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Social evolution in structured populations
F. Débarre1,w, C. Hauert2 & M. Doebeli1,2

Understanding the evolution of social behaviours such as altruism and spite is a long-standing

problem that has generated thousands of articles and heated debates. Previous theoretical

studies showed that whether altruism and spite evolve may be contingent on seemingly

artificial model features, such as which rule is chosen to update the population (for example,

birth–death or death–birth), and whether the benefits and costs of sociality affect fecundity or

survival. Here we unify these features in a single comprehensive framework. We derive a

general condition for social behaviour to be favoured over non-social behaviour, which is

applicable in a large class of models for structured populations of fixed size. We recover

previous results as special cases, and we are able to evaluate the relative effects of benefits

and costs of social interactions on fecundity and survival. Our results highlight the crucial

importance of identifying the relative scale at which competition occurs.

DOI: 10.1038/ncomms4409

1 Department of Zoology and Biodiversity Research Centre, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada
V6T 1Z4. 2 Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, British Columbia, Canada V6T 1Z2. w Present
address: Centre for Ecology & Conservation, University of Exeter, Cornwall Campus, Tremough, Penryn TR10 9EZ, UK. Correspondence and requests for
materials should be addressed to F.D. (email: florence.debarre@normalesup.org).

NATURE COMMUNICATIONS | 5:3409 | DOI: 10.1038/ncomms4409 | www.nature.com/naturecommunications 1

& 2014 Macmillan Publishers Limited. All rights reserved.

mailto:florence.debarre@normalesup.org
http://www.nature.com/naturecommunications


W
hy would an individual help or harm others if this
reduces its fitness relative to individuals that do not
exhibit the social behaviour? Because such behaviours

are widespread in nature, numerous theoretical studies have
sought to understand the conditions for the evolution of altruism
or spite. Although different theoretical frameworks and vocabul-
aries coexist, which sometimes generated heated debates between
the proponents of different schools of thought1–3, they all yield
the same kind of conclusions: whether described in terms of
games, or direct and indirect fitness or among and within group
interactions, altruism requires some form of assortment, so that
altruists interact more often with altruists than defectors do4,
while the evolution of spite requires negative assortment5.
Assortment occurs for instance through clustering in spatially
structured (that is, ‘viscous’) populations6, or through conditional
behaviour when there is kin or type recognition7–9. However, the
conditions for the evolution of altruism or spite often depend on
specific and sometimes artificial model assumptions, such as
whether generations are discrete (Wright–Fisher model) or
continuous (Moran10 model)11,12. In the latter case, the
sequence of events within one time step (death followed by
birth, versus birth followed by death) is of crucial importance for
the evolutionary outcome13,14, yet the choice itself seems
arbitrary15. Also, in most previous models, costs and benefits of
altruism or spite (that is, the ‘payoffs’) are assumed to affect the
fecundity of individuals, and costs and benefits for survival have
received much less attention16–18, despite the fact that such
effects are equally plausible and should hence be incorporated in
general models of social evolution.

Here we present a comprehensive modelling framework that
applies to a large class of population structures and not
only unites the various assumptions in a single model, but
identifies the crucial elements which support the evolution of
social behaviour. In structured populations, social behaviour
evolves if, for social individuals, the net social benefit of living
next to other social individuals outweighs the costs of competing
against them. We show that the latter depends on the way
the population is updated, the type of social game that is
played, and on how social interactions affect individual fecundity
and survival.

Results
Dispersal and social structures of the population. We consider a
population of fixed size N whose structure is described by two
graphs: a dispersal graph D and an interaction graph E, where
each node, also called site, corresponds to one individual of the
population. Individuals reproduce clonally, and D determines
dispersal patterns in the population: dij is the fraction of the
offspring produced by the individual at site i that disperse to and
compete to colonize site j (

P
j dij¼ 1). We assume that the

pattern of dispersal is similar for all individuals (technically,
D is transitive, see Supplementary Methods)14,18,19, and is
symmetrical (dij¼ dji), and we denote by dself¼ dii the fraction
of offspring that remain at their parent’s site. Most classical
population structures fall into this category19: metapopulations,
regular lattices, stepping stones, but also groups of groups, and so
on (see Fig. 1). Social interactions are reflected in the second
graph E, in which eij measures the strength of the social
interaction between the individual at i and the individual at j
(scaled so that

P
i eij¼ 1). We denote by eself the average strength

of social interactions with oneself (eself¼
P

ieii/N). Finally, the

structural average ed ¼
P

i

P
i eijdji=N can be interpreted as the

average over all pairs of sites (i, j) of the chance of receiving
benefits (eij) from a site where offspring have been sent (dji), but
also as a measure of the relatedness of an individual to its social

interaction partners, that is, as a measure of assortment. Hence,

four parameters (N, dself, eself, ed) summarize the dispersal and
social structure of the population.

A two-step life-cycle and two payoff matrices. The evolution of
the population is modelled using a Moran process. Each indivi-
dual is either social (S) or non-social (NS). Between two time
steps, exactly one individual dies and one individual reproduces,
so that the size of the population remains N. The identities of the
individuals who die and reproduce depend on the individuals’
fecundity and survival potential, both being affected by social
interactions and by the rules according to which the population is
updated. We consider two classic updating rules13: death–birth
(DB) and birth–death (BD) (these two rules are not restricted to
specific population structures, unlike some others, such as
budding20, that are limited to deme-structured populations). In
both cases, the first step (death in DB, birth in BD) involves
choosing a first individual from all individuals in the population,
while the second step (birth in DB, death in BD) involves only
those individuals that are connected by dispersal to the site
chosen in the first step (dispersal patterns being given by the D
graph). While previous studies only considered effects of social
interactions on one of the two steps, the framework we use here
allows us to consider the general case where costs and benefits of
social interactions can affect both steps, that is, both fecundity
and survival. Since effects on fecundity with a BD updating are
equivalent to effects on survival with a DB updating in the set of
population structures that we consider19, and vice versa, we will
give all our heuristic explanations in terms of a DB updating.

a Lattice b Groups

c d

Figure 1 | Transitive dispersal graphs D. Each duck corresponds to one

individual living on one site. The thickness of a link between sites i and

j is proportional to dij. (a) Lattice: dself¼0; dij¼ 1/k between i and its k

neighbours, and dij¼0 for non neighbours; here k¼ 3. (b) Group-structured

population: dij¼ (1�m)/n (where m is the chance of dispersing out of the

group and n is the size of the groups; here n¼ 3) when i and j belong to the

same group (thick links; the loops represent dself); dij¼m/(N� n) when i

and j belong to different groups (thin links). Our results are not limited to

these two structures and apply to transitive D graphs in general. (c) and (d)

are examples of other transitive dispersal graphs D.
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The fecundity and survival potential of a given individual living
at site i depend on its identity (social or non-social) and on the
identities of the individuals it interacts with. To which extent an
individual at site j interacts with the individual at i is determined
by the eji term of the E graph. The effects of this interaction on
the recipient’s fecundity and survival potential are given by two
general payoff matrices:

A 1½ � ¼
a 1½ � b 1½ �

c 1½ � d 1½ �

 !

for the first step that is; effects on survival with DBð Þ; and

A 2½ � ¼
a 2½ � b 2½ �

c 2½ � d 2½ �

 !

for the second step that is; effects on fecundity with DBð Þ:

In both matrices, the a (respectively b) terms refer to payoffs
received by a social individual when interacting with another
social individual (respectively a non-social), and the d (respec-
tively c) terms refer to payoffs received by non-social individuals,
when interacting with a non-social (respectively a social)
individual. We use a dynamical system analysis based on
moments (singlets, pairs, triplets of individuals and so on) of
the distribution of social individuals in a structured population,
and we assume weak selection, such that the fitness effects of
interactions are small, but individuals are not necessarily
phenotypically close21. We assume that mutations from one
type to the other are rare; a new mutation only occurs after the
previous one has been fixed or lost.

The scales of competition. The essential difference between the
two steps of the process is the scale of competition (see
equation (11), and Supplementary Methods), or, using a kin
selection terminology, the identity of the secondary recipients22 at
each step. In a DB updating, an increase in the survival of an
individual at site i indirectly harms all the individuals who can
send offspring to site i, and the magnitude of this indirect effect
on j is determined by dji. However, an increase in the fecundity of
an individual i indirectly harms all other individuals j who would
be competing with i for an empty site k, and the magnitude of
this indirect effect on j is determined by

PN
k¼1 dikdjk. Hence,

competition in the first step is among all individuals that are one
dispersal step away, while competition in the second step is
among all individuals that are two dispersal steps away. These
two different competition neighbourhoods are illustrated in
Supplementary Fig. 1, in the case of a lattice-structured
population. In other words, for both DB and BD updating
rules, the first step, which involves choosing a first individual
globally among all individuals of the population, results in a
narrower competitive radius than the second step, in which
another individual is chosen locally among the neighbours of the
first individual23. Thus, whether social interactions affect the first
or the second step results in a difference in the spatial scale over
which social interactions affect competition. This difference turns
out to be crucial for social evolution.

The condition for the evolution of social behaviour. We say
that social behaviour evolves when the long-term frequency of
social individuals is higher than the frequency of non-social
individuals; or, equivalently in the limit of rare and symmetric
mutations, when the probability of fixation of initially one social
individual in a non-social population is higher than the converse
probability of fixation: rS4rNS. Under our assumptions, we find

that this condition is satisfied when

1þ eself � 2
N

� �
a½1� þ a½2� � d½1� � d½2�
� ��

þ 1� eself Þð b½1� þ b½2� � c½1� � c½2�
� �

þ dself þ ed� 2
N

� �
a½2� � d½2�
� �

þ dself � ed
� �

b½2� � c½2�
� � �

40

ð1Þ

This condition generalizes previous results14,18 in two
important ways: first, the effects of benefits and costs are not
limited to fecundity but may also affect survival at the same time;
second, interactions are not restricted to games with equal-
gains-from-switching24 where a� c¼ b� d. Equal-gains-from-
switching occurs for instance in the Prisoner’s Dilemma (PD, see
below) but also, to first order, in any game with small phenotypic
differences between individuals25. With such payoffs, it is possible
to find explicit expressions for rS and rNS (see Fig. 2). In contrast,
our equation (1) also includes synergistic enhancement or
discounting.

Additional insights can be gained by defining an equivalent
payoff matrix, Ã, such that condition (1) can be rewritten as
(1 � 1) � Ã � (1 1)T40. The equivalent matrix Ã can be written as

~
A ¼

s½1�a½1� b½1�
c½1� s½1�d½1�

� 	
þ x

s½2�a½2� b½2�
c½2� s½2�d½2�

� 	
: ð2Þ

For each step i of the life-cycle, s[i] measures the amount of
assortment due to the population structure, that is, how much
individuals of the same type interact relative to individuals of
different types26 compared with how much they do in large
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Figure 2 | Fixation probabilities. Comparison of the analytical fixation

probability rS with equal-gains-from-switching (solid coloured lines) to the

frequency of fixation in numerical simulations (circles and squares), for

different values of the total population size N and two classic population

structures; results are scaled relative to 1/N, the neutral expectation

ðrS� 1=NÞ=ð1=NÞ ¼ N rS � 1ð Þ. Two population structures were

simulated: in blue, a lattice with k¼ 3 neighbours, two-player games

eself ¼ dself ¼ 0; ed ¼ 1=k
h i

; in red, groups of n¼ 3 individuals with public-

good games eself ¼ 1=n and dself ¼ 1�mð Þ=n ¼ ed; m ¼ 0:1
h i

. Fixation

probability: denoting B[i]¼ c[i]� d[i] and C[i]¼ d[i]� b[i], the approximate

fixation probability is B 1½ � N eself� 1ð Þ�C 1½ � N� 1ð Þþ B 2½ � N eselfþNed� 2
� �h

�C 2½ � NþN dself� 2ð Þ�= 2Nð Þ. Simulation data: 107 runs, ±95% confidence

interval (CI) (behind the dots). Parameters: b[1]¼ 1o, c[1]¼0.1o,

b[2]¼ 10o, c[2]¼0.5o, o¼0.0025.
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well-mixed populations (in which s[1]¼s[2]¼ 1):

s½1� ¼
1þ eself � 2=N

1� eself
;

s½2� ¼
1þ eself þ dself þ ed� 4=N

1� eself þ dself � ed
:

ð3Þ

The quantity x in equation (2a) measures the relative importance
of the second step of the life-cycle, compared with the first:

x ¼ 1� eself þ dself � ed
1� eself

: ð4Þ

In a large well-mixed population, x¼ 1.

Contrasting the conditions on each step. By definition of the
dispersal graph D, the offspring of an individual are located one
dispersal step away, which happens to correspond to the com-
petitive radius during the first step of the Moran process. Indi-
viduals are therefore directly competing against their offspring,
and the detrimental effects of kin competition exactly cancel the
social benefits of living next to related individuals27,28. As a result,
population structure barely has any effect on the evolution of
social behaviour if social interactions affect the first step of the
process (see s[1] in equation (3)), compared with large well-mixed

populations. In this case, the relative effect of population
structure is limited to the benefits a social individual provides
to itself (eself), while small population sizes reduce same-type
interactions: s[1] is smaller when N is smaller. This also confirms
that even with synergistic effects in the first step
(a[1]� c[1]ab[1]� d[1]), spatial structure does not facilitate the
evolution of altruism29 compared with well-mixed populations.
Equation (1) also confirms that in the absence of kin
discrimination or synergistic effects (a[1]� c[1]¼ b[1]� d[1]), the
evolution of spite (c[1]� d[1]o0) requires small population sizes
(small N), and limited self-interactions (eself-0).

In contrast, population structure is of crucial importance for
the evolution of social behaviour whenever social interactions
affect the second step of the process (s[2] in equation (3) and x in
equation (4)). This is because the radius of the competitive circle
is wider at the second step (two dispersal steps away): individuals
are therefore competing against less related individuals, on
average, than at the first step23. This observation had been made
with specific models. For instance, conditions for general games
and regular graphs of degree k (and large N) were derived by
Ohtsuki et al.13; these conditions reduced to (c[2]� d[2])/
(d[2]� b[2])4k when a[2]� c[2]¼ b[2]� d[2]. For this restricted
set of games, Taylor et al.14 derived a generalization that extended
to small populations sizes and covered a broad range of
structures, including weighted graphs and distinct interaction E

a Prisoner’s dilemma
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Figure 3 | Evolution of social behaviour under different allocations of benefits and costs. Comparing the conditions for the evolution of social behaviour

(altruism in (a–c), spite in (d)), depending on whether benefits and costs affect the first or second step of the process, for four classical games. Results are

shown for different population sizes (full line: N-N, large dashed: N¼ 60, dashed: N¼ 24, dotted: N¼ 12) and two structures: in magenta, dself¼ 1/3, in

cyan dself¼0; in both cases eself¼0 and ed ¼ 1=3. Social individuals are favoured (rS4rNS) in the shaded areas. The grey (benefits and costs on the first

step exclusively) and black dots (benefits and costs on the second step exclusively) in the corners correspond to the only parameter combinations that

have been analysed previously in this context13,14,18,19,30. Parameters: (a) Prisoner’s dilemma, c0/b0 ¼0.15; (b) Snowdrift, c0/(2b0 � c0)¼0.65; (b) Stag hunt,

(b0 þ c0)/2b0 ¼0.6; (d) Simple spite, c0/b0 ¼0.02.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4409

4 NATURE COMMUNICATIONS | 5:3409 | DOI: 10.1038/ncomms4409 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


and dispersal D graphs. In particular, their derivation also
included the (c[2]� d[2])/(d[2]� b[2])4hg/l rule for regular
graphs30, where g and h are the number of neighbours on the g
and h graphs, respectively, and l the number of overlapping edges.
Our formula (1) not only confirms and generalizes these findings
but also offers additional insights, and we illustrate the
implications of our results in Fig. 3.

Combining the two steps. We now consider four classical games
that can be expressed in terms of benefits and costs (that is, two-
parameter games), and we assume that social individuals can
allocate these benefits and costs in different proportions to
fecundity and survival effects, or more generally to the first
and second step in the life-cycle. Then the benefits and costs
affecting the first step (fecundity in BD, survival in DB) are
B[1]¼ b0(1� lb) and C[1]¼ c0(1� lc), respectively, while the
benefits and costs affecting the second step (survival in BD,
fecundity in DB) are B[2]¼ b0(1� lb) and C[2]¼ c0(1� lc),
respectively. Two of the games that we consider have equal-
gains-from-switching: a Prisoner’s dilemma (PD) with payoff

matrix on step k given by MPD
½k� ¼

B k½ � �C k½ � �C k½ �
B k½ � 0

� 	
, and

the equivalent spite version with negative benefits (SS), whose

payoff matrices are MSS
½k� ¼

�B k½ � �C k½ � �C k½ �
�B k½ � 0

� 	
. We also

consider a Snowdrift game (SD) with payoff matrices MSD
½k� ¼

B k½ � �C k½ �=2 �C k½ �
B k½ � 0

� 	
and a Stag hunt game (SH)

MSH
½k� ¼

2B k½ � �C k½ � �C k½ �
B k½ � B k½ �

� 	
. For each game, we assess how

the allocation of benefits and costs on either step of the life-cycle
affects the evolution of social behaviour, and do so for two
population structures that differ by whether an individual can be
replaced by their offspring or not (that is, whether dself40 or
dself¼ 0). The results are illustrated in Fig. 3. We find that the
optimal allocation of the benefits only depends on whether these
correspond to altruism (positive benefits) or spite (negative
benefits). Altruism (Fig. 3a–c) is most favoured if benefits are
allocated to the second step of the process, which gives more
weight to interactions of individuals of the same type (s[2]4s[1]).
Spite, on the contrary, is more likely to evolve when the (negative)
benefits affect the first step rather than the second one (Fig. 3d),
and requires small population sizes. Let us now consider costs. In
our examples, the optimal cost allocation depends on both the
type of game, the size of the population (N) and on the fraction of
an individual’s propagules that remain at the exact same site
(dself). For example, for a sufficiently large dself (magenta lines in
Fig. 3), altruism is most favoured if costs affect the first step of the
process. With a low dself, however (dself¼ 0 for the cyan lines in
Fig. 3), the allocation of the cost may not matter (for example,
Fig. 3a,d, Prisoner’s dilemma with large (N), or better be on the
second step (for example, Fig. 3b, Snowdrift), or finally better be
on the first step (for example, Fig. 3c, Stag hunt).

While we just described cases where social interactions are of
the same type on both steps, our framework also allows for the
consideration of mixed cases. Focusing on games with equal-
gains–from-switching, with eself¼ 0 (like in Fig. 3a,d), our results
suggest that, behaviours that are spiteful in the first step and
altruistic in the second will be favoured by selection.

Discussion
The simplicity and generality of our condition for the evolution of
social behaviour hinges on two standard and widely used

assumptions of weak selection and constant population size.
Extending our results to unsaturated populations17,31, as well as
to all possible network structures, is an important future
challenge. Meanwhile, our results unify and generalize a great
number of existing studies on the evolution of altruism or spite in
structured populations, and yield new insights when social
behaviour can affect both fecundity and survival. In particular,
the results highlight the crucial feature determining the outcome
of social evolution: the evolution of social behaviour is
determined by the scale at which social interactions affect
competition.

Methods
Notation. The population lives in an environment with N sites, labelled {1, y, N}.
An indicator variable Xi(t) gives the occupation of site i at time t: 1 (respectively 0)
means that the site is occupied by a social individual (respectively non-social).
Notation ‘� ’ denotes a population average, and varS a population variance: �X tð Þ ¼PN

i¼1 Xi tð Þ=N and varS X tð Þð Þ ¼
PN

i¼1 Xi tð Þ� �X tð Þð Þ2=N ¼ X2 tð Þ� �X2 tð Þ. The
index S in the population variance varS is here to distinguish this variance from the
variance of the state of sites var½XiðtÞ� ¼ Et X2

i


 �
� Et Xi½ �2

� �
; in the same way there

is a distinction between average (� ) and expectation (Et[]). We denote by

piðtÞ ¼ Et Xi½ � ¼ P XiðtÞ ¼ 1ð Þ ð5Þ
the expectation of the state of the individual at site i and at time t; a vector p(t)
groups the expected state of all sites, and p tð Þ ¼ pi tð Þ is the expected frequency of
social individuals in the population at time t. Because of population structure, we
also have to take into account the dynamics of pairs and triplets of individuals. We
denote by

PijðtÞ ¼ Et XiXj

 �

¼ P XiðtÞ ¼ 1;XjðtÞ ¼ 1
� �

ð6Þ

the expectation of the state of pairs of sites, and group them in a matrix P(t). We
note that the notion of relatedness classically used in kin selection studies is dif-
ferent and involves probabilities of identity in state or probabilities of identity by
descent, without conditioning on the type of the individuals: Gij¼P(Xi(t)¼Xj(t))
Relatedness Rij is often defined as a standardized measure of identity19:

Rij ¼
Gij �G

1�G
; ð7Þ

where G ¼
PN

i¼1

PN
j¼1 Gij=N2. Our measure of assortment Pij(t) can therefore be

expressed as a function of this measure of relatedness Rij:

PijðtÞ ¼ Et XiXj

 �

¼ RijðtÞ� 1
� �

Et varSX½ � þ pðtÞ: ð8Þ

We also need to account for associations between triplets of individuals, and we
denote by

�ijkðtÞ ¼ Et XiXjXk

 �

¼ P XiðtÞ ¼ 1;XjðtÞ ¼ 1;XkðtÞ ¼ 1
� �

ð9Þ

the expectation of the state of triplets of sites, and group them in a three-
dimensional array P(t).

The dispersal and social structures of the population are represented by two
graphs D and E. We denote by dij the fraction of the offspring of the individual
living at site i that is sent to site j, and by eij the strength of the interaction from i to
j; all these parameters are grouped in two matrices D and E. The dispersal graph is
assumed to be symmetric, so that dij¼ dji (or equivalently D¼DT, where T denotes
transposition); the dispersal graph is also assumed to be transitive, so that the
dispersal structure looks the same from every site14 (note that the transitivity
assumption is not required to derive equation (11), but it is needed to obtain
explicit expressions for the expected state of pairs of individuals (equation (12))).

The fecundity and survival of individuals in the population are affected by
pairwise interactions with other individuals, described by the interaction graph E.
For our derivation, it is more convenient to rewrite the payoff matrices A[1] and
A[2] (whose expressions are given in the main text) as follows:

A½i� ¼
b0½i� � c0½i� þ d0½i� � c0½i�

b0½i� 0

 !
; ð10Þ

with b0[i]¼ c[i]� d[i], c0[i]¼ d[i]� b[i], and d0[i]¼ a[i]� b[i]� c[i]þ d[i]. The two
formulations are equivalent32. The effects of pairwise interactions add up, and we
assume that their effects on fecundity and survival are weak, of order ooo1: in
other words, selection is weak. Note that this type of weak selection differs from
weak selection due to small phenotypic differences (‘d-weak selection’21) classically
used in kin selection models.

Expected change in the frequency of social individuals. We first derive a
general equation for the change in the frequency of social individuals, under weak
selection and for a symmetric dispersal graph (D¼DT). We show in the
Supplementary Methods how this expression relates to the Price equation33.
Denoting by Tr(M) the trace, that is, the sum of diagonal elements, of a matrix M,
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the expected change in the frequency of social individuals in the population is
(details of the calculations are presented in the Supplementary Methods):

DpðtÞ ¼ o
N2 ð½ TrðET � PÞ

zfflfflfflfflfflffl}|fflfflfflfflfflffl{direct effects

� TrðET � P �DÞ
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{competition ¼ secondary effects

Þb0½1�
� ðTrðPÞ �TrðP �DÞÞc0½1�
þ ðTrðET � PÞ �TrðET �� �DÞÞd0½1�
þ ðTrðET � PÞ �TrðET �� �D �DÞÞb0½2�
þ ðTr Pð Þ �TrðP �D �DÞÞc0½2�
þ ðTrðET � PÞ �TrðET �� �D �DÞÞd0½2�

i
ð11Þ

Supplementary Figure 2 (direct effects) and Supplementary Fig. 3 (secondary
effects) illustrate the different terms of equation (11). The first three lines
correspond to the first step (fecundity effects under BD, survival effects under DB),
the last three lines to the second step (survival effects under BD, fecundity effects
under DB). For each step, we can distinguish between direct effects (first column)
and competition terms (second column). These competition terms correspond to
secondary effects in kin selection models22 or to circles of compensation23, and
differ among the two steps: the competitive radius includes individuals one
dispersal step away in the first step (P �D terms), and two dispersal steps away in
the second step (P �D �D terms). This equation is dynamically not closed, because
it depends on higher moments such as pairs (P) and triplets (P) of social
individuals.

Evaluating the moments. We show that the dynamics of pairs and triplets occur
at a much faster time scale than the dynamics of the average frequency, so that we
can evaluate them using a separation of time scales34 or quasi-equilibrium
approximation.

Using the fact that the dispersal graph D is transitive14,23 and that selection is
weak, we obtain the following equalities for the pairs (1N,N is a N-by-N matrix
containing only 1s, and IN is the identity matrix):

P�P�D ¼ �fðtÞ1N;N þNfðtÞIN ;
P�P�D�D ¼ � 2fðtÞ1N;N þNfðtÞ IN þDð Þ; ð12Þ

where fðtÞ ¼ N=ðN � 1Þð ÞEt varS X½ � (details of the calculations are in the
Supplementary Methods). Note that we did not use the pair approximation35 to
derive equation (12).

For triplets of individuals, we use recent results26,32 showing how to express
terms with triplets as functions of pairs plus a frequency-dependent term scaled by
a factor a[i] for each step i (see Supplementary Methods for details). The a[i] factors
will remain implicit, but they will vanish in the final condition for the evolution of
social behaviour.

Explicit dynamics. We use the expressions we derived for pairs (equation (12))
and triplets of individuals back in the equation for the frequency dynamics
(equation (11)), thus arriving at a closed dynamical system, given below in
equation (16). We denote by dself¼ dii, the fraction of propagules that remain
at their parent’s site (the same for all sites i on a transitive graph), by
eself ¼ ð1=NÞ

PN
l¼1 ell the average interaction with oneself, and finally a

compound parameter summarizing the dispersal and interaction graphs (recall that
dkl¼ dlk),

ed ¼ 1
N

XN

l¼1

XN

k¼1

elkdkl ¼
1
N

XN

l¼1

XN

k¼1

elkdlk ¼
1
N

Tr ET �D
� �

ð13Þ

that can be interpreted as the average chance of receiving benefits (elk) from a site
where offspring have been sent (dkl). We then define two compound parameters,
sDE and tDE, that depend on the population structure and the different payoffs:

sDE ¼ o þ b0½1�
Neself � 1

N � 1
� c0½1�

�

þ d0½1�
N þNeself � 2

2ðN � 1Þ � a½1�
2

� 	

þ b0½2�
Neself þNed� 2

N � 1
� c0½2�

N þNdself � 2
N � 1

þ d0½2�
N þNdself þNeself þNed� 4

2ðN � 1Þ � a½2�
2

 !!
;

ð14Þ

and

tDE ¼ o d0½1�a½1� þ d0½2�a½2�
� �

: ð15Þ

With these definitions, we find that the expected change in the frequency of social
individuals can be written as follows:

DpðtÞ ¼ ðsDE þ tDEpðtÞÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
sDE ðpðtÞÞ

�E½varSðpðtÞÞ� ð16Þ

In other words, the structured population behaves as a well-mixed one, under
linear frequency-dependent selection given by sDE (p(t)).

Fixation probabilities. The fixation probability of a single mutant under a Moran
process with a linear frequency-dependent selection coefficient is a classical
result36–38. Accordingly, the fixation probability of a social mutant in a population
of non-social individuals, when selection is weak, can be approximated as

rS �
1
N
þ N � 1

2N
sDE þ tDE

N þ 1
3N

� 	
ð17Þ

Reciprocally, the fixation probability of initially one non-social individual in a
population of social individuals is

rNS �
1
N
þ N � 1

2N
�ðsDE þ tDEÞþ tDE

N þ 1
3N

� 	
ð18Þ

We define the evolutionary success of social individuals by the condition

rS4rNS ð19Þ
Using equations (17) and (18), this condition becomes 2sDE þ tDE40. Finally,

using the definitions (14) and (15) we obtain equation (1) in the main text.

Simulations. Stochastic simulations were coded in C; the population was updated
following a Moran process as described in the main text, and the simulation
stopped when the social trait was either fixed or lost. Fixation probabilities, with
initially only one social individual in the population, were estimated after 107 runs
for each parameter combination. The simulation scripts are available on Dryad:
doi:10.5061/dryad.r28qk.
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