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Abstract. Evolutionary dynamics in finite populations reflects a balance between Darwinian
selection and random drift. For a long time population structures were assumed to leave this
balance unaffected provided that the mutants and residents have fixed fitness values. This
result indeed holds for a certain (large) class of population structures or graphs. However,
other structures can tilt the balance to the extend that either selection is eliminated and drift
rules or drift is eliminated and only selection matters.

In nature, however, fitness is generally affected by interactions with other members of the
population. This is of particular importance for the evolution of cooperation. The essence of
this evolutionary conundrum is captured by social dilemmas: cooperators provide a benefit
to the group at some cost to themselves, whereas defectors attempt to exploit the group by
reaping the benefits without bearing the costs of cooperation. The most prominent game the-
oretical models to study this problem are the prisoner’s dilemma and the snowdrift game. In
the prisoner’s dilemma, cooperators are doomed if interactions occur randomly. In structured
populations, individuals interact only with their neighbors and cooperators may thrive by
aggregating in clusters and thereby reducing exploitation by defectors. In finite populations, a
surprisingly simple rule determines whether evolution favors cooperation: b > c k that is, if
the benefits b exceed k-times the costs c of cooperation, where k is the (average) number of
neighbors. The spatial prisoner’s dilemma has lead to the general belief that spatial structure is
beneficial for cooperation. Interestingly, however, this no longer holds when relaxing the social
dilemma and considering the snowdrift game. Due to the less stringent conditions, cooperators
persist in populations with random interactions but spatial structure tends to be deleterious and
may even eliminate cooperation altogether.

In many biological situations it seems more appropriate to assume a continuous range of
cooperative investment levels instead of restricting the analysis to two a priori fixed strate-
gic types. In the continuous prisoner’s dilemma cooperative investments gradually decrease
and defection dominates just as in the traditional prisoner’s dilemma. In contrast, the con-
tinuous snowdrift game exhibits rich dynamics but most importantly provides an intriguing
natural explanation for phenotypic diversification and the evolutionary origin of cooperators
and defectors. Thus, selection may not always favor equal contributions but rather promote
states where two distinct types co-exist – those that fully cooperate and those that exploit.
In the context of human societies and cultural evolution this could be termed the Tragedy of
the Commune because differences in contributions to a communal enterprise have significant
potential for escalating conflicts on the basis of accepted notions of fairness.
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1. Modeling Evolution

Evolutionary dynamics acts on populations – neither genes, nor cells, nor
individuals evolve, only populations evolve. Conversely, Darwinian selection
does not act on populations but on genes, cells and individuals. Selection re-
flects the fact that the genes or behavioral patterns of individuals with a higher
fitness have a higher chance to be passed to subsequent generations through
biological reproduction or cultural imitation. For an excellent introduction
into evolutionary dynamics see Nowak (2006). In a nutshell, the evolutionary
process is determined by:

Selection: Individuals with a fitness that exceeds the average fitness in the
population have a higher propensity to pass their genetic or cultural
traits to progeny in subsequent generations and these traits are likely
to increase in abundance. Similarly, traits that lower the fitness of an in-
dividual have small chances to be passed to the next generation, decrease
in abundance and eventually disappear.

Variation: Mutations and genetic recombination as well as spontaneous alter-
ations and erroneous imitations of behavioral patterns generate fitness
differences among members of the population. Selection acts on these
differences and amplifies them over time.

Random drift: In finite populations the transmission of traits through repro-
duction or imitation is generally a stochastic process. The success of a
trait is proportional to the fitness of its carriers but a high fitness does
not provides any guarantee for success. With a small probability even
the fittest member of the population may not get a chance to pass its
trait to the next generation. Similarly, traits of even the least fit individ-
ual may get an odd chance to proliferate and persist in the population
through random drift. Random drift counteracts selection and becomes
increasingly important in smaller populations or for decreasing fitness
differences within a population.

Selection, variation and random drift represent the makeup of Darwin’s sur-
vival of the fittest. It is important, however, to recognize that evolution rep-
resents a myopic optimization process. Even though selection always favours
individuals with higher fitness, this does not necessarily imply that the aver-
age fitness of the population increases. Quite on the contrary, it is often the
case that evolution favours traits that reduce the overall fitness of the popula-
tion. This fundamental problem will become most apparent when addressing
the conundrum of the evolution of cooperation in Sect. 3. The reason for such
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outcomes lies in the fact that the fitness of an individual is not entirely genet-
ically or culturally predetermined but instead depends on interactions with
other members of the population and thus depends on the current abundance
and possibly the distribution of traits in the population.

1.1. THE REPLICATOR DYNAMICS

Let us start with the simplest possible evolutionary scenario: an infinitely
large population consists of two types, the residents and the mutants. Individ-
uals do not interact and thus the fitness of both types is fixed and independent
of their relative abundances. Residents have a normalized fitness of fr = 1
and mutants have a fitness fm = r. If x denotes the fraction of mutants in the
population then the evolutionary fate of the mutants is given by the replicator
equation (Hofbauer and Sigmund, 1998):

ẋ = x
(

fm − f̄
)
, (1)

where f̄ = x fm + (1 − x) fr denotes the average population payoff. This
simply means that if fm > f̄ then the mutants increase in abundance. Here
this condition reduces to r > 1. Thus, if the mutant has a higher fitness
than the resident, the fraction of mutants keeps increasing until eventually the
mutant displaces the resident and thus becomes the new resident. Conversely,
if r < 1 the mutant is bound to disappear irrespective of its initial frequency.
The evolutionary process is deterministic – if r > 1 mutants take over with
certainty and disappear with certainty for r < 1.

1.2. THE MORAN PROCESS

Evolution in finite populations is stochastic and can be modeled using the
Moran process (Moran, 1962): in every time step an individual is randomly
selected for reproduction with a probability proportional to its fitness and
produces a single clonal offspring that replaces a randomly selected member
of the population (see Fig. 1). The total population size N remains constant,
i.e. the Moran process assumes that N represents the carrying capacity of
the population and neglects fluctuations in population size. All individuals
have the same average lifespan but fitter individuals tend to have a higher
reproductive output. This represents a specific balance between selection and
random drift: fitter individuals have higher chances – but no guarantee – of
reproduction, whereas less fit individuals are likely – but again, no guarantee
– to be eliminated.

Returning to our simplest possible evolutionary scenario, repeatedly ap-
plying the above updating procedure determines the evolutionary fate of resi-
dents and mutants. In the absence of mutations the Moran process ultimately
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Figure 1. The Moran process describes the stochastic evolution of a finite population of
constant size. a the population consists of a mixture of residents (blue, fitness 1) and mutants
(orange, fitness r). b a focal individual is randomly selected for reproduction with a probability
proportional to its fitness. c a randomly selected individual (independent of fitness) is removed.
d the vacancy is replaced by a clonal offspring of the focal individual.

results in a homogeneous population with all residents or all mutants be-
cause, irrespective of the initial configuration, eventually all members of the
population will have a single common ancestor. Both homogeneous states are
absorbing and represent an evolutionary end state. The remaining type is said
to have reached fixation. We can now determine the probability that mutants
(or residents) fixate for a particular initial configuration.

In unstructured populations the state of the population is fully determined
by the number of mutants present. The number of mutants i changes at most
by ±1 in every time step of the Moran process. With probability T+ the num-
ber of mutants increases from i to i+1, with probability T− it decreases to i−1
and with probability 1−T+ −T− the number of mutants remains unchanged.

T+ =
i · r

i · r + (N − i)
·

N − i
N

(2a)

T− =
N − i

i · r + (N − i)
·

i
N

(2b)

The first factor of T+ (T−) indicates the probability that a mutant (resident)
is chosen for reproduction and the second factor denotes the probability that
the offspring replaces a resident (mutant). Note that the ratio of the transition
probabilities T+/T− = r is independent of the number of mutants in the pop-
ulation. This leads to a simple recursive formula for the fixation probability
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ρ(i) of the mutant in a population with i mutants:

ρ(i) =
r

1 + r
ρ(i − 1) +

1
1 + r

ρ(i + 1). (3)

Thus, the dynamics corresponds to a biased random walk with absorbing
boundaries. Eq. (3) admits two solutions ρ = 1 and ρ = 1/ri. The absorbing
boundaries additionally require ρ(0) = 0 and ρ(N) = 1. For r , 1, the fixation
probability of a single mutant ρ1 then becomes

ρ1 =

1 −
1
r

1 −
1

rN

. (4)

Assuming that mutations are rare events ρ1 is of particular interest. It is easy
to see that a neutral mutant (r = 1) has a fixation probability of ρ1 = 1/N:
eventually the entire population will have a single common ancestor but in
terms of fitness mutants and residents are indistinguishable and so every
member of the population has equal chances to be the chosen one. Evolution
is said to favor a mutant if the fixation probability of the mutant exceeds the
fixation probability of a neutral mutant, ρ1 > 1/N.

In contrast to the replicator dynamics, Eq. (4) shows that evolution favors
mutants for r > 1 but it is no longer a guarantee to reach fixation and similarly,
for r < 1 fixation is less likely but again no guarantee that the mutation
disappears. The balance between selection and random drift depends on the
population size N. For small N random drift dominates whereas for large N
selection becomes more important and in the limit N → ∞ the deterministic
replicator dynamics is recovered (Traulsen et al., 2005).

2. Evolutionary Graph Theory

Using evolutionary graph theory (Lieberman et al., 2005) we can investigate
the effects of population structures on the evolutionary process. In structured
populations, individuals occupy the nodes of a network or graph of size N.
The links between the nodes define the neighborhood of each individual. The
graph can have any structure – for example, square lattices describe spatially
extended systems or small-world networks (Watts and Strogatz, 1998) model
social structures – and links between nodes may have different strengths. A
fully connected graph, where each node is equally linked to every other node,
is equivalent to an unstructured population. Mathematically, the structure of
the graph is determined by the adjacency matrix W = [wi j] where wi j denotes
the strength of the link between nodes i and j. If wi j = 0 and w ji = 0 then the
two nodes i and j are not connected.
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Figure 2. Moran process on graphs – stochastic evolution in a finite structured population
of size N. All individuals occupy the nodes of a graph or network where links between nodes
determine each individual’s neighborhood. a the population consists of a mixture of residents
(blue, fitness 1) and mutants (orange, fitness r). b a focal individual i is randomly selected
for reproduction with a probability proportional to its fitness. c a random selected neighbor
j of the focal individual is removed. d the vacancy is filled by clonal offspring of the focal
individual.

The original Moran process is easily adapted to model evolution on arbi-
trary graphs (see Fig. 2): in every time step a focal individual i is randomly
selected for reproduction with a probability proportional to its fitness and
produces a single clonal offspring that replaces a random neighbor j, which
is selected with a probability proportional to wi j.

In structured populations the essential difference is that the offspring re-
places a neighbor of the focal individual instead of a random member of the
population. An additional minor difference is that the offspring cannot replace
the focal individual but, in principle, this can be implemented by adding loops
to each node.

Provided that the graph is connected – each node is connected to every
other node through a series of links – the system has the same two absorbing
states with all residents or all mutants. In the following we always assume
connected graphs because otherwise the dynamics must be considered for
each subgraph individually. Thus, we can again ask the question about the
fixation probability of a single mutant in a structured resident population.
In other words, how does the limited dispersal of offspring in structured
populations affect the fixation probability of mutants? Some simple sample
graphs are shown in Fig. 3. Is fixation easier or harder on these graphs? – or
is it independent of the population structure? In fact, the celebrated results by
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Figure 3. Sample graphs illustrating different simple population structures. What is the
fixation probability of a single mutant on each of these graphs? Is it more or less likely than in
an unstructured population? a regular lattice where each individual has four neighbors. b fully
connected graph. c cyclic structure with directed links – replacement does not need to go both
ways.

Maruyama (1970) and Slatkin (1981) indicate that the latter is the case. And
indeed, all graphs in Fig. 3 leave the fixation probability unchanged and ρ1 is
the same as in unstructured populations. However, this is not true in general
but it does hold for a broad class of graphs.

2.1. CIRCULATION THEOREM

In order to characterize the class of graphs that lead to the same fixation
probability ρ1 as the original Moran process in unstructured populations,
let us introduce the flux through each node. The sum of the weights of the
incoming links f in

i =
∑

j w ji denotes the flux entering node i. f in
i relates to a

temperature because it indicates the rate at which the occupant of node i gets
replaced. ’Hot’ nodes are frequently replaced and ’cold’ nodes only rarely
change their type. In analogy, the sum of the weights of the incoming links
f out
i =

∑
j wi j denotes the flux leaving node i. f out

i determines the impact of
node i on its neighborhood. The matrix W is a circulation if f in

i = f out
i holds

for all nodes.
Circulation Theorem: The Moran process on a graph results in the same
fixation probability ρ1 of a single mutant as in an unstructured population
if and only if the graph is a circulation.

In particular, the circulation theorem holds if W is symmetric (wi j = w ji),
which holds for all graphs shown in Fig. 3, or if W is isothermal, i.e. all
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Figure 4. More general graph where mutants have the same fixation probability than in an
unstructured population. The graph is a circulation with an asymmetric adjacency matrix W.
The arrows indicate the direction and the labels the strength of the links. a The flux entering
each node is balanced by the flux leaving the node, f in

i = f out
i . This is the definition of a

circulation. b mutants (orange) occupy a connected subset of the graph (shaded area) and are
surrounded by residents (blue). Note that for the mutant subset holds the same flux balance
as for every node: the sum of the weights of incoming links (connecting residents to mutants)
is the same as the sum of the weights of outgoing links (connecting mutants to residents).
Evolutionary dynamics changes the composition of the population only if replacements occur
along one of the solid arrows (connecting the mutant subset and the residents) but not along
the dashed arrows. However, the flux balance of the mutant subset is not affected by adding or
removing mutants. Because of this invariance mutants have the same fixation probability on a
circulation graph as in an unstructured population (see text).

nodes have the same temperature ( f in
i = T ∀i). Another special case of the

circulation theorem applies if W is doubly stochastic, i.e. if all rows and
columns of W sum up to one. A more general circulation graph where W
is not symmetric is depicted in Fig. 4a. A detailed proof of the circulation
theorem is provided in Lieberman et al. (2005). Here we provide an intuitive
illustration of the circulation conditions and its consequences.

At any point in time during the invasion process of mutants on a cir-
culation graph, it is possible to identify connected subsets of nodes on the
graph that are occupied by mutants such that all adjacent nodes of each sub-
set are occupied by residents. Obviously, the state of the population changes
only if a replacement occurs along one of the links connecting residents and
mutants. Figure 4b shows a general circulation graph with one connected
subset (shaded area) of mutants. Multiple such subsets may exist and, in fact,
the evolutionary process may split large connected subsets of mutants into
two smaller ones or may merge two previously unconnected subsets into one
larger subset. For each subset, the circulation theorem requires that the sum
of the weights of links pointing out of the subset (connecting a mutant node
to an adjacent resident node) equals the sum of the weights of links pointing
into the subset (connecting an adjacent resident with a mutant node within the
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subset). Since the influx is balanced by the outflux, f in
i = f out

i , for all nodes,
increasing the mutant subset by replacing an adjacent resident node with a
mutant or decreasing the subset by replacing a mutant with a resident, does
not affect the flux balance of the subset. For the same reason, the balance re-
mains unchanged if subsets merge or if one subset splits into two. Recall that
the number of mutants in the population changes only if a replacement occurs
along any link that connects residents with mutants or vice versa. Because the
Moran process essentially selects links with a probability proportional to the
link weight and the fitness of the node at its tail, it follows that for each subset,
the probability that another mutant is added is simply given by r/(1 + r) and
the complementary probability that one is removed is 1/(1 + r). Since this
holds for each subset, it also holds for the entire population and is independent
of the number, size, shape and distribution of mutant subsets. This invariance
applies if and only if the circulation theorem is satisfied. Consequentially,
the fixation probability on circulation graphs reduces to the recursive Eq. (3)
derived for the original Moran process.

Note that even though the fixation probabilities remain unchanged on
circulation graphs, the corresponding fixation times are very sensitive to the
details of the population structure and pose a much harder problem. For the
original Moran process it can be shown that the fixation time of an advanta-
geous mutant with fitness r > 1 in a resident population is the same as the
fixation time of a disadvantageous mutant with fitness 1/r – however, the first
scenario is much more likely (Taylor et al., 2006). The circulation theorem
only ensures that the ratio of the transition probabilities T+/T− = r remains
unchanged but even on circulation graphs T+ and T− depend not only on the
number but also on the distribution of mutants. Generally, population struc-
tures tend to substantially increase the fixation times because the structure
limits the possibilities for mutants to conquer new nodes.

The circulation theorem indeed covers a large class of population struc-
tures and certainly includes the most intuitive cases such as regular lattices,
cycles and fully connected graphs (see Fig. 3). Thus, it is not so surprising that
Maruyama (1970) and Slatkin (1981) arrived at the conclusion that introduc-
ing population structure leaves fixation probabilities of mutants unaffected.
However, the circulation theorem not only allows to determine for which
population structures this applies but it also indicates that other structures
must exist that do result in different fixation probabilities. In particular, what
structures suppress selection and enhance random drift (ρ < ρ1 for r > 1)?
Do they exist and what are their characteristics? And conversely, is it possible
to achieve the opposite and generate structures that enhance selection and
suppresses random drift (ρ > ρ1 for r > 1)?
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Figure 5. Evolutionary Suppressors are characterized by a hierarchical organization of the
population: ’cold’ nodes (blue) are infrequently replaced (or not at all) and determine the
evolutionary fate of ’hotter’ downstream nodes (orange). a Linear chain: the offspring of
every node replaces the occupant of the node to the right. The leftmost root node is never
replaced and the offspring of the rightmost node is lost. b Burst: a central hub node feeds into
a reservoir. The offspring of the reservoir is lost and the hub is never replaced. The linear chain
and the burst structure both result in fixation probabilities of ρ = 1/N – independent of the
mutants fitness. A mutant fixates only if it arises in the root or hub node, respectively, but then
it fixates with certainty. c Multiple roots: In this case no mutant can ever reach fixation, ρ = 0.
If a mutation occurs in one of the root nodes, it gives rise to a persistent lineage of mutants
but it cannot conquer the other root nodes.

2.2. EVOLUTIONARY SUPPRESSORS

Tilting the balance between selection and random drift in favor of random
drift means that altering the population structure results in smaller fixation
probabilities ρ of an advantageous mutant (r > 1) than in the original Moran
process or on a circulation graph, ρ < ρ1. Conversely it means that a disad-
vantageous mutant (r < 1) has a higher fixation probability, ρ > ρ1. Indeed,
this holds whenever a population is arranged in a hierarchical manner. Some
examples of such evolutionary suppressors are shown in Fig. 5. The most
extreme case is given by a linear chain where the offspring of each individual
replaces the occupant of the node to its right (see Fig. 5a). The leftmost node
is a root node and is never replaced whereas the offspring of the rightmost
node is lost. This generates a flux through the population from left to right
such that no mutant can reach fixation unless the mutation occurs in the
root node. This happens with the probability 1/N but in that case fixation
occurs with certainty. Thus the fixation is simply ρ = 1/N, irrespective of the
mutant’s fitness and hence selection is eliminated and random drift rules. If
there are multiple roots (see Fig. 5c) no mutation can ever fixate, ρ = 0.

Evolutionary suppressors have a very simple, almost trivial structure but
at the same time they turn out to be highly relevant in biological systems.
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While mutations enable populations to adapt to changing environments, they
are generally pathogenic when they occur within an organism. Especially
dangerous are those mutations that increase the net reproductive rate of a cell
because this may later develop into cancer (Vogelstein and Kinzler, 1998).
In order to prevent accumulation and spreading of detrimental mutations,
organisms take advantage of evolutionary suppressors (Nowak et al., 2003).
Epithelial tissue, such as our skin or the colon, is organized into small com-
partments (crypts in the colon) and each compartment is arranged in multiple
layers of cells of increasing degrees of differentiation – ranging from few
undifferentiated stem cells to terminally differentiated epithelial cells. With
the exception of the stem cells, all cells are regularly renewed by new cells
from precursor layers. This exactly matches the setup of the linear chain (see
Fig. 5a) and thus cancerous mutations will be eventually washed out, unless
they happen to occur in one of the stem cells. In case this occurs, then the
compartmentalization confines the mutants and prevents further spreading.
Another impressive example of a complex hierarchical arrangement is given
by our blood system where the stem cells reside in the bone marrow and
divide only about once a week through a series of precursor cells to the
terminally differentiated red blood cells with a production of the order of
1012 cells every day. The architecture of all these systems is shaped to prevent
malignant mutations from spreading.

2.3. EVOLUTIONARY AMPLIFIERS

Evolutionary amplifiers are the counterpart to evolutionary suppressors. These
population structures tilt the balance between selection and random drift in
favor selection such that the fixation probabilities ρ of advantageous mutants
(r > 1) is larger than in the original Moran process or on circulation graphs,
ρ > ρ1. Because selection is enhanced, this also implies that disadvantageous
mutants (r < 1) have a smaller fixation probability, ρ < ρ1. Evolutionary
amplifiers are also characterized by hierarchical population structures with
the crucial addition of positive feedback loops. A selection of evolutionary
amplifiers is shown in Fig. 6. The simplest example is given by the star
structure where a central hub is connected to a reservoir of leaf nodes (see
Fig. 6a) but in contrast to the burst structure (see Fig. 5b) the links between
the hub and the leaves are bi-directional. The hub represents a bottleneck
for the evolutionary progression because if one leaf node is occupied by a
mutant it needs to conquer the hub before another leaf node can be taken
over. Most of the time, the ’hot’ hub is replaced by reproducing leaf nodes
and only occasionally the hub itself reproduces and replaces a leaf node. For
an advantageous mutant in a leaf node this means that compared to a resident
leaf node it has a relative advantage of r to occupy the hub and similarly the
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Figure 6. Evolutionary Amplifiers are characterized by a hierarchical organization of the
population where ’cold’ reservoir nodes (blue) feed through a series of bottlenecks into ’hot-
ter’ (orange, red) nodes and eventually into a central hub that feeds back into the reservoir.
The diameter k of the graph, i.e. the minimum number of links that connect any node with
any other node, determines the amplification of the graph. A mutant with fitness r fixates with
the same probability as another mutant with fitness rk on a circulation graph. a Star: a central
hub node is connected to a reservoir of leaf nodes, k = 2. b Superstar: several petals consist
of a reservoir that is connected through a linear chain to a central hub that feeds back into all
reservoirs, k = 3. c Funnel: a reservoir feeds into a smaller downstream sub-population that in
turn feeds into a hub, which then feeds back into the reservoir, k = 3.

mutant hub has again a relative reproductive advantage of r. Thus, the overall
relative advantage of a mutant leaf node to proliferate and occupy another
leaf node is r2. Note that there is no other way for a mutant to spread through
the population. As we will see, a mutant on the star structure with fitness r
has the same fixation probability as a mutant with fitness r2 on a circulation
graph.

The principles of the star structure can be generalized to a series of se-
quential bottlenecks that further increase amplification such as provided by
the superstar (Fig. 6b) or the funnel (Fig. 6c). The decisive quantity in all
amplifiers is the minimum number of reproductive steps k that are required for
a ’cold’ reservoir node to populate another reservoir node. k determines the
strength of the evolutionary amplifier. In an unstructured population, every
node can be reached in one step and thus k = 1, on the star it takes two steps,
k = 2, and on the superstar and funnel shown in Fig. 6 it takes three steps,
k = 3. The latter two structures can be easily generalized to arbitrary k and
the fixation probability becomes (Lieberman et al., 2005):

ρk =

1 −
1
rk

1 −
1

rkN

. (5)
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Figure 7. Simulation data for evolutionary amplifiers. a fixation probabilities for an ad-
vantageous mutant with fitness r = 1.1 for different population structures as a function of
the population size N: circulation graph (black, k = 1), star (blue, k = 2) and superstars
(red, k = 3; yellow k = 4). The solid black line indicates the theoretical prediction for
circulations and the dashed color lines denote the prediction in the limit N → ∞. b strength
of amplification on scale-free networks of size N = 100 as a function of the mutant fitness r.
The amplification decreases with increasing fitness and with increasing average connectivity
m of the nodes: m = 2 (purple), m = 4 (violet) and m = 6 (navy). For marginally beneficial
mutations and m = 2 the amplification is almost as strong as on a star structure but then
gradually declines and approaches k = 1 for circulation graphs.

Thus, the fixation probability ρk of a mutant with fitness r on an evolutionary
amplifier with strength k is the same as that of a mutant with fitness rk in the
original Moran process or on a circulation graph. In finite populations Eq. (5)
is only an approximation and becomes exact for N → ∞. Comparisons with
simulation data is shown in Fig. 7a. The proof of Eq. (5) involves a recursive
analysis of the sequential bottlenecks as sketched above for the star structure.
Technical details are provided in Lieberman et al. (2005).

In the limit N, k → ∞ the fixation probability even for a mutant with an
arbitrarily small fitness advantage converges to one. Similarly, the elimina-
tion of a mutant with only an arbitrarily small fitness disadvantage happens
with certainty. However, evolutionary amplification comes at a price, which
is reflected in long fixation times. In fact, fixation times tend to infinity as
fixation probability approaches certainty.

In contrast to evolutionary suppressors, population structures that amplify
selection are rather complex and potentially less relevant in nature. However,
one interesting exception occurs in the case of scale-free networks (Albert
and Barabási, 2002). These networks are characterized by a power law degree
distribution, where the degree or connectivity of a node indicates its number
of neighbors. Therefore, few nodes are highly connected whereas most nodes
entertain only few connections to other nodes. This seems to capture relevant
features of social, technological and biological systems ranging from the net-
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work of scientific collaborations, to U.S. power lines (Barabası́ and Albert,
1999) and gene regulatory networks (Koonin et al., 2006).

On scale-free networks the amplification factor k depends on the fitness of
the mutant r (see Fig. 7b) and decreases with increasing fitness. Thus, scale-
free networks selectively support mutants that are only marginally advanta-
geous – such mutations are prone to accidental extinction through random
drift – but the structure does not promote highly beneficial mutations – these
fixate with very high probability anyways.

3. The Problem of Cooperation

In nature the fitness of individuals is, in general, not fixed as we have assumed
so far, but instead depends on interactions with other members of the pop-
ulation. Evolutionary game theory (Maynard Smith, 1982; Maynard Smith
and Price, 1973) provides a powerful mathematical framework to analyze
situations where the performance of an individual does not only depend on its
own behavior but also on the behavior of its interaction partner or opponent.
The most interesting scenario refers to the evolutionary puzzle of the emer-
gence of cooperation under Darwinian selection. The problem of cooperation
is captured by social dilemmas (Dawes, 1980), which describe a conflict of
interest between the community and the individual. In social dilemmas co-
operators produce a valuable public good at some cost to themselves while
defectors attempt to exploit the common resource without contributing them-
selves. Because the public good is valuable, groups of cooperators are better
off than groups of defectors, but in any mixed group defectors outperform
cooperators – and hence the dilemma. The most prominent game theoretical
models to investigate this kind of interactions are the prisoner’s dilemma and
the snowdrift game for pairwise interactions as well as the public goods game
for interactions in larger groups (Doebeli and Hauert, 2005). Here we focus
on pairwise interactions in the prisoner’s dilemma and snowdrift game and
refer to Hauert et al. (2006c) for a general discussion of social dilemmas in
groups of arbitrary size.

Social dilemmas are abundant in nature. For example, musk oxen create
defense formations to protect their young from wolves (Hamilton, 1971).
However, for each ox it would be better to avoid potential injury and to
stand in the second line but if every individual behaves that way their defense
breaks down and the group becomes prone to attacks by wolves. Similar con-
flicts of interests occur in sentinel behavior in merkats (Clutton-Brock et al.,
1999), in predator inspection behavior in fish (Milinski, 1987; Pitcher, 1992),
in phages competing for reproduction (Turner and Chao, 1999; Turner and
Chao, 2003) or in microorganisms producing extra cellular products such as
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enzymes in yeast (Greig and Travisano, 2004), biofilms (Rainey and Rainey,
2003) or antibiotic resistance (Neu, 1992), to name only a few prominent
examples. However, social dilemmas also occurred on an evolutionary scale
and life could not have evolved without the repeated incorporation of lower
level units into higher level entities. Major transitions such as the formation
of chromosomes out of replicating DNA molecules, the transition from sin-
gle cells to multicellular organisms or from individuals to societies require
cooperation (Maynard Smith and Szathmáry, 1995). Finally, humans have
taken the problem of cooperation to yet another level (Hardin, 1968) when it
comes to social security such as health care or pension plans and, even more
importantly, to global scales in terms of natural resources such as drinking
water, clean air, fisheries and climate (Milinski et al., 2006).

3.1. PRISONER’S DILEMMA

The prisoner’s dilemma made its first appearance in an experimental bar-
gaining setup designed Melvin Dresher and Merill Flood in the wake of
the second world war (Flood, 1958). Only later it was named by Albert W.
Tucker, who contributed an illustrative anecdotal story where two burglars
are arrested on the suspicion of a robbery (Poundstone, 1992). Each burglar
is interrogated separately and has the options to either refuse to give evidence
or to blame his fellow prisoner. They both know that if both refuse to give
evidence they will be charged for a minor crime and sentenced to one year
imprisonment but if they blame each other, they face three years imprison-
ment. However, if one refuses to give evidence but gets blamed by the other,
then the first one gets the full charge of five years whereas the approver is
set free. It is easy to see that no matter what the fellow prisoner decides it
is always better to blame him or her in order to reduce the sentence. But if
both prisoners reason the same way, they both end up three years in prison
instead of only one if they had refused to give evidence. Thus, selfish interests
prevent them from achieving the mutually preferable outcome. A state where
none of the participants can improve its payoff by unilaterally changing its
strategy is called a Nash equilibrium (Nash, 1951).

In evolutionary biology, the prisoner’s dilemma is usually framed in terms
of fitness costs and benefits. Cooperators provide a benefit b to their co-player
at a cost c to themselves (b > c) and defectors neither provide benefits nor
pay costs. The payoffs for the joint behavior of two interacting individuals is
usually written in the form of a payoff matrix:

C D
C

D

 b − c −c

b 0

 . (6)
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Mutual cooperation pays b− c whereas mutual defection pays nothing. How-
ever if only one player defects and the other cooperates then the defectors
gets the benefit b without having to pay the costs and the cooperators faces the
costs c without receiving any benefit. Thus, just as in the case of the prisoners,
it is always better to defect irrespective of the other players behavior but if
both players follow this reasoning they end up with nothing instead of b − c.

Evolutionary dynamics is about populations and in this case about the
change in frequencies of cooperators and defectors. In an infinite popula-
tion with a fraction x cooperators (1 − x defectors) and randomly interacting
individuals, the evolutionary fate of cooperators is given by the replicator
equation:

ẋ = x( fC − f̄ ) = x(1 − x)( fC − fD), (7)

where fC , fD represent the average payoffs of cooperators and defectors, re-
spectively, and f̄ = x fC + (1 − x) fD denotes the average population payoff.
The average payoff of cooperators is simply fC = xb − c because in every
interaction they pay the costs of cooperation c but only if they meet an-
other cooperator they receive the benefit b, which happens with probability
x. Similarly the average payoff of defectors is fD = xb. Thus, cooperators are
always worse off ( fC < fD) and irrespective of their initial frequency, they
will dwindle and eventually disappear. x∗ = 0 is the only stable equilibrium.
This nicely illustrates the fact that evolutionary dynamics represents a myopic
optimization process: even though fitter individuals are selected in every time
step, the overall fitness of the population decreases.

In finite populations, the fitness of a player is given as 1 − w + wP, i.e.
the convex combination of a baseline fitness, which is normalized to 1 for
all players, and the payoff P from the prisoner’s dilemma interactions. The
relative importance of the two components is specified by w. For w → 0,
fitness differences decrease and selection becomes weak. In order to model
evolution, the Moran process is equally applicable to settings where the fit-
ness depends on the current composition of the population, i.e. if fitness is
frequency dependent (Nowak et al., 2004). In a population of size N with i
cooperators, the average fitness of cooperators and defectors is given by:

fC(i) = 1 − w +
w

N − 1
((i − 1)b − (N − 1)c) (8a)

fD(i) = 1 − w +
w

N − 1
ib. (8b)

Note that for the Moran process fC(i), fD(i) > 0 must always hold in order to
translate fitness into probabilities of reproduction but this is easily achieved
by limiting the maximum selection strength. The replicator equation does not
impose similar constraints because the fitness denotes the rate of reproduction
relative to the population average.



EVOLUTIONARY DYNAMICS 17

Based on Eq. (8) the transition probabilities T+,T− for a change to i + 1
or i − 1 cooperators can be derived in analogy to Sect. 1.2. However, solving
the recursive equation in order to determine the fixation probability ρC of
a single cooperator in a population of defectors is a bit more challenging
(Nowak et al., 2004; Karlin and Taylor, 1975):

ρC = 1
/ 1 + N−1∑

k=1

k∏
i=1

fD(i)
fC(i)

 . (9)

In the weak selection limit, w→ 0, Eq. (9) simplifies to

ρC =
1
N
−

w
2N

(b + (N − 1)c) + o(w2) <
1
N
. (10)

and hence evolution never favors cooperation – cooperators are doomed just
as in infinite populations.

3.2. SNOWDRIFT GAME

The anecdotal story behind the snowdrift game involves two drivers on their
way home caught in a blizzard and trapped on either side of a snowdrift
(Sugden, 1986). Each driver has the option to remove the snowdrift and start
shoveling or to remain in the cozy warmth of the car. If both cooperate and
shovel, they both receive the benefit b of getting home while sharing the
labour costs c (b > c) but if only one shovels both still get home but the
cooperator has to do all the work. If no one shovels neither gets anywhere
and they have to wait for spring to melt the snowdrift or at least for the rescue
team. In contrast to the prisoner’s dilemma, the best strategy now depends
on the co-player’s decision: if the other driver shovels it is best to be lazy
but when facing a lazy bum it is better to swallow the bitter pill and to start
shoveling instead of remaining stuck in the snow.

The payoff matrix of the snowdrift game is given by

C D
C

D

 b − c
2 b − c

b 0

 . (11)

The snowdrift game has the same characteristics as the game of Chicken or
the Hawk-Dove game (Maynard Smith, 1982) but these games are usually
framed in terms of competitive interactions. Note that for 2b > c > b the
snowdrift game turns into a prisoner’s dilemma. For even higher costs, c > 2b
mutual defection becomes the mutually preferred outcome.

In infinite populations with a fraction x cooperators the evolutionary dy-
namics is again determined by the replicator equation (7) with fC = b −
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c(1 − x/2) and fD = xb. In contrast to the prisoner’s dilemma, x∗ = 0 is now
unstable and an interior fixed point exists with fC = fD for x∗ = 1 − r and
r = c/(2b − c). Thus, in the snowdrift game cooperators and defectors can
co-exist at some equilibrium frequency, which is determined by the costs and
benefits of the game. This originates in the fact that in the snowdrift game
it is always better to adopt a strategy that differs from the co-player. As a
consequence fC > fD holds if cooperators are rare (x→ 0) but fC < fD if co-
operators abound and defectors are rare (x→ 1). Note that at the equilibrium,
the population as a whole is worse off than if everybody would cooperate
( f̄ = (1 − r)2(b − c/2) < b − c/2) – this is the hallmark of social dilemmas
and another instance of myopic optimization.

In finite populations we could proceed as before and determine the fix-
ation probability of a single cooperator in a defector population. However,
because cooperators and defectors can co-exist, the fixation probability may
no longer be a relevant quantity to characterize the dynamics of this system.
In fact, co-existence easily leads to exceedingly long fixation times and so sit-
uations are possible where fixation of cooperation is highly likely but requires
eons to happen. Thus, with the exception of extremely small populations,
equilibrium properties seem more relevant to characterize the snowdrift game
in infinite as well as in finite populations.

3.3. SPATIAL GAMES

In the prisoner’s dilemma cooperators are doomed in the absence of sup-
porting mechanisms. Over the last decades several mechanisms have been
proposed that are capable of establishing and maintaining cooperation among
unrelated individuals. The different mechanisms essentially fall into four cat-
egories: (i) conditional behavioral rules under direct or indirect reciprocity
(Trivers, 1971; Nowak and Sigmund, 1998); (ii) extensions of the strategy
space by allowing for punishment or voluntary participation (Clutton-Brock
and Parker, 1995; Hauert et al., 2002; Hauert et al., 2007); (iii) feedback
between ecological and evolutionary dynamics (Hauert et al., 2006a; Hauert
et al., 2006b); or (iv) by introducing population structures (Nowak and May,
1992; Hauert and Doebeli, 2004; Ohtsuki et al., 2006).

In this section we consider the last case and return to structured popu-
lations where individuals occupy nodes on a graph (c.f. Sect. 2) such that
individuals no longer interact with all members of the population. The links
of the graph define the neighborhood of all individuals and their fitness is
based on interactions within this local neighborhood. As before, we are inter-
ested in how population structure affects the evolutionary dynamics and the
fate of cooperators and defectors, in particular. Unfortunately, this is a hard
problem and is analytically intractable in general because the fitness of each
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individual depends on the local configuration of its neighborhood. In fact, to
fully understand the evolutionary dynamics in structured populations can be
even challenging for computer simulations. Despite these bleak perspectives,
there are interesting and relevant exceptions that reveal new insights into the
interplay of cooperation and spatial structure.

Among the most important results ranks the finding that spatial structure
supports cooperation in the prisoner’s dilemma (Nowak and May, 1992). In
the spatial prisoner’s dilemma a cooperator provides a benefit b to all of its k
neighbors at a cost kc to itself. Defectors do not provide benefits and pay no
costs. Thus, a cooperator with k neighbors and i cooperators among them has
an average fitness of f i

C = 1 − w + w(ib − kc)/k and a defector in the same
position achieves f i

D = 1 − w + wib/k where w specifies the selection pres-
sure on the performance in the prisoner’s dilemma (c.f. Eq. (8)). Structured
populations enable cooperators to thrive by forming clusters and thereby they
more often interact with other cooperators and, at the same time, they reduce
exploitation by defectors. However, this clustering advantage is limited and
requires sufficiently small cost-to-benefit ratios c/b.

There are two fundamentally different approaches to investigate effects of
space on cooperation: first we consider finite populations of size N and deter-
mine the conditions under which spatial structure promotes the evolution of
cooperation such that a single cooperator in a defector population has a higher
fixation probability than a neutral mutant, ρC > 1/N. In the next section a
surprisingly simple and general rule is derived in the limit of weak selection,
w → 0, based on pair approximation (Matsuda et al., 1992; van Baalen and
Rand, 1998). In Sect. 3.5 we turn to equilibrium properties in situations where
cooperators and defectors co-exist for long times. In particular, it turns out
that space affects cooperation rather differently in the prisoner’s dilemma and
the snowdrift game.

3.4. THE B > C · K-RULE

In order to derive the fixation probability of a single cooperator ρC , the evo-
lutionary dynamics of cooperators and defectors on a graph can again be
modeled by the Moran process where the fitness of each individual depends
on interactions with all other individuals in its neighborhood (Ohtsuki et al.,
2006). A sample graph with prisoner’s dilemma fitness values is shown in
Fig. 8a. The original Moran process is formulated as a death-birth process
(see Sect. 1.2): an individual is selected for reproduction with a probability
proportional to its fitness and its offspring replaces a random member of the
population (on graphs a random neighbor is replaced). However, the sequence
of events could be easily reversed such that first a random member of the pop-
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Figure 8. Games on graphs – cooperators (orange) and (defectors) compete on a regular
graph where each node has k = 3 neighbors. a local interactions – for the prisoner’s dilemma,
each node is marked with the fitness contribution arising from interactions with the three
neighbors. b birth-death updating – the bordered cooperator was selected for reproduction
and its offspring will replace one of its three neighbors. Based on their fitness, neighbors
compete for reproduction but this puts cooperators at a disadvantage because they supported
their defecting competitors by providing them with a benefit b (dashed arrows). c death-birth
updating – the bordered node became vacant and its neighbors compete to repopulate the node
based on their fitness. In this case cooperators are better off because less or no support goes to
the defecting competitors (dashed arrows).

ulation is removed and then the remaining individuals compete to repopulate
the vacant site (on graphs only the neighbors of the vacant site compete).
In unstructured populations or if fitness is fixed, changing the sequence of
events manifests itself in only marginal changes of the results. However, in
the current setup it turns out to be of crucial importance. In fact, for the birth-
death process structured populations are unable to promote cooperation and
ρC < 1/N always holds (Ohtsuki et al., 2006). The intuitive reason is that
neighboring individuals compete for reproduction, which means that cooper-
ators actually support their defecting competitors (see Fig. 8b). In contrast,
for the death-birth process the disadvantage of cooperators is reduced be-
cause the individuals competing to repopulate the vacant site are typically
not neighbors (even though they can be) and thus cooperators rarely feed
their competitors (see Fig. 8c). Indeed, we shall see that for the death-birth
process, evolution can favor cooperation if b > c k holds.
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3.4.1. Pair Approximation
Analytical approximations of the fixation probability ρC are based on pair
approximation, which requires regular or homogeneous graphs. On homoge-
neous graphs each individual has the same number of neighbors k, all links
are undirected and have identical weights. Thus, the graph looks the same
when viewed from any one node. This holds for any lattice (see Fig. 3 for a
square lattice) as well as for less uniform structures such as random regular
graphs (Bollobás, 1995) – an example with k = 3 is shown in Fig. 8a.

In unstructured populations the evolutionary change is described by the
change in the number or frequency of cooperators (see Sect. 3.1). In struc-
tured populations this is insufficient because it neglects local correlations but
it is possible to track nearest neighbor correlations using pair approximation
(Matsuda et al., 1992; van Baalen and Rand, 1998). For homogeneous graphs,
the pair configuration probability or the frequency of a strategy pair pss′ in-
dicates the chance that when randomly picking an individual and one of its
neighbors that the individual has strategy s and the neighbor s′. For our pur-
poses s, s′ are either cooperation c or defection d. ps is simply the frequency
of strategy s with ps= psc+psd and because pc+pd=1 it follows that pcd= pdc.
Configuration probabilities of arbitrarily large clusters are approximated by
pair configuration probabilities. For example, the probability of the three-
cluster s, s′, s′′ is given by pss′s′′ = pss′ · ps′s′′/ps′ where the denominator
corrects for the fact that both, pss′ and ps′s′′ include the probability for s′.
Note that this approximation applies to tree graphs (or Bethe lattices) but
neglects loops which are particularly important on lattices. Note that pair
approximation cannot distinguish any graphs with the same k. Since random
regular graphs are locally similar to trees (Bollobás, 1995), predictions based
on pair approximation are expected to be better for random regular graphs
than for lattices.

The spatial dynamics can thus be approximated by four variables pcc,
pcd, pdc and pdd but because they must add up to 1 and because of pcd = pdc
this only requires two dynamical equations. The most interesting quantities
are the overall fraction of cooperators pc = pcc + pcd as well as the lo-
cal affinity of cooperators, i.e. the conditional probability that the neighbor
of a cooperator is another cooperator qc|c = pcc/pc. In the following the
dynamics is expressed in terms of these two quantities but to keep the for-
mulas simple, another local quantity is sometimes used: qc|d = pcd/pd =

(1− pc(2− qc|c))/(1− pc), i.e. the conditional probability that the neighbor of
a defector is a cooperator.
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3.4.2. Dynamical equations
The change in pc and qc|c is determined by the evolutionary dynamics and in
this case the Moran process. Thus we need to determine the probability that
a cooperator is replaced by a defector (or vice versa) as well as the effects
of such a replacement on pc and qc|c. In the death-birth process, if a defector
was eliminated, the neighborhood of the vacant site consist of kc cooperators
with probability (

k
kc

)
qkc

c|d(1 − qc|d)k−kc . (12)

The neighboring cooperators and defectors have an average fitness of

fc = 1 − w + w
(
(k − 1)qc|c b − k c

)
(13a)

fd = 1 − w + w
(
(k − 1)qc|d b

)
. (13b)

Note that each neighbor had at least one defector (the now vacant site) in its
own neighborhood. Thus, the probability that the offspring of a cooperator
succeeds in repopulating the vacant site becomes

kc fc
kc fc + (k − kc) fd

. (14)

If the defector is replaced by a cooperator, this increments pc by 1/N and qc|c
by 2kc/(kN). The total increments are given by the sum over all kc = 0, . . . , k.
Decrements in pc and qc|c arise from replacing a cooperator by a defector
and are given by an analogous calculation. After some algebra we obtain the
leading terms in w of the dynamical equations:

ṗc = w ·
k − 1
kN

pc(1 − qc|c)(1 + qc|c − qc|d) ×(
b(k − 1)(qc|c − qc|d) − c k

)
+ O(w2) (15a)

q̇c|c =
2

kN
(1 − qc|c)

[
1 − (k − 1)(qc|c − qc|d)

]
+ O(w). (15b)

Detailed derivations are provided in Ohtsuki et al. (2006). Eq. (15) cannot
be solved analytically in general but in the weak selection limit, w → 0, a
natural separation of time scales occurs where qc|c equilibrates much more
quickly than pc and thus the dynamical system rapidly converges to the slow
manifold defined by q̇c|c = 0, or more explicitly by qc|c − qc|d = 1/(k − 1).
This yields

qc|c = pc +
1

k − 1
(1 − pc) (16)
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Figure 9. Fixation probability ρC of a single cooperator on different types of graphs of size
N = 100 as a function of the benefit to cost ratio b/c. The dotted horizontal line marks the
fixation probability of a neutral mutant (1/N = 0.01) and the arrows indicate the predictions by
the b > c k-rule. a regular lattices: Deviations increase for larger k because pair approximation
is based on the assumption that N � k holds. On top, a sample lattice with k = 4 is shown.
b scale-free networks: good predictions are obtained even for highly inhomogeneous graphs
that violate the assumptions of pair approximation. The networks are generated according to
preferential attachment (Albert and Barabási, 2002) and a sample network with an average
connectivity of 〈k〉 = 4 is shown on the top.

and, upon neglecting higher order terms in w, the dynamics on the slow
manifold becomes

ṗc = w ·
k − 2

(k − 1)N
pc(1 − pc)(b − c k) (17)

Thus, in the weak selection limit, the fraction of cooperators increases pro-
vided that b > c k holds. In order to derive the fixation probability ρC we
assume that Eq. (16) always holds. This allows to consider a diffusion process
of the random variable pc on the slow manifold. Determining the drift and
variance of the diffusion process leads to a backward Kolmogorov differential
equation for the fixation probability of a single mutant with the solution

ρc =
1
N
+ w

N − 1
2N

(b − k c). (18)

It follows that ρC >1/N holds if and only if b >c k. This result is confirmed by
extensive numerical simulations on various kinds of graphs (see Fig. 9). The
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simulations clearly show that the condition b > c k is an excellent predictor
but tends to be slightly optimistic. Moreover, b > c k is a surprisingly robust
rule and returns suitable predictions even for highly inhomogeneous graphs
such as scale-free networks (Albert and Barabási, 2002) but not surprisingly
the deviations tend to increase (see Fig. 9b).

In principle, the pair approximation method can be applied to any kind
of game (arbitrary payoff matrices) and is not limited to the notion chosen
here (Ohtsuki et al., 2006). However, if the analysis is restricted to costs and
benefits of cooperation in the prisoner’s dilemma, the Taylor et al. (2007)
have recently shown that in this special case an analysis based on inclusive
fitness theory (Hamilton, 1964) naturally yields finite size corrections arising
in small populations.

3.5. EQUILIBRIA

The b > c k rule derived in the previous section determines the condition
in the weak selection limit for evolution to favor cooperation in the pris-
oner’s dilemma. In principle, an analogous calculation could be carried out
for the snowdrift game but because cooperators and defectors easily co-exist
in such interactions, fixation probabilities become less relevant because of
exceedingly long fixation times (c.f. Sect. 3.2). The same holds in the spatial
prisoner’s dilemma if the selection w is sufficiently strong. Finally, in large
populations the dynamics is dominated by deterministic drift and stochastic
effects that are required for the fixation of one or the other strategic type
becomes less relevant.

In all these cases it is more appropriate to consider large populations and
investigate the effects of space on the equilibrium frequencies of coopera-
tors and defectors in the prisoner’s dilemma as well as the snowdrift game.
In particular, we focus on square lattices where each individual has k = 4
neighbors. For the updating of the population we adopt a spatial analogue of
the replicator dynamics (Hofbauer and Sigmund, 1998): a focal individual is
randomly selected from the entire population and its fitness f f corresponds
to the average performance in interactions with all its neighbors. Second, a
random neighbor of the focal individual is chosen and its fitness fn is deter-
mined in the same way. The focal individual adopts the strategy of a better
performing neighbor with a probability proportional to the fitness difference
z = fn − f f and sticks to its strategy otherwise. The transition probability can
then be written as τ(z) = z+/α, where z+ = z for z > 0 and zero otherwise
and where α indicates a suitable normalization constant to ensure τ(z) ≤ 1. α
depends on the type of interactions: for the prisoner’s dilemma α = w(b + c)
and for the snowdrift game α = wb. Note that τ(z) is independent of the
selection strength w and thus we set w = 1 without loss of generality. This
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particular functional form of τ(z) was chosen because it recovers the repli-
cator Eq. (7) in the limit N, k → ∞. Alternatively, all individuals could be
updated in synchrony to model populations with non-overlapping generations
but for stochastic update rules this barely affects the equilibrium frequencies
(Doebeli and Hauert, 2005).

Unfortunately it is impossible to solve the evolutionary dynamics of this
system and we have to resort to simulation data. However, pair approximation
provides again a welcome analytical complement and yields useful numerical
estimates. Essentially by following the reasoning in the previous section and
taking the different updating procedure into account, some algebra leads to
the following dynamical equations:

ṗc = k pk−1
c

k−1∑
i=0

(
k − 1

i

)
qi

c|d(1 − qc|d)k−1−i
k−1∑
j=0

q j
c|c(1 − qc|c)k−1−i ×

(
τ( f i+1

d − f j
c ) − τ( f j

c − f i+1
d )

)
(19a)

q̇c|c = pk−2
c

k−1∑
i=0

(
k − 1

i

)
qi

c|d(1 − qc|d)k−1−i
k−1∑
j=0

q j
c|c(1 − qc|c)k−1−i ×

(
(2(i+1) − k qc|c)τ( f i+1

d − f j
c ) − (2 j − k qc|c)τ( f j

c − f i+1
d )

)
(19b)

where f i
c, f i

d denote the fitness of cooperators and defectors that have i cooper-
ators among their k neighbors. Also recall that qc|d = (1−pc(2−qc|c))/(1−pc).
Note that the sums run only up to k − 1 because each focal cooperator must
have at least one defecting neighbor and vice versa – only in these cases
changes in pc and qc|c can occur. Technical details on Eq. (19) are provided
in Hauert and Doebeli (2004) and Hauert and Szabó (2005).

As mentioned earlier, in the prisoner’s dilemma spatial structure sup-
ports cooperation (see Fig. 10). For sufficiently low cost to benefit ratios
of mutual cooperation r = c/(b − c) cooperators and defectors co-exist in
a dynamical equilibrium. Cooperators persist by forming compact clusters
such that they are more likely to interact with other cooperators and thereby
reduce exploitation by defectors. However, the clustering advantage is limited
and cooperators go extinct if the benefits do not exceed the 14-fold costs.
Qualitatively these results also hold for updating mechanisms based on the
Moran process with marginal changes for birth-death updating and enhanced
support of cooperation for death-birth updating (Hauert, 2006). Note that for
the update rule inspired by the replicator dynamics ρC < 1/N always holds,
which suggests that evolution should never favor cooperation. This is no con-
tradiction because although cooperators may never manage to reach fixation,
they can nevertheless co-exist with defectors for arbitrarily long times.
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Figure 10. Spatial prisoner’s dilemma on a square 100 × 100 lattice with von Neumann
neighborhood, k = 4. a Simulated equilibrium fraction of cooperators (solid squares) as a
function of the cost-to-benefit ratio of mutual cooperation r = c/(b−c). For small r cooperators
persist but disappear for r > rc ≈ 0.076. In unstructured populations, cooperators could never
survive (dotted line). Pair approximation correctly predicts the increase in cooperation due to
spatial structure but it greatly overestimates its effect (pc, solid line; qc|c, dashed line). The
consistently high values of qc|c indicates high degrees of clustering. b Snapshot of a typical
lattice configuration near the extinction threshold rc.

Near the extinction threshold small clusters of cooperators slowly mean-
der in a sea of defectors. Occasionally two clusters collide and merge or one
cluster splits into two. This resembles a branching and annihilating random
walk (see Fig. 10b) and, indeed, as r approaches the extinction threshold
rc, the simulation data suggests that the system undergoes a critical phase
transition that belongs to the directed percolation universality class (Szabó
and Hauert, 2002b; Szabó and Hauert, 2002a).

Based on these results for the prisoner’s dilemma, it was generally ac-
cepted that spatial structure promotes cooperation. However, this is not true in
general for the snowdrift game. Quite on the contrary, spatial structure often
inhibits the evolution of cooperation and may even eliminate cooperation al-
together (see Fig. 11). In unstructured populations cooperators and defectors
co-exist in a stable equilibrium because the rare type is always favored but the
very same mechanism turns out to be detrimental to cooperation in spatial
settings. For every individual it is always better to adopt a strategy that is
different from its neighbors and this prevents the formation of larger clus-
ters. Instead, cooperators form dendritic structures and filament-like clusters
that increase interactions between cooperators and defectors (see Fig. 11b).
In order to estimate the extinction threshold of cooperators we consider the
threshold where the fitness of an isolated cooperator drops below the fitness of
the neighboring defectors: k(b−c) < b, which translates to r > (k−1)/(k+1).
For k = 4 this yields a threshold of 0.6, which slightly underestimates the
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Figure 11. Spatial snowdrift game on a square 100 × 100 lattice with von Neumann neigh-
borhood, k = 4. a Simulated equilibrium fraction of cooperators (solid squares) as a function
of the cost-to-benefit ratio of mutual cooperation r = c/(2b − c). In unstructured populations
cooperators and defectors co-exist (dotted line). With the exception of small r, spatial structure
inhibits cooperation and for r > rc ≈ 0.68 space even eliminates cooperation altogether. The
overall trend to inhibit cooperation is correctly predicted by pair approximation (pc, solid
line; qc|c, dashed line) but it is unable to capture the extinction of cooperators and defectors
respectively. b Snapshot of a typical lattice configuration near the extinction threshold rc.

extinction threshold derived from simulations with rc ≈ 0.68 (see Fig. 11a).
For updating mechanisms based on the Moran process the detrimental effects
of space are weaker and almost disappear for death-birth updating (Hauert,
2006).

4. The Origin of Cooperators and Defectors

In nature cooperation may not always be an all or nothing decision as we
have assumed in the previous section by considering the evolutionary fate
of two distinct strategic types, the cooperators and the defectors. Instead, in
many situations it may be more appropriate to assume a continuous range of
degrees of cooperation, such as time and effort expended in providing benefits
to specific individuals or for the common good. In such continuous games the
strategy or trait x of an individual indicates the effort or investment in coop-
erative interactions that can vary between zero and an upper limit xmax. The
associated fitness benefits and costs are specified by two functions B(x) and
C(x). We assume that B(x),C(x) are smooth and strictly increasing functions
in the interval [0, xmax], with B(0) = C(0) = 0 such that zero investments into
cooperation (or pure defection) incur no costs and provide no benefits.

In the traditional prisoner’s dilemma, cooperators provide a benefit b to
their partner at some cost c to themselves. Translating this setup to continuous
strategies yields the payoff to an x-strategist interacting with a y-strategist:
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Q(x, y) = B(y) − C(x). The benefits are determined by the opponents strat-
egy whereas the costs depend on the individuals own strategy. This situa-
tion applies, for example, in grooming baboons (Saunders and Hausfater,
1988; Stammbach and Kummer, 1982) where one individual grooms the other
for a time x and vice versa for a time y. In this case, the only way for
an individual to improve its payoff is to reduce the costs and reduce the
grooming time x. Consequentially, evolution selects lower investors and x
readily approaches zero (Killingback and Doebeli, 2002). Cooperation disap-
pears and defectors reign in both the traditional (c.f. Sect. 3.1) as well as the
continuous prisoner’s dilemma. The baboons avoid this unfortunate outcome
because they ensure their partner’s fidelity by taking turns in a single groom-
ing session. However, our simple setup excludes such strategic responses and
nothing prevents cooperation from disappearing. Moreover, complex behav-
ioral patterns are only available to higher organisms and certainly do not
occur in microorganisms.

In the traditional snowdrift game, cooperators also provide a benefit b to
their partner but the costs c are shared among cooperators. Equivalently, we
could assume that costs are fixed and benefits accumulate at a discounted rate
γ < 1 (Hauert et al., 2006c), such that mutual cooperation yields b(1 + γ) − c
and the other payoffs remain unchanged (c.f. Eq. (11)). Such situations seem
to apply in yeast cells that secrete enzymes in order to hydrolyze sucrose
(Greig and Travisano, 2004). If only one cell produces the enzyme the result-
ing food resource may be critical for survival, whereas the value of additional
food is discounted because the cells get saturated. Thus, if food is scarce it
may be better to invest more into enzyme production and prevent starvation
despite the prospects of being exploited. Conversely, if food is abundant an in-
dividual may improve its fitness by lowering enzyme production and increase
reproduction. Thus, the payoff to an x-strategist interacting with a y-strategist
becomes P(x, y) = B(x + y) − C(x). As before, the costs are determined by
the individuals own strategy but the benefits depend on the strategies of both
players. In this case one could expect that strategies would evolve away from
zero to an intermediate level provided that B(x) > C(x) holds for small x.
However, as we shall see, the continuous snowdrift game exhibits much richer
evolutionary dynamics (Doebeli et al., 2004).

The continuous snowdrift game potentially applies whenever individuals
produce a valuable common resource at some cost to themselves (Doebeli
and Hauert, 2005), which describes a particular but abundant form of social
dilemmas. Numerous examples can be found in the microbial world ranging
from viruses where replication enzymes represent a common resorce (Huang
and Baltimore, 1977), and RNA phages producing proteins for the virus cap-
sule (Turner and Chao, 2003), to antibiotic resistance in bacteria secreting
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β-lactamase to inhibit cell wall synthesis (Neu, 1992) and the formation of
fruiting bodies in Myxococcus xanthus (Velicer et al., 2000). Examples from
higher organisms include sentinel behavior in meerkats (Clutton-Brock et al.,
1999) and predator inspection in fish (Milinski, 1987; Pitcher, 1992), where
the information that the inspectors obtain can be viewed as a public resource
(Magurran and Higham, 1988), to cultural evolution in humans with inter-
actions from communal enterprises to global sustainability issues (Milinski
et al., 2006).

4.1. ADAPTIVE DYNAMICS

In the continuous snowdrift game the evolution of the trait x can be ana-
lyzed using the framework of adaptive dynamics (Dieckmann and Law, 1996;
Geritz et al., 1998; Metz et al., 1996). Assume a homogeneous monomorphic
population of x-strategists and determine whether a rare mutant with strat-
egy y can invade. The fitness of the y strategy is simply given by P(y, x)
because at least as long as y-strategists are rare, interactions with other y-
strategists, P(y, y), can be neglected. From replicator dynamics it follows
that y-strategists increase in abundance if their fitness exceeds the fitness
of the resident, P(x, x). Thus, the growth rate of the y-strategist is given
by fx(y) = P(y, x) − P(x, x) = B(x + y) − C(y) − (B(2x) − C(x)) and is
called the invasion fitness because if fx(y) > 0 the y mutant invades and
disappears if fx(y) < 0. In the limit of small mutations where y is very
similar to x, it can be proven that if fx(y) > 0 holds, the y-strategist not only
invades but also replaces the resident population (Geritz et al., 1998). The
occasional appearance of a rare mutant drives the evolutionary process but
mutation rates must be small such that between subsequent invasion attempts
the population has sufficient time to relax into a homogeneous state. Under
these conditions, the evolution of the trait x is governed by the selection
gradient D(x) = ∂ fx/∂y|y=x = B′(2x) − C′(x) and the adaptive dynamics
of x is described by ẋ = mD(x) where m depends on the population size and
reflects the mutational process supplying new mutant strategies. For constant
population sizes m is simply a constant and is set to m = 1 without loss of
generality. If D(x) > 0 mutants with y > x can invade and the resident trait
increases over time. Conversely, if D(x) < 0 mutants with y < x invade and
the resident trait decreases.

Equilibrium points of the adaptive dynamics, ẋ = 0, are called singu-
lar strategies x∗ and are solutions to D(x∗) = B′(2x∗) − C′(x∗) = 0. If no
such solution exists in the interval (0, xmax), then trait values either decrease
until cooperative contributions vanish (D(x) < 0) or keep increasing until
xmax is reached (D(x) > 0). Both situations can occur in the continuous
snowdrift game (see Fig. 12): the first case is dynamically equivalent to the
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Figure 12. Dynamics in the continuous snowdrift game in the absence of singular strate-
gies. The top row depicts simulation results for the trait distribution in the population over
time, where darker shades indicate higher abundance of traits, and the bottom row provides a
schematic illustration of the fitness profile in the population. The trait interval is restricted to
[0, 1] and the benefit and cost functions are quadratic, B(x) = b2 x2 + b1 x, C(x) = c2 x2 + c1 x,
such that C(x), B(x) are saturating and strictly increasing in [0, 1]. a The selection gradient
is always negative, D(x) < 0, and irrespective of the initial configuration evolution keeps
favoring individuals that invest less into cooperation until cooperation vanishes, just as in the
continuous prisoner’s dilemma. The qualitative features of the invasion fitness fx(y) do not
change as x changes over time. b This is the exact opposite of a: D(x) > 0 always holds and
the traits in the population invariably approach the maximum level of cooperation. Parameters:
b2 = −1.5, b1 = 7, c2 = −1 and a c1 = 8; b c1 = 2.

continuous prisoner’s dilemma whereas in the second case full cooperation
is established and is sometimes termed by-product mutualism because in-
creasing cooperation yields a net benefit to the actor and benefits to others
occur only as a side effect (Connor, 1996; Dugatkin, 1996; Milinski, 1996).
The dynamics becomes more interesting if x∗ exists. The singular strategy
is convergent stable and hence an attractor of the evolutionary dynamics if
dD(x)/dx|x=x∗ < 0 and is an evolutionary repellor if this inequality is re-
versed, i.e. the trait x evolves away from x∗ (see Fig. 13c). If x∗ is an attractor,
the traits in the population converge to x∗ but the subsequent evolutionary
fate of the population depends on whether x∗ is also evolutionarily stable, i.e.
whether x∗ denotes a maximum or minimum of the invasion fitness fx(y). If
∂2 fx(y)/∂y2|y=x∗ = 2B′′(2x∗) − C′′(x∗) < 0 then x∗ represents a fitness max-
imum and thus represents an evolutionary end state where every individual
provides equal intermediate cooperative contributions and corresponds to the
original expectation (see Fig. 13b). If, however, 2B′′(2x∗) − C′′(x∗) > 0 then
a population of x∗-strategists is at a fitness minimum and mutants with either



EVOLUTIONARY DYNAMICS 31

0 0.2 0.4 0.6 0.8 1.0
0

5!103

1!104

1.5!104

0 0.2 0.4 0.6 0.8 1.0
0

1!104

2!104

3!104

4!104

0 0.2 0.4 0.6 0.8 1.0
0

1!104

2!104

3!104

4!104

trait trait trait

c

ge
ne
ra
tio
ns

trait x

trait x

selection

x* 

(i)

(ii)

selection

invasion fitness fx(y)

trait x

trait x

invasion fitness fx(y)

selection

x* 

(i)

(ii) trait x

trait x

selection

x* 

(i)

(ii)

selection

invasion fitness fx(y)

ba

Figure 13. Dynamics in the continuous snowdrift game in presence of a unique singular strat-
egy x∗. The top row depicts simulation results for the trait distribution in the population over
time, where darker shades indicate higher abundance of traits, and the bottom row provides a
schematic illustration of the fitness profile in the population. x∗ is marked by a vertical dashed
line. As in Fig. 12, the trait interval is [0, 1] and the benefit and cost functions are quadratic,
saturating and strictly increasing in [0, 1]. a evolutionary branching – the singular strategy is
convergent stable and the trait distribution approaches x∗ but it is not evolutionarily stable and
the population branches into two distinct phenotypic clusters. Evolution selects individuals
with higher fitness (bottom panel (i)) but this also changes the profile of the invasion fitness
fx(y) such that the fitness minimum catches up at x∗ (bottom panel (ii)) such that mutants with
both higher and lower y can invade. b evolutionary stability – the singular strategy is not only
convergent stable but also evolutionarily stable such that the trait distribution approaches x∗

and remains there. As the population converges to x∗ (bottom panel (i)) the profile of fx(y)
changes and at x∗ the trait catches up with the maximum of fx(y) (bottom panel (ii)) and
no mutants are able to invade. c evolutionary repellor – the singular strategy is an evolu-
tionary repellor such that the traits evolve away from x∗. Two separate simulation runs are
shown: when starting below x∗ cooperation disappears but if initial cooperative contributions
are sufficiently high they keep increasing until the maximum is reached. In this case it is
irrelevant whether x∗ is evolutionarily stable (bottom panel (i)) or an evolutionary branching
point (bottom panel (ii)) because evolution never reaches x∗ and would require careful prepa-
rations of the initial configuration. Parameters: a b2 = −1.4, b1 = 6, c2 = −1.6, c1 = 4.56; b
b2 = −1.5, b1 = 7, c2 = −1, c1 = 4.6; c b2 = −0.5, b1 = 3.4, c2 = −1.5, c1 = 4.

higher or lower traits y can invade. In this case the population undergoes
evolutionary branching and spontaneously splits into two distinct phenotypic
clusters of high and low investing individuals (see Fig. 13a).

For quadratic benefit and cost functions B(x) = b2x2+b1x, C(x) = c2x2+

c1x with suitable parameters, such that both benefits and costs are strictly
increasing over the trait interval [0, xmax], all dynamical scenarios occur (see
Figs. 12, 13 ) and can be fully analyzed (Doebeli et al., 2004). In this case,
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the singular strategy x∗ is unique (if it exists) and is given by x∗ = (c1 −

b1)/(4b2−2c2). It is convergent stable if 2b2−c2 < 0 and evolutionarily stable
if b2 − c2 < 0. The existence of x∗ requires either (i) 4b2 − 2c2 > c1 − b1 > 0
or (ii) 4b2 − 2c2 < c1 − b1 < 0. In the first case x∗ is always a repellor and
whether it is evolutionarily stable is irrelevant because the singular strategy is
never reached from generic initial conditions. In the second case x∗ is always
convergent stable and if, in addition, b2−c2 < 0 holds it is also evolutionarily
stable. Finally, if 2b2 < c2 < b2 < 0 then x∗ is an evolutionary branching
point. In order to analyze the dynamics after branching has occurred, the
invasion fitness needs to be derived for a third strategic type z attempting to
invade a resident population where the two co-existing strategies x > x∗ >
y are in equilibrium. This leads to two dynamical equations one for each
branch x and y (Doebeli et al., 2004). In the case of quadratic cost and benefit
functions the traits keep diverging until they reach the boundaries of the trait
interval because mutants with either z > x or z < y can invade.

Note that the phenotypic diversification occurs spontaneously and in pop-
ulations with randomly interacting individuals and thus does not rely on any
kind of assortment in terms of mating preferences or spatial segregation. The
evolutionary end state consist of a population with pure defectors and pure
cooperators that, in fact, engage in traditional snowdrift game interactions
(c.f. Sect. 3.2). Thus, the continuous snowdrift game suggest an evolution-
ary pathway for social diversification and for the origin of cooperators and
defectors.

4.2. TWO TRAGEDIES

The conflict of interest in social dilemmas is equivalently captured by the
Tragedy of the Commons (Hardin, 1968), which states that public resources
are bound to be overexploited. Especially in the context of humans, this
comes at no surprise – Aristotle (384-322 BC) already drew the same con-
clusion: ”That which is common to the greatest number has the least care
bestowed upon it.” The spontaneous diversification into co-existing high and
low investors in the continuous snowdrift game may equally apply in com-
munal enterprises in humans and generate, in addition, the Tragedy of the
Commune (Doebeli et al., 2004), which states that evolution may not favor
egalitarian contributions to the common good but instead promote highly
asymmetric involvements. But, large differences in cooperative contributions
bear a formidable potential for escalating conflicts based on the accepted
notion of fairness.
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5. Conclusions

This brief review discusses different approaches to model evolutionary dy-
namics and address the problem of cooperation. Despite the simple princi-
ples underlying evolutionary models, they often exhibit rich, complex and
sometimes even chaotic but always truly fascinating dynamics. Because of
this, it can be quite challenging to develop an intuitive understanding of
the dynamical features. In order to achieve this intuition it is very helpful
to study characteristics of spatio-temporal patterns or to follow the evolu-
tionary change of strategy distributions in a population. This is achieved by
the VirtualLabs (Hauert, 2007), which complement the research results pre-
sented in this review. The growing collection of interactive on-line tutorials
comprises at least one tutorial for each section covered in this review. Based
on Java applets, most of the results reported here can be easily reproduced
and further explorations are encouraged by the possibility to change various
settings. But it is also possible to simply watch and enjoy the hypnotizing
beauty of evolutionary kaleidoscopes – find out what they are by visiting the
VirtualLabs.
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Geritz, S. A. H., Kisdi, E., Meszéna, G., and Metz, J. A. J. (1998) Evolutionarily singular

strategies and the adaptive growth and branching of the evolutionary tree, Evol. Ecol. 12,
35–57.

Greig, D. and Travisano, M. (2004) The Prisoner’s Dilemma and polymorphism in yeast SUC
genes, Biol. Lett. 271, S25 – S26.

Hamilton, W. D. (1964) The genetical evolution of social behaviour I, J. theor. Biol. 7, 1–16.
Hamilton, W. D. (1971) The Geometry of the Selfish Herd, J. theor. Biol. 31, 295–311.
Hardin, G. (1968) The tragedy of the commons, Science 162, 1243–1248.
Hauert, C. (2006) Spatial effects in social dilemmas, J. theor. Biol. 240, 627–636.
Hauert, C. (2007) VirtualLabs: Interactive Tutorials on Evolutionary Game Theory,

http://www.univie.ac.at/virtuallabs.
Hauert, C., De Monte, S., Hofbauer, J., and Sigmund, K. (2002) Volunteering as red queen

mechanism for cooperation in public goods games, Science 296, 1129–1132.
Hauert, C. and Doebeli, M. (2004) Spatial structure often inhibits the evolution of cooperation

in the Snowdrift game, Nature 428, 643–646.
Hauert, C., Holmes, M., and Doebeli, M. (2006)a Evolutionary games and population dy-

namics: maintenance of cooperation in public goods games, Proc. R. Soc. Lond. B 273,
2565–2570.

Hauert, C., Holmes, M., and Doebeli, M. (2006)b Evolutionary games and population dy-
namics: maintenance of cooperation in public goods games, Proc. R. Soc. Lond. B 273,
3131–3132.

Hauert, C., Michor, F., Nowak, M., and Doebeli, M. (2006)c Synergy and discounting of
cooperation in social dilemmas, J. theor. Biol. 239, 195–202.
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