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a b s t r a c t

The evolution of cooperation is an enduring conundrum in biology and the social sciences. Two social

dilemmas, the prisoner’s dilemma and the snowdrift game have emerged as the most promising

mathematical metaphors to study cooperation. Spatial structure with limited local interactions has long

been identified as a potent promoter of cooperation in the prisoner’s dilemma but in the spatial

snowdrift game, space may actually enhance or inhibit cooperation. Here we investigate and link the

microscopic interaction between individuals to the characteristics of the emerging macroscopic

patterns generated by the spatial invasion process of cooperators in a world of defectors. In our

simulations, individuals are located on a square lattice with Moore neighborhood and update their

strategies by probabilistically imitating the strategies of better performing neighbors. Under sufficiently

benign conditions, cooperators can survive in both games. After rapid local equilibration, cooperators

expand quadratically until global saturation is reached. Under favorable conditions, cooperators expand

as a large contiguous cluster in both games with minor differences concerning the shape of embedded

defectors. Under less favorable conditions, however, distinct differences arise. In the prisoner’s

dilemma, cooperators break up into isolated, compact clusters. The compact clustering reduces

exploitation and leads to positive assortment, such that cooperators interact more frequently with

other cooperators than with defectors. In contrast, in the snowdrift game, cooperators form small,

dendritic clusters, which results in negative assortment and cooperators interact more frequently with

defectors than with other cooperators. In order to characterize and quantify the emerging spatial

patterns, we introduce a measure for the cluster shape and demonstrate that the macroscopic patterns

can be used to determine the characteristics of the underlying microscopic interactions.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The evolution of cooperation poses a fundamental challenge to
evolutionary biologists (Axelrod, 1984; Maynard Smith, 1982;
Nowak, 2006). Cooperators incur costs in order to benefit others
while defectors reap the benefits but dodge the costs. Despite the
fact that groups of defectors perform poorly as compared to
groups of cooperators, Darwinian selection should favor defectors.
Nevertheless, cooperation is ubiquitous in biological and social
systems. The problem of cooperation represents a social dilemma
characterized by the conflict of interest between the group and
the individual (Dawes, 1980; Hauert, 2006).
ll rights reserved.
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The two most prominent mathematical metaphors to investi-
gate cooperation in social dilemmas are the prisoner’s dilemma
and the snowdrift game (Doebeli and Hauert, 2005). Both games
describe pairwise interactions where each player can cooperate or
defect. In the prisoner’s dilemma, a cooperator incurs a cost, c, and
provides a benefit, b, to its opponent with b4c. Defectors neither
incur costs nor provide benefits. Hence, if both players cooperate,
each receives b�c but neither gains anything if they both defect.
If a cooperator meets a defector, the defector gets the benefit and
the cooperator is left with the costs. The different outcomes can
be conveniently summarized in a payoff matrix:

b�c �c

b 0

� �
: ð1Þ

It is easy to see that defection is dominant, i.e., it is better to
defect, irrespective of the other player’s decision. Consequently,
the two players end up with zero instead of the more favorable
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reward b�c for mutual cooperation. Self-interest prevents
individuals from achieving a mutually beneficial goal, which is
the essence of social dilemmas.

In the snowdrift game individuals can gain access to benefits
for the pair at some individual cost. Cooperators are willing to
bear the costs whereas defectors are not. If two cooperators meet,
both get the benefit and share the costs, b�c/2, and if a
cooperator meets a defector, the cooperator still gets the benefit
but carries the entire costs, b�c. For the defector, the payoffs are
the same as in the prisoner’s dilemma. The resulting payoff matrix
is

b�
c

2
b�c

b 0

0
@

1
A: ð2Þ

The crucial difference is that the best decision now depends on
the other individual: defect if the other player cooperates but
cooperate if the other defects. This results in a relaxed social
dilemma—cooperation remains prone to exploitation by defectors
but at least they receive their share of the benefit.

The replicator dynamics (Hofbauer and Sigmund, 1998) is used
to describe the evolutionary fate of cooperators and defectors in
large, unstructured populations where each individual is equally
likely to interact with any other one. In the prisoner’s dilemma
cooperation disappears and a pure defector population is the only
stable outcome. In contrast, in the snowdrift game cooperators
and defectors can co-exist at an equilibrium frequency of 1�c/
(2b�c) cooperators. The fact that in the snowdrift game it is best
to adopt a strategy that is different from the opponent ensures
that in a population the rare type is favored and guarantees stable
co-existence. Also note that the average payoff in equilibrium is
lower than for a population of cooperators—another consequence
of social dilemmas (Doebeli and Hauert, 2005).

In such well-mixed populations the invasion and maintenance
of cooperation is trivial in the snowdrift game but additional
supporting mechanisms are required for cooperation to succeed
in the prisoner’s dilemma. Over the last decades, much theoretical
effort has been expended in order to identify different means to
support cooperators (Hamilton, 1964; Hauert et al., 2002, 2007;
Imhof and Nowak, 2010; Nowak and Sigmund, 1998; Trivers,
1971). One surprisingly simple way to achieve this goal is to
include spatial dimensions and to consider spatial games where
individuals are arranged on a lattice and their fitness is based on
interactions within their local neighborhood (Hauert, 2001, 2002;
Nakamaru et al., 1997, 1998; Nowak and May, 1992, 1993; Nowak
et al., 2010; Ohtsuki et al., 2006; Ohtsuki and Nowak, 2008;
Pacheco et al., 2006; Szabó and T +oke, 1998; Tarnita et al., 2009a,
b; Taylor et al., 2007). This enables cooperators to form clusters
and thereby reduces exploitation by defectors. The spatial
dynamics of the prisoner’s dilemma has attracted increasing
interest from different disciplines (for an excellent review see
Szabó and Fáth, 2007).

Naturally, it is of particular importance to understand how
initially rare cooperators can increase and get established in a
population. According to the replicator dynamics, this never
happens for the prisoner’s dilemma in infinite populations but
due to the inherent stochasticity in finite populations, there exists
a small probability that even a single cooperator can invade and
eventually take over an entire population (Nowak et al., 2004;
Taylor et al., 2004). Although, this chance tends to be exceedingly
small and decreases rapidly with increasing population size.
However, in spatial populations, even a small patch of cooperators
may trigger a successful and persistent invasion of cooperators
(Ellner et al., 1998; Langer et al., 2008; Le Galliard et al., 2003;
Nakamaru et al., 1997, 1998; Ohtsuki et al., 2006; Taylor et al.,
2007; van Baalen and Rand, 1998).
While the invasion of cooperators in the snowdrift game is
trivial in well-mixed populations, it turns out that the conditions
are less clear in spatial settings because in the spatial snowdrift
game the limited local interactions often reduce or even eliminate
cooperation (Hauert and Doebeli, 2004). Interestingly, the fact
that it is better to adopt a strategy that is different from your
opponent promotes cooperation and is responsible for the co-
existence of cooperators and defectors in well-mixed populations,
but the same mechanism often inhibits cooperation in spatial
settings, because it hampers the formation of compact clusters of
cooperators. Thus, in well-mixed populations establishing co-
operation based on the snowdrift game is easy but unlikely for the
prisoner’s dilemma, whereas in spatial settings the odds seem to
be reversed—space promotes cooperation in the prisoner’s
dilemma but not necessarily in the snowdrift game. Here we
compare and contrast the microscopic and macroscopic features
and characteristics of the spatial invasion process governed by
these two types of social dilemmas.
2. Model

Consider a spatially extended population where each indivi-
dual is situated on one site of a two-dimensional L� L square
lattice with periodic boundary conditions. There are no empty
sites. All individuals engage in pairwise interactions with each
neighbor in their Moore neighborhood, i.e., with the eight nearest
neighbors reachable by a chess-kings-move. The payoffs of all
interactions are accumulated. The payoff matrices for the prison-
er’s dilemma and the snowdrift game can be conveniently
rescaled such that they depend only on a single parameter
(Doebeli and Hauert, 2005; Hauert and Doebeli, 2004; Langer
et al., 2008). For the prisoner’s dilemma we get

1 0

1þu u

 !
, ð3Þ

where u¼c/b denotes the cost to benefit ratio of cooperation and
for the snowdrift game

1 1�v

1þv 0

 !
, ð4Þ

where v¼c/(2b�c) indicates the cost to net benefit ratio of
mutual cooperation. With b4c, both u and v are constrained to
the interval [0,1]. Note that these parameterizations are very
different from the so-called weak prisoner’s dilemma, which goes
back to Nowak and May (1992) and actually marks the borderline
between the prisoner’s dilemma and the snowdrift game.
However, in spatial settings a clear distinction is of particular
importance because space often has the opposite effect on
cooperation in the two games (Hauert and Doebeli, 2004).

The population is asynchronously updated by randomly
selecting a focal individual x to reassess and update its strategy
by comparing its payoff Px to that of a randomly chosen neighbor
y. The focal individual x adopts y’s strategy with a probability
proportional to the payoff difference, provided that Py4Px.
Specifically, the transition probability f(Py�Px) can be written as

f ðPy�PxÞ ¼

Py�Px

a if Py4Px,

0 otherwise,

8<
: ð5Þ

where a denotes a normalization constant such that
f ðPy�PxÞA ½0,1�. Here, a¼ kð1þuÞ or a¼ kð1þvÞ, respectively, and
k¼ 8 represents the number of neighbors.

Note that this update rule, Eq. (5), is semi-deterministic,
as individuals never imitate strategies of worse performing
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neighbors. Alternatively, another pairwise comparison rule based
on the Fermi function, i.e., f ðPy�PxÞ ¼ 1=ð1þexp½�bðPy�PxÞ�Þ can
be used, where b denotes the intensity of selection (Szabó and
T +oke, 1998; Traulsen et al., 2007). Extensive simulations have
confirmed that the following results are robust with respect to
such changes in the updating rule.

In order to investigate the invasion and expansion process of
cooperators in the two social dilemmas, we consider initial
configurations where all L� L individuals are defectors except for
a small s� s cluster of cooperators (s5L) located in the center of
the lattice (Langer et al., 2008). The simulation results are
complemented by analytical predictions based on pair approx-
imation (Matsuda et al., 1992; Ohtsuki et al., 2006, see Appendix).
This provides important qualitative insights into the invasion
dynamics but often fails to provide accurate quantitative predic-
tions (Hauert and Doebeli, 2004; Hauert and Szabó, 2005; Szabó
and T +oke, 1998).

For a detailed characterization of the emerging spatial patterns
we propose a measure for the cluster shape, g, of cooperator
aggregations. For each cluster i, we derive gi, based on the number
of C–C links, ICC, within cluster i and the number of C–D links, OCD,
that connect cluster i with the surrounding defectors:

gi ¼
2ICC�OCD

2ICCþOCD
: ð6Þ

The value of gi is constrained to the interval [�1,1]. Compact
clusters of cooperators have more links within the cluster than to
the surrounding defectors. This is reflected in gi40 and indicates
positive assortment of cooperators. Conversely, for filament like
clusters there are fewer links within the cluster and more links
connecting cooperators and defectors. Consequently, gio0 holds
and indicates negative assortment among cooperators (or positive
Fig. 1. Typical snapshots of the invasion of cooperators (blue) in a world of defectors (re

are taken when the first cooperator reaches the boundary of a 200�200 lattice with

cooperators expand as a single contiguous cluster interspersed with strips of defector

separate into numerous small compact clusters. Near the extinction threshold, uc � 0:15

to survive. All snapshots can be reproduced using the VirtualLabs (Hauert, 2009). (For in

the web version of this article.)
assortment between cooperators and defectors). Finally, g is
obtained by averaging over all gi and weighted by the size of
cluster i. Using pair approximation, we can estimate the cluster
shape as g¼ qCjC�qDjC ¼ 2qCjC�1, where qDjC indicates the condi-
tional probability that the neighbor of a cooperator is a defector
etc. The cluster shape g conveniently quantifies the qualitative
descriptions of compact versus filament-like clusters.
3. Results

The spatial patterns generated by the invasion and expansion
of cooperators sensitively depend on the type of game as well as
on the parameter settings. Typical spatial configuration in the
prisoner’s dilemma are illustrated in Fig. 1 for increasingly hostile
conditions for cooperators (larger u). In benign settings,
cooperators grow in a single, contiguous cluster with embedded
strands of defectors (Figs. 1a and b). Increasing u renders
exploitation more attractive and defectors succeed in splitting
up the cluster of cooperators into smaller parts (Figs. 1c and d). In
response, cooperators form increasingly compact clusters in an
attempt to minimize the cluster surface and hence reduce
exploitation by defectors (Figs. 1e and f). However, if u exceeds
uc � 0:15, the extinction threshold, all invasion attempts by
cooperators fail.

For the snowdrift game, the emerging patterns are rather
different as illustrated in Fig. 2. Again, under hospitable
conditions (small v), cooperators expand in a single contiguous
cluster with embedded defectors but now they form isolated
specks (Figs. 2a and b). Increasing v reflects more hostile
conditions and the cluster of cooperators gradually breaks up
into smaller filament-like clusters (Figs. 2c–e) and eventually
d) for the prisoner’s dilemma under increasingly hostile conditions. The snapshots

an initial 5�5 cluster. Under hospitable conditions [uo0:06, panels (a) and (b)],

s. Whereas under less favorable conditions [u40:06, panels (c)–(e)], cooperators

, [u¼0.14, panel (f)], a minimal cluster size of about 60 is necessary for cooperators

terpretation of the references to color in this figure legend, the reader is referred to



Fig. 2. Typical snapshots of the invasion of cooperators (blue) in a world of defectors (red) under increasingly hostile conditions for the snowdrift game. The initial

configuration is the same as in Fig. 1. Under benign conditions [vo0:35, panels (a)–(c)], cooperators expand as a single contiguous cluster with embedded specks of

defectors. While under less favorable conditions [0:35ovo0:7, panels (d) and (e)], cooperators separate into numerous smaller dendritic clusters where they on average

interact more with defectors than with other cooperators. Near the extinction threshold, vc � 0:78, [v¼0.7, panel (f)], one- and two-cooperator clusters are mostly

observed. In contrast to the prisoner’s dilemma (c.f. Fig. 1) the snowdrift game prevents the formation of compact clusters. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)
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most clusters consist of merely a few cooperators (Figs. 2f). For
large v, the structure of the snowdrift game prevents the
formation of compact clusters because it is always better to
adopt a strategy that is different from those of the opponents. For
this reason, individuals arrange such as to maximize the interface
between cooperators and defectors, which is reflected in filament-
like cluster shapes that then result in an overall decrease of
cooperation. In analogy to the prisoner’s dilemma, all invasion
attempts fail for sufficiently large v4vc. In the snowdrift game a
single cooperator can survive in a sea of defectors provided that
its payoff [8(1�v)] is no less than that of the surrounding
defectors [1+v] (Hauert, 2001). Based on this condition we can
estimate the extinction threshold vc ¼

7
9 � 0:78. Near the

extinction thresholds of cooperators the differences in the
microscopic invasion patterns generated by the two games
become most apparent (c.f. Figs. 1f and 2f).

The success or failure of an invasion attempt not only depends
on the details of the game but may also hinge on the initial
number and the spatial arrangement of the pioneering coopera-
tors. An invasion is assumed to be successful if cooperators reach
the boundary of the L� L lattice. The survival probability of a
small island of s� s cooperators (s5L) in a sea of defectors is
shown in Fig. 3 for the prisoner’s dilemma and the snowdrift
game. In the prisoner’s dilemma, the initial cluster size plays a
crucial role in determining the evolutionary fate of cooperators. It
becomes increasingly important under more hostile conditions
(larger u) and especially when approaching the extinction
threshold, uc � 0:15 (see Fig. 3a). For increasing s, the survival
probability approaches a step function with the threshold uc

(Fig. 3a). For uouc all invasion attempts succeed with certainty
for sufficiently large s.
In contrast, in the snowdrift game, the survival probability of
cooperators is independent of the initial cluster size because for
vovc even an isolated cooperator can survive and for v4vc all
invasion attempts fail regardless of s (Fig. 3b). Note the excellent
agreement between our analytical approximation for vc � 0:78
and the simulation data. For both games, pair approximation
confirms that cooperators are able to invade but the extinction
threshold is overestimated in the prisoner’s dilemma and none
exists in the snowdrift game (Fig. 3).
3.1. Invasion and expansion

The spatial invasion and expansion process in the prisoner’s
dilemma and the snowdrift game is shown in Fig. 4. In both
games, increasingly hostile conditions (larger u or v, respectively)
oppose the propagation of cooperation and thus lower the speed
of invasion (Figs. 4a and d). The invasion process is characterized
by two distinct dynamical phases: local equilibration followed by
uniform expansion (Langer et al., 2008). The initial island of
cooperators needs to achieve a local equilibrium with nearby
defectors. During this equilibration process, the global abundance
of cooperators increases very slowly, but the local configuration of
cooperators changes rapidly as reflected in the local clustering of
cooperators, qCjC , (Figs. 4b and e) as well as in their cluster shape g
(Figs. 4c and f).

During the subsequent uniform expansion process, the
frequency of cooperators, pC, grows quadratically, while qCjC and
g hardly change. This indicates that, in the wake of the invasion
front, the local equilibrium between cooperators and defectors is
already established. The quadratic growth of cooperators is a



Fig. 3. Survival probability, sc , of cooperators for (a) the prisoner’s dilemma and

(b) the snowdrift game for different sizes of the initial s� s cluster (& : s¼ 3,

� : s¼ 5, W : s¼ 15). Under hospitable conditions (small u, v), cooperators

survive with certainty, whereas under harsh conditions (large u, v), invasion

attempts of cooperators invariably fail. In the prisoner’s dilemma, the size of the

initial cluster is an important determinant for the success of an invasion attempt

and becomes particularly pronounced near the extinction threshold. In contrast,

the initial cluster size has no effect in the snowdrift game. sc is determined from

1000 independent runs on a 125�125 lattice. Cooperators are assumed to survive

if they reach the boundary. The solid lines are analytical predictions from pair

approximation.
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simple consequence of the two-dimensional lattice space. Once
the boundary of the lattice is reached, the frequency of
cooperators saturates at the equilibrium level (Figs. 4a and d).

The simulation results are complemented by pair approxima-
tion using identical initial conditions, i.e., pC(0) and qCjCð0Þ are
determined based on s¼ 5 and L¼ 125 as used in the simulation
setup (Fig. 4). Pair approximation does not incorporate spatial
dimensions and hence the quadratic growth of pC cannot be
observed. The initial changes of qCjC and g are larger and more
abrupt than in the simulations. In particular, the heavy initial drop
of qCjC suggests that the local initial configuration, as reflected in
qCjCð0Þ, has little or no effect on the results. This is a consequence
of the fact that pair approximation assumes infinite populations.
In contrast, for the prisoner’s dilemma, the configuration of the
initial cluster is crucial (Hauert, 2001). However, pair approxima-
tion confirms that local equilibration is fast compared to the
expansion process. Moreover, increasing u (or v, respectively)
invariably decreases the values of pC, qCjC and g at equilibrium.
Interestingly, the change in qCjC and g is much more pronounced
in the snowdrift game than in the prisoner’s dilemma.
3.2. Emerging patterns

The previous section established that in the wake of the
invasion front cooperators and defectors quickly reach a local
equilibrium. For this reason we can analyze the macroscopic
features of the emerging patterns once the population has
reached the global equilibrium. Fig. 5 shows the cluster size and
cluster count under increasingly hostile conditions in the
prisoner’s dilemma and the snowdrift game. In both games, this
leads to a decrease of the cluster size and the cluster count
exhibits a maximum close to the extinction threshold. As
illustrated by the snapshots (Figs. 1 and 2), cooperators expand
as a single contiguous cluster under favorable conditions, but split
into numerous smaller clusters in hostile settings. For the
snowdrift game, the sharp drop in cluster size is accompanied
by a steep increase in the number of clusters (Fig. 5b). In contrast,
in the prisoner’s dilemma the cluster size decreases more slowly
as u increases and reaches a minimum of about 60 at the
extinction threshold uc (Fig. 5a). Consequently, the cluster count
can be more than an order of magnitude larger in the snowdrift
game than in the prisoner’s dilemma. Also note that the minimum
cluster size required to secure the survival of cooperators in the
prisoner’s dilemma turns out to be surprisingly large and may
further challenge cooperation.

The frequency of cooperation, pC, and the cluster shape, g, in
equilibrium are shown in Fig. 6 under increasingly hostile
conditions. In the prisoner’s dilemma, the frequency of
cooperators pC exhibits three phases (Fig. 6a): for uo0:1, pC

decreases slowly with increasing u and cooperators dominate the
population (pC 40:5); for 0:1ououc , pC drops quickly and for
u4uc cooperators disappear. In the snowdrift game, pC shows
four phases (Fig. 6c): for vo0:1, spatial structure promotes
cooperation (pC � 1); for 0:1ovovc , spatial structure inhibits
cooperation and often lowers pC by more than 0.1 as compared to
the co-existence equilibrium in the replicator equation (Hauert
and Doebeli, 2004); near the extinction threshold (0:68ovovc),
pC decreases with a larger slope than that at vo0:68; and finally,
for v4vc , spatial structure eliminates cooperation altogether.
Note the intriguing parallels between the cluster size (Fig. 5) and
the frequency of cooperators, pC (Fig. 6).

The cluster shape g reveals further interesting aspects
characterizing the differences in the invasion patterns generated
by the prisoner’s dilemma and the snowdrift game. In both games,
g is close to one under benign conditions and then gradually
decreases as conditions deteriorate and the setting becomes
increasingly hostile. In the prisoner’s dilemma, positive assort-
ment and hence the formation of compact clusters is essential for
the survival of cooperators (Pepper and Smuts, 2002). However, as
u increases defectors perform better and force cooperators to form
smaller clusters, which leads to a decrease of g. Nevertheless,
g40:5 always holds, which means that each cooperator interacts
with at least three times more cooperators than defectors and
represents substantial positive assortment (Fig. 6b).

In contrast, in the snowdrift game g changes from positive to
negative values for increasing v (Fig. 6d). The change occurs near
v0 � 0:32 such that for vov0 a cooperator more frequently
interacts with another cooperator than with a defector (positive
assortment), but for v4v0 cooperators interact more often with
defectors than with cooperators. In spatial settings, such negative
assortment can be realized by the formation of filament-like
clusters.



Fig. 4. Spatial invasion dynamics as characterized by the global density of cooperators pC (left), the local density of cooperators qCjC (middle), and the cluster shape g (right)

for the prisoner’s dilemma (top row) and the snowdrift game (bottom row). For both games, rapid local equilibration between cooperators and defectors is followed by a

uniform quadratic expansion process. The speed of the expansion of cooperators decreases under less favorable settings (increasing u, v). qCjC and g rapidly converge

toward an equilibrium state. Once local equilibrium is achieved, pC increases quadratically. For the prisoner’s dilemma results are shown for u¼0.02 ð’Þ and u¼0.10 ð�Þ

and for the snowdrift game for v¼0.05 ð’Þ and v¼0.40 ð�Þ. The expansion process is shown for a 5�5 cluster on a 125�125 lattice averaged over 100 runs. The lines

indicate results based on pair-approximation (upper solid, u¼0.02, upper dashed, u¼0.10; lower solid, v¼0.05, lower dashed, v¼0.40). The g value is averaged over all

cooperator clusters weighted by their cluster size.
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Pair approximation provides good predictions of g in the
snowdrift game below the extinction threshold vc. Near vc and for
larger v the quantitative prediction is unsatisfactory primarily
because pair approximation is unable to reproduce the extinction
threshold. In the prisoner’s dilemma, pair approximation yields
poor predictions for g. The main reason for this failure is the
inability of pair approximation to account for social loops such as
if two neighboring individuals share common neighbors. Such
loops become particularly important in compact clusters and
hence pair approximation works much better in the snowdrift
game where positive assortment among cooperators is weaker or
even disassortative. The improved pair approximation (IPA)
method (Satō et al., 1994; Morita, 2008), which takes triplet
correlations into account, is still only capable of predicting trends,
although with marginal improvement (Fig. 6). Note that for the
prisoner’s dilemma, IPA underestimates the equilibrium values as
well as the critical points (Figs. 6a and b); while for the snowdrift
games, IPA predicts an overestimated critical point (Figs. 6c
and d).
4. Discussion

For the problem of cooperation the most important evolu-
tionary question is how cooperators manage to gain a foothold in
a population and increase in abundance when initially rare. In the
present work we approach this challenge by investigating the
spatial invasion and expansion of cooperators in a world of
defectors. In particular, we compare the characteristic features of
the invasion process as well as of the emerging spatial patterns in
the two most prominent social dilemmas, the prisoner’s dilemma
and the snowdrift game. In both games the invasion of
cooperators succeeds for sufficiently benign conditions but fails
if cooperation entails high costs or benefits are low. This is of
particular importance in the snowdrift game because for this type
of interaction the replicator equation (Hofbauer and Sigmund,
1998), which models well-mixed populations with random
encounters of individuals, predicts that cooperators and defectors
can co-exist. Hence, spatial structure may inhibit or even
eliminate cooperation in the snowdrift game (Hauert and Doebeli,
2004). In contrast, spatial structure promotes cooperation in the
prisoner’s dilemma because it enables cooperators to form
compact clusters. This leads to more frequent interaction of
cooperators with other cooperators, reduces the exploitation by
defectors and prevents their extinction.

Successful invasion attempts, initiated by a small cluster of
cooperators, exhibit two distinct phases: rapid local equilibration
of cooperators and defectors is followed by a uniform expansion
process—a ‘wave of cooperation’ expanding into defector terri-
tory. In the wake of the invasion front characteristic spatial
patterns emerge. The macroscopic features reflect the microscopic
interactions following the principle that form follows function.

We should point out that the presented spatial invasion
dynamics of cooperation is analogous to the general contact
process that predicts a continuous transition from the active
(pC 40) to the absorbing state (pC ¼ 0) (Hinrichsen, 2000; Marro
and Dickman, 1999). Using the updating rule based on the Fermi
function in physics, previous studies have revealed that the
extinction of cooperators in spatial games falls into the univers-
ality class of directed percolation on square lattices (Szabó and
Hauert, 2002; Hauert and Szabó, 2005). Although a quantitative
characterization of such critical phenomena goes beyond the
scope of our present study, we confirm that our results are robust
to variations in updating rules. The systems behavior near critical
points, albeit modified by the intrinsic features of the chosen
updating rule (i.e., only imitate better performing neighbors) and
spatial geometry (i.e., Moore neighborhood), is qualitatively
similar to that of the general contact process (see the snapshots
in Figs. 1f and 2f) .

In empirical situations it is often difficult to distinguish the
prisoner’s dilemma from the snowdrift game. Turner and Chao
(1999) demonstrate that RNA phages are trapped in a prisoner’s



Fig. 5. Macroscopic characteristics of the invasion dynamics of cooperation:

cluster size ð�Þ and cluster count ð	Þ for (a) the prisoner’s dilemma and (b) the

snowdrift game. In both games, the cluster size reduces when increasing the game

parameters and the cluster count reaches a maximum near the extinction

threshold. In the prisoner’s dilemma, a minimum cluster size of about 60 is

required for cooperators to survive, in sharp contrast to the snowdrift game where

even an isolated cooperator is able to persist. For an initial cluster of 15�15

cooperators, the cluster size and count are determined when the system reaches

equilibrium on a 125�125 lattice and averaged over 100 runs. The cluster size is

averaged over all existing cooperator clusters weighted by their size. The error

bars mark one standard deviation.
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dilemma—but they fail to cooperate. However, selection alters the
payoff structure and the game turns into a snowdrift game
(Turner and Chao, 2003). Other famous experiments on coopera-
tion include predator inspection behavior in sticklebacks
(Milinski, 1987; Milinski et al., 1997) or enzyme production in
yeast (Greig and Travisano, 2004; Gore et al., 2009). While it is
clear that individuals are facing a social dilemma in all cases, the
data is either insufficient to differentiate between the prisoner’s
dilemma and the snowdrift game or the evidence seems to be in
favor of the latter.

Our study offers a rule of thumb to discriminate between the
two types of interactions based on the characteristics of the
emerging spatial patterns, which might be particularly relevant
for experimental evolution in microbial populations. The emer-
gence of compact patches of cooperators points towards the
prisoner’s dilemma, whereas filament-like or fractal cluster
shapes serve as an indicator that the underlying interaction is
governed by a snowdrift game.
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Appendix A. Pair approximation

Let pC and pD ¼ 1�pC denote the fraction of cooperators and
defectors and pCC, pCD, pDC and pDD represent the fractions of CC,
CD, DC and DD pairs, respectively. The probabilities of all larger
configurations are expressed and approximated in terms of pair
configuration probabilities—hence the name pair approximation
(Matsuda et al., 1992; Nakamaru et al., 1997, 1998; Satō et al.,
1994). Then, qXjY ¼ pXY=pY with X,YAfC,Dg specifies the condi-
tional probability that the neighbor of an individual of type Y has
type X. Using normalization (pCCþpCDþpDCþpDD ¼ 1) and sym-
metry (pCD ¼ pDC), the two dynamical variables, pC and qCjC fully
determine the dynamics of the system.

Let us first consider the case that a randomly selected focal
D-player switches to C. The D-player has kC cooperators and kD

defectors (kD ¼ k�kC) in its neighborhood on a regular graph with
connectivity k. The frequency of such configurations is

k!

kC !kD!
qkC

CjDqkD

DjD

and the payoff of the focal D-player is PDðkC ,kDÞ ¼ c � kCþd � kD

using the general payoff matrix

a b

c d

� �
: ð7Þ

Similarly, the payoff of a neighboring C-player is
PCðkC u,kDuÞ ¼ a � kC uþb � ðkDuþ1Þ, where kC u and kDu are the numbers
of C- and D-players among the k�1 remaining neighbors besides
the focal D-player. The frequency of this configuration is

ðk�1Þ!

kC u!kDu!
qkC u

CjCDqkD u

DjCD,

where qXjYZ gives the conditional probability that a player next to
the YZ pair is in state X (here X, Y, and Z denote C or D). The
probability that the D-player switches to C can be written as

WD-C ¼
kC

k

X
kC uþkD u ¼ k�1

ðk�1Þ!

kC u!kDu!
qkC u

CjCDqkD u

DjCDf ðPCðkC u,kDuÞ�PDðkC ,kDÞÞ,

where the transition probability f ðPCðkC u,kD uÞ�PDðkC ,kDÞÞ (see
Eq. (5) in main text) is weighted by the configuration probability
of the C-player’s neighborhood and summed over all possible
configurations. Consequently, pC increases by 1/N, where N

denotes the population size, with probability

Prob DpC ¼
1

N

� �
¼ pD

X
kC þkD ¼ k

k!

kC !kD!
qkC

CjDqkD

DjDWD-C : ð8Þ

At the same time, the number of CC pairs increases by kC and thus
pCC increases by 2kC/(kN) with probability

Prob DpCC ¼
2kC

kN

� �
¼ pD

k!

kC !kD!
qkC

CjDqkD

DjDWD-C : ð9Þ

Similarly, the probability that pC decreases by 1/N is given by

Prob DpC ¼�
1

N

� �
¼ pC

X
kC þkD ¼ k

k!

kC !kD!
qkC

CjCqkD

DjCWC-D, ð10Þ



Fig. 6. The equilibrium fraction of cooperators, pC, (left) and cluster shape, g, (right) in the prisoner’s dilemma (top row) and the snowdrift game (bottom row) as a function

of the game parameters u, v, respectively. Symbols show simulation results, solid lines show the corresponding results based on pair approximation, and dashed lines show

the corresponding results based on improved pair approximation (see Appendix). In the prisoner’s dilemma, g40 always holds, which indicates positive assortment of

cooperators. In the snowdrift game, g is positive under hospitable conditions but becomes negative in hostile settings, which indicates negative assortment such that

cooperators interact more often with defectors than with other cooperators—a consequence of the filament-like cluster shapes. As a reference, the diagonal line in panel (c)

indicates the equilibrium frequency of cooperators, 1�v, in well-mixed populations. The initial configuration is the same as in Fig. 5.
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where WC-D denotes the probability that the focal C-player
switches to D, i.e,

WC-D ¼
kD

k

X
ku

C
þku

D
¼ k�1

ðk�1Þ!

kC u!ku

D!
qkC u

CjDCqkD u

DjDC f ðPDðkC u,kDuÞ�PCðkC ,kDÞÞ:

ð11Þ

And pCC decreases by 2kC/(kN) with probability

Prob DpCC ¼�
2kC

kN

� �
¼ pC

k!

kC !kD!
qkC

CjCqkD

DjCWC-D: ð12Þ

In the limit of large population sizes we obtain

_pC ¼ lim
N-1

DpC

1=N
¼ Prob DpC ¼

1

N

� �
�Prob DpC ¼�

1

N

� �
, ð13Þ

_pCC ¼ lim
N-1

DpCC

1=N

¼
Xk

kC ¼ 0

2kC

k
Prob DpCC ¼

2kC

kN

� �
�Prob DpCC ¼�

2kC

kN

� �� �
: ð14Þ

Setting

MC ¼
1

pC
Prob DpC ¼

1

N

� �
�Prob DpC ¼�

1

N

� �� �
ð15Þ

MCC ¼
1

pCC

Xk

kC ¼ 0

2kC

k
Prob DpCC ¼

2kC

kN

� �
�Prob DpCC ¼�

2kC

kN

� �� �8<
:

9=
;

ð16Þ
and using qCjC ¼ pCC=pC , we find

_pCC ¼ _qCjCpCþ _pCqCjC ¼ ðMCqCjCþ _qCjCÞpC ¼MCCpCC ¼MCCpCpCjC

and thus,

_pC ¼MCpC , ð17Þ

_qCjC ¼ ðMCC�MCÞqCjC : ð18Þ

The above equations require a ‘moment closure’ by approximating
qXjYZ � qXjY . This means that only first order pair correlations are
taken into account and hence termed pair approximation.
However, the predictions can be improved by considering higher
order correlations. One possibility is to consider the improved pair
approximation (IPA), which takes triplet correlations into account
when estimating qXjYZ in spatial lattices (Satō et al., 1994; van
Baalen, 2000; Morita, 2008). Based on the Kirkwood approxima-
tion, Morita (2008) gave the following equations to approximate
qXjYZ:

qCjCD ¼ ð1�yÞqCjCþy
qCjC

qCjCþqDjD
, ð19Þ

qDjCD ¼ 1�qCjCD, ð20Þ

qDjDC ¼ ð1�yÞqDjDþy
qDjD

qCjCþqDjD
, ð21Þ

qCjDC ¼ 1�qDjDC , ð22Þ

where y is the clustering coefficient, i.e., the probability of finding
the triplet in closed form. Alternatively, van Baalen (2000)
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considered the correlation of the triplets as follows:

qCjCD ¼ qCjC ð1�yÞþy
pCD

pCpD

� �
, ð23Þ

qDjCD ¼ 1�qCjCD, ð24Þ

qDjDC ¼ qDjD ð1�yÞþy
pCD

pCpD

� �
, ð25Þ

qCjDC ¼ 1�qDjDC : ð26Þ

We found that taking clustering coefficient into account results in
marginally better predictions (see Fig. 6). In principle, better
approximations can be obtained by including higher order terms,
i.e., by going from pair to n-point approximations (Szabó et al.,
2005), or by including other measures such as the correlation
coefficient (van Baalen, 2000).
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