Interest-
ingly, convergent stability of u* does not necessarily imply that u* represents 
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Figure 5.1  Dynamics in the continuous snowdrift game in the absence of 
singular traits. Simulation results for the trait distribution in the population 
over time (top row) and schematic illustration of the # tness pro# le in the 
population (bottom row). The bene# t and cost functions are quadratic, 
B(u) = b2u2 + b1u, C(u) = c2u2 + c1u, such that C(u), B(u) are saturating and strictly 
increasing over the trait interval [0,1]. a The selection gradient is always 
negative, D(u) < 0, and evolution always favors less cooperative individuals until 
cooperation vanishes. The qualitative features of the invasion # tness fu(v) do 
not change as u changes over time. b Counterpart to a: D(u) > 0 always holds 
and evolution selects more cooperative individuals until the upper bound is 
reached. Pa ram e ters: b2 = −1:5, b1 = 7,c2 = −1 and a c1 = 8; b c1 = 2.
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Figure 5.2  Dynamics in the continuous snowdrift game in the presence of a unique 
singular trait u*. Simulation results for the trait distribution in the population over 
time (top row) and schematic illustration of the # tness pro# le in the population 
(bottom row). u* is marked by a vertical dashed line. As in Figure 5.1, the bene# t 
and cost functions are quadratic, saturating and strictly increasing in [0, 1]. a 
Evolutionary branching— the singular strategy is convergent stable and the trait 
distribution approaches u* but it is not evolutionarily stable and the population 
branches into two distinct phenotypic clusters. Evolution selects individuals with 
higher # tness [bottom panel (i)], which in turn changes the pro# le of the invasion 
# tness fu(v) such that the # tness minimum catches up at u* [bottom panel (ii)] and 
mutants with both higher and lower v can invade. b Evolutionary stability— the 
singular strategy is not only convergent stable but also evolutionarily stable. As 
the population converges to u* [bottom panel (i)] the pro# le of fu(v) changes and at 
u* the trait catches up with the maximum of fu(v) [bottom panel (ii)] and no 
mutants are able to invade. c Evolutionary repellor— the singular strategy is an 
evolutionary repellor such that the traits evolve away from u*. Two separate 
simulation runs are shown: when starting below u* cooperation disappears but if 
initial cooperative contributions are suC  ciently high they keep increasing until 
the maximum is reached. In this case it is irrelevant whether u* is evolutionarily 
stable [bottom panel (i)] or an evolutionary branching point [bottom panel (ii)] 
because evolution never reaches u*. Pa ram e ters: a b2 = −1.4, b1 = 6, c2 = −1.6, c1 = 4.56; 
b b2 = −1.5, b1 = 7, c2 = −1, c1 = 4.6; c b2 = −0.5, b1 = 3.4, c2 = −1.5, c1 = 4.
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an evolutionary end state because u* either represents a maximum or a 
minimum of the invasion # tness.2 If it is a maximum, then u* is not only con-
vergent stable but also evolutionarily stable and u* indeed denotes stable inter-
mediate degrees of cooperation (see Figure 5.2b). If, however, u* denotes a # t-
ness minimum, then both, more and less cooperative mutants can invade. In 
this case u* is called an evolutionary branching point and the population un-
dergoes a spontaneous division into two distinct trait groups of cooperators 
and defectors (see Figure 5.2a). Thus, the evolutionary dynamics recovers the 
original snowdrift game discussed above. The continuous snowdrift game 
therefore suggests an evolutionary pathway for social diversi# cation and for 
the origin of cooperators and defectors (Doebeli, Hauert, and Killingback 
2010). All scenarios can be further explored using the EvoLudo (Hauert 2012), a 
growing collection of interactive tutorials on evolutionary dynamics.

Two Tragedies

Social dilemmas potentially occur whenever individuals supply a public re-
source, such as in the case of antibiotic re sis tance (Neu 1992), or whenever 
individuals consume a public resource, such as in Hardin’s Tragedy of the Com-
mons (Hardin 1968). Individual interests cause public resources to become 
overexploited. In the context of humans, this is hardly surprising— Aristotle 
(384– 322 bc) already drew the same conclusion: “That which is common to 
the greatest number has the least care bestowed upon it.” The continuous 
snowdrift game serves as a model of social dilemmas and may equally apply 
to communal enterprises in humans. However, the spontaneous separation 
into coexisting cooperators and defectors could additionally raise a Tragedy 
of the Commune (Doebeli, Hauert, and Killingback 2004), which states that 
evolution may not favor egalitarian contributions to the common good but 
instead promote highly asymmetric commitments. However, di+ erences in 
cooperative contributions bear a formidable risk for escalating con$ icts based 
on the accepted notion of fairness.

Spatial Games

According to the replicator equation, Eq. (1), cooperators are doomed and dis-
appear in the prisoner’s dilemma in the absence of supporting mechanisms, 
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whereas in the snowdrift game coexistence of cooperators and defectors is 
expected. These predictions are based on the assumption that individuals 
randomly interact with other members of the population. This is a con ve-
nient assumption because it admits a full analysis. However, more realistic 
scenarios should take spatial extension and local interactions into account. 
In order to model this, individuals are arranged on a rectangular lattice and 
each individual interacts only with neighbors on its four adjacent sites. The 
population is then updated according to a spatial analogue of the replicator 
equation: # rst, a focal individual is randomly selected and its payo+ , ff , is 
determined through interactions with all its neighbors. Second, a neighbor 
of the focal individual is randomly chosen and its payo+ , fn, is determined in 
the same way. Third, the focal individual adopts the strategy of the neigh-
bor with a probability proportional to the payo+  di+ erence, provided that 
the neighbor performs better, and sticks to its own strategy otherwise. This 
procedure is repeated many times in order to determine the equilibrium 
frequency and con# guration of cooperators and defectors. Note that for in-
creasing population and neighborhood sizes, this microscopic update rule 
recovers the replicator equation (Traulsen, Claussen, and Hauert 2005). Un-
fortunately, the dynamics of spatial systems is no longer analytically acces-
sible, and results are either based on a technique called pair approximation 
(Matsuda et al. 1992; van Baalen and Rand 1998; Szabó and Hauert 2002a), 
or, as in the following, on simulation data.

In the spatial prisoner’s dilemma, cooperators are able to survive by 
forming clusters (Nowak and May 1992; Ohtsuki et al. 2006; Taylor, Day, and 
Wild 2007). Compact clusters increase interactions with other cooperators, 
while reducing exploitation by defectors . However, the clustering advan-
tages are limited, and the equilibrium fraction of cooperators decreases 
when costs are increased or bene# ts are lowered (see Figure 5.3a). Eventu-
ally, cooperators are unable to survive and go extinct. E+ ects of spatial struc-
ture, and hence the characteristic features of spatial con# gurations, are most 
pronounced near the extinction threshold of cooperators (see Figure 5.3b).

Upon approaching the extinction threshold, the population exhibits in-
teresting dynamical features as it undergoes a critical phase transition 
( Szabó & Hauert 2002b)— a well- studied phenomenon in statistical mechan-
ics. Critical phase transitions are exciting for physicists but may not seem 
exceedingly important in biologically relevant scenarios. However, they do 
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have substantial implications with far reaching consequences. For example, 
small changes in the costs or bene# ts can have disastrous e+ ects on the 
equilibrium state of the population. Figure 5.3a illustrates that variations in 
the cost- bene# t ratio r near the extinction threshold of cooperators result in 
big changes in their equilibrium frequency. Moreover, for populations that 
are prone to extinction, this indicates intrinsic diC  culties for the empirical 
assessment of the current state because spatial and temporal variation in-
creases when approaching the critical threshold.

Based on the results of the prisoner’s dilemma in spatially extended set-
tings, it has become widely accepted that spatial extension with limited 
local interactions is bene# cial for cooperation. However, this does not neces-
sarily apply to social dilemmas in general (Hauert and Doebeli 2004; Hauert 
2006). In par tic u lar, in the spatial snowdrift game, the equilibrium proportion 
of cooperators tends to be lower than in unstructured settings with random 
interactions (see Figure 5.4a). Only for very low costs or high bene# ts does 
spatial structure support cooperation, but for most values cooperation is re-
duced and even gets eliminated altogether if costs are high or bene# ts are low.
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Figure 5.3  Spatial prisoner’s dilemma on a square 100- x-100 lattice with four 
neighbors. a Equilibrium fraction of cooperators (solid squares) as a function of 
the cost- to- bene# t ratio of mutual cooperation r = c/(b − c). For small r cooperators 
persist but disappear for r > rc ≈ 0.076. In unstructured populations, cooperators 
cannot survive (dotted line). b Snapshot of a typical lattice con# guration near 
the extinction threshold rc. Spatial clustering enables cooperators to persist 
through more frequent interactions with other cooperators while reducing 
exploitation by defectors.
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The fact that in the snowdrift game the best option of one individual 
depends on the opponent’s behavior, such that it is best to choose a strategy 
that is di+ erent from the opponent, often prevents cooperators from form-
ing compact clusters as in the spatial prisoner’s dilemma. Instead of minimiz-
ing the boundary between cooperators and defectors to avoid exploitation, 
the characteristics of the snowdrift game tend to maximize this boundary, 
which results in dendritic or # lament- like cluster shapes. These cluster shapes 
become most apparent near the extinction threshold of cooperators (see Fig-
ure 5.4b). An intuitive approximation of the extinction threshold is obtained 
by considering the payo+  of a single isolated cooperator in the spatial snow-
drift game. As soon as the cooperator’s payo+  drops below the payo+  of its 
defecting neighbors it perishes. Note, however, that this scenario underesti-
mates the actual extinction threshold because of larger patches of coopera-
tors. On average, the # lament- like structures generate an advantage for de-
fectors because of increased exploitation along the fractal- like boundary 
between cooperators and defectors. This results in an overall reduction of 
cooperators when compared to unstructured populations.
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Figure 5.4  Spatial snowdrift game on a square 100- x-100 lattice with four 
neighbors. a Equilibrium fraction of cooperators (solid squares) as a function of 
the cost- to- bene# t ratio of mutual cooperation r = c/(2b − c). In unstructured 
populations, cooperators and defectors coexist (dotted line). With the exception 
of small r, spatial structure inhibits cooperation and for r > rc ≈ 0.68 cooperators 
even disappear. b Snapshot of a typical lattice con# guration near the extinction 
threshold rc. The equilibrium fraction of cooperators lies around 20% as 
compared to 40% cooperation in the absence of spatial structure.
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The EvoLudo site (Hauert 2012) encourages further interactive explora-
tions and comparisons of the fascinating spatiotemporal dynamics in di+ er-
ent types of spatial games.

Conclusions

The most prominent mathematical model to study the evolution of cooper-
ation is the prisoner’s dilemma. Only more recently has the snowdrift game 
attracted increasing attention as a viable and biologically interesting alter-
native for modeling cooperation dynamics. For example, RNA phages en-
gage in prisoner’s dilemma interactions in cells (Turner and Chao 1999), but 
selection alters the payo+  structure, leading to the stable coexistence of co-
operating and defecting types in a snowdrift game (Turner and Chao 2003). 
Unfortunately, di+ erentiating between the two games can be challenging 
in real populations because the determination of payo+ s is notoriously dif-
# cult. For example, predator inspection in sticklebacks is an often- cited ap-
plication of the prisoner’s dilemma (Milinski 1987). Sophisticated experimen-
tal setups con# rmed the payo+  ranking for three out of the four possible 
behavioral outcomes (Milinski et al. 1997). However, only the missing rank-
ing of the payo+  for mutual defection would enable one to discriminate be-
tween the prisoner’s dilemma and snowdrift games. Other well- known 
examples of potential snowdrift games include alarm calls in meerkats 
(Clutton- Brock et al. 1999), and # ghting in large ungulates (Wilkinson and 
Shank 1977). Cooperation is ubiquitous in meerkats, whereas serious escala-
tions of # ghts seem to be common in musk ox. Because the costs of alarm 
calls are small, whereas the costs of forgoing reproduction are high, both ob-
servations are in agreement with the spatial snowdrift game, which promotes 
cooperation for low cost- to- bene# t ratios but suggests more frequent escala-
tions for high ratios of cost- to- bene# t (Hauert and Doebeli 2004).

The signi# cance and scienti# c value of game theoretical models for under-
standing the evolution of cooperation does not primarily lie in their predic-
tive power for par tic u lar applications to speci# c scenarios. Instead, these 
games represent a conceptual framework to highlight and to emphasize the 
rich and often- unexpected dynamics generated by simple models that cap-
ture the essence of biologically and socially relevant interaction patterns. 
For example, the snowdrift game demonstrates that spatial structure may 
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not be as universally bene# cial for cooperation as previously thought, based 
on results of the spatial prisoner’s dilemma. Similarly, evolutionary 
branching in the continuous snowdrift game illustrates that distinct behav-
ioral traits may easily originate in a continuum of behavioral options. Game 
theoretical results delineate evolutionary constraints that are critical in re-
solving the problem of cooperation.

In theoretical and evolutionary biology, the ambiguity and limited con-
sensus on the usage of the terms “cooperation,” “altruism” and “helping” can 
cause some disputes but generally pose less severe problems than in the in-
terdisciplinary discourse of this book. In all theoretical investigations, the 
starting point as well as the concluding results are unambiguous mathemat-
ical statements. Misunderstandings are readily averted by resorting to the 
mathematics. Instead, the core challenge lies in the proper translation of bi-
ological questions into tractable mathematical models as well as in interpret-
ing the mathematical results in meaningful biological terms.

Notes

 1. The selection gradient D(u) denotes the slope of the invasion # tness fu(v) at v = u 
and is de# ned as D(u) = ∂fu(v)/∂v|v = u = B'(2u) − C'(u) where the primes indicate the 
derivatives with respect to u (for details see Doebeli, Hauert, and Killingback 
2004).

 2. u* is convergent stable if dD(u)/du|u = u* = B"(2u*) − C"(u*) < 0 and evolutionarily 
stable if the invasion # tness fu · (v) has a # tness maximum at v = u*, i.e. if the sec-
ond derivative ∂2 fu*(v)/∂v2 |v = u* = 2B" (2u*) − C"(u*) < 0 is negative. Hence the two 
stability criteria are not identical.
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