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Investigating the evolutionary dynamics of game theoretical interactions in populations where individuals
are arranged on a graph can be challenging in terms of computation time. Here, we propose an efficient method
to study any type of game on arbitrary graph structures for weak selection. In this limit, evolutionary game
dynamics represents a first-order correction to neutral evolution. Spatial correlations can be empirically deter-
mined under neutral evolution and provide the basis for formulating the game dynamics as a discrete Markov
process by incorporating a detailed description of the microscopic dynamics based on the neutral correlations.
This framework is then applied to one of the most intriguing questions in evolutionary biology: the evolution
of cooperation. We demonstrate that the degree heterogeneity of a graph impedes cooperation and that the
success of tit for tat depends not only on the number of rounds but also on the degree of the graph. Moreover,
considering the mutation-selection equilibrium shows that the symmetry of the stationary distribution of states
under weak selection is skewed in favor of defectors for larger selection strengths. In particular, degree
heterogeneity—a prominent feature of scale-free networks—generally results in a more pronounced increase in
the critical benefit-to-cost ratio required for evolution to favor cooperation as compared to regular graphs. This
conclusion is corroborated by an analysis of the effects of population structures on the fixation probabilities of
strategies in general 2�2 games for different types of graphs. Computer simulations confirm the predictive
power of our method and illustrate the improved accuracy as compared to previous studies.
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I. INTRODUCTION

Evolutionary game dynamics on graphs �1–7� has at-
tracted growing interests in different fields �8–22� �for a re-
cent review see �23�� as a significant extension of traditional
evolutionary game theory focusing on well-mixed popula-
tions �24–27�. In games on graphs, individuals are located on
the vertices of a graph. The edges determine interactions and
competition among individuals. Specifically, consider a
population of two strategic types of individuals, A and B, on
an arbitrary graph. Each individual engages in pairwise in-
teractions with all its neighbors and accumulates a total pay-
off, �. The interactions are characterized by the 2�2 payoff
matrix MXY�X ,Y = �A ,B��, which specifies the payoffs to the
row player

A B

A

B
�MAA MAB

MBA MBB
� .

�1�

The evolutionary success of an individual is determined by
its fitness, which may be given by a convex combination of a
baseline fitness normalized to 1 and the payoff �, 1−w
+w�, where w� �0,1� measures the intensity of selection,
i.e., the relative contribution of the game to fitness. It should

be noted that an individual fitness never becomes negative
for the small values of w used in this paper �i.e., from 0.0001
to 0.05�. For weak selection �w�1�, the payoff obtained
from game interactions makes a small contribution to the
overall fitness of an individual. This situation can be justified
in two ways: �i� the results derived from weak selection often
remain as valid approximations for larger selection strength
�5,6�; �ii� the weak selection limit has a long tradition in
theoretical biology �i.e., closeness in phenotype space� when
working with population genetics �28� and kin selection
theory �29�. Indeed, inclusive fitness analysis exclusively re-
lies on the assumption of weak selection �see Ref. �7� and
references therein�. Individuals with a high fitness have a
high propensity to proliferate and transmit their strategies
either through genetic inheritance or through cultural imita-
tion. The evolutionary outcome crucially depends on the spe-
cific updating mechanism used �5�. In this paper, we adopt
death-birth updating; in each time step the neighbors of a
randomly selected focal individual compete to pass their
strategy to the focal individual. One neighbor succeeds with
a probability proportional to its fitness. This represents a spa-
tial analog of the Moran process �30� with frequency-
dependent fitness. Thus, the population size, N, remains con-
stant during the evolutionary process.

Over the years, a number of different and biologically
relevant updating rules have been proposed and investigated
in the context of spatial games. Most prominently this
includes pairwise comparison processes �26� as well as
birth-death and death-birth processes inspired by the Moran*christoph.hauert@math.ubc.ca
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process �30�. It turns out that in the limit of weak selection,
pairwise comparison processes are equivalent to the birth-
death process �31�—but for this process it has already been
shown in �5� that it never favors cooperation in the prisoner
dilemma on graphs. For this reason the following analysis
focuses on the death-birth process, which is able to sustain
cooperation even in the limit of weak selection. Neverthe-
less, it is certainly worth exploring further updating mecha-
nisms for strong selection. In this situation, however, other
complicated issues arise. For example, fixation probabilities
may no longer be the best way to characterize the dynamics
of the population because strategies may coexist for very
long times. Even more importantly, the accounting of the
payoffs matters on heterogeneous graphs. That is, the results
would be qualitatively different if the fitness of each indi-
vidual is based on the accumulated payoffs from interactions
with all neighbors or if it is, e.g., based on a single interac-
tion with a randomly chosen neighbor. Consequently, for
practical and illustrative purpose, we restrict our focus on the
death-birth updating rule.

In general, the wealth of conceivable population struc-
tures, together with the exceedingly large number of possible
configurations, makes analytical investigations almost intrac-
table. In most instances, simulations are used instead and
considerable attention has been paid to the case of strong
selection �9,10�. It turns out that graph topologies play a
decisive role in the evolutionary process �4,18,19�. Fortu-
nately, the limit of weak selection leads to a natural separa-
tion of timescales regarding local and global dynamics; that
is, the local frequency of players equilibrates much faster
than the global density of players. Therefore, weak selection
allows for analytic estimations based on pair approximation
�5,32� or inclusive fitness �7� analysis. We should note that
the former method is exact for infinitely large regular graphs
without loops, e.g., trees or Bethe lattices, while the latter
is valid for payoff matrices satisfying “equal gains from
switching” �i.e., MAA+MBB=MAB+MBA �33�� on regular
graphs satisfying particular homogeneity properties. As a re-
sult, neither of these two methods is capable of dealing with
arbitrary degree-heterogeneous graphs. Furthermore, deter-
mining the evolutionary outcome empirically requires ex-
tremely time-consuming simulations.

Perturbation approaches have proven to be efficient and
effective to substantially reduce the complexity of computa-
tion. For instance, perturbation analysis predicts the equilib-
rium behavior of systems of interacting players in spatial
games and particles in lattice-gas models in the limit of zero
noise �i.e., low temperature in statistics physics�. These pre-
dictions can be obtained by perturbing deterministic evolu-
tion by suitable stochastic terms and performing a low-
temperature �low-noise� expansion �34,35�. In contrast, the
limit of weak selection corresponds to the high-temperature
case. In analogy, the neutral �random� evolutionary dynamics
of the population can be perturbed to account for game the-
oretical interactions among individuals. In this sense the
weak selection limit represents a perturbation analysis,
which is applicable to any type of game and also applies to
degree-heterogeneous graphs.

For weak selection, population configurations are nearly
independent of the game but remain affected by the underly-
ing graph topology. Therefore, local configurations can be
approximated by neutral evolution on graphs. For a restricted
set of graphs, this allows one to estimate correlations be-
tween A and B types in the case of pair approximation �5�
and the relatedness among neighbors for inclusive fitness
analysis �7�. Here we determine the evolutionary dynamics
for arbitrary games on any graph by tracking the microscopic
dynamics along the interface between A and B types based
on empirically determined correlations between the two
types under neutral evolution. Hence, under weak selection,
the game dynamics represents a first-order correction to the
dynamics under neutral evolution.

II. METHODS

In neutral populations we determine through simulations
the number of AA, AB, and BB links as a function of the
number i of A types, denoted by NAA�i�, NAB�i�, and NBB�i�,
respectively. The average degree of A and B individuals is
then given by kA�i�= �2NAA�i�+NAB�i�� / i=nA

A�i�+nA
B�i� and

kB�i�= �2NBB�i�+NAB�i�� / �N− i�=nB
A�i�+nB

B�i�, respectively,
where nX

Y�i� denotes the average number of XY links of an X
individual. Based on these quantities, we can approximate an
individual payoff for the game dynamics, if present. Since
we consider death-birth updating, we only need to determine
the payoffs of the neighbors that compete to repopulate the
vacant focal site. In analogy to the moment closure in pair
approximation, we approximate the average number of X
neighbors around a Y individual as 1+ ��kY −1� /kY�nY

X, given
that the Y individual has at least one X neighbor. Therefore,
the average payoff of a Y player in the neighborhood of the
focal individual, X, can be approximated as follows:

�X
Y�i� = 	�X,A +

kY�i� − 1

kY�i�
nY

A�i�
MYA

+ 	�X,B +
kY�i� − 1

kY�i�
nY

B�i�
MYB, �2�

where �X,Y is equal to 1 if X=Y, and 0 otherwise. Hence, the
corresponding fitness reads FX

Y�i�=1−w+w�X
Y�i�.

Evolutionary changes can only occur along the interface
of A and B types. The microscopic dynamics can thus be
described as follows. If the number of A’s increases from i to
i+1, the average number of A’s and B’s in the neighborhood
of a vacated B site along the boundary, kB

A�i� and kB
B�i�, is

determined by the changes in the number of AA and BB
links: kB

A�i�=NAA�i+1�−NAA�i� and kB
B�i�=NBB�i�−NBB�i+1�

with i=1, . . . ,N−2. With only a single B �i=N−1�, we have
kB

A�N−1�=NAB�N−1� and kB
B�N−1�=0. In analogy, if the

number of A types decreases from i+1 to i, the average
number of A’s and B’s in the neighborhood of a vacated A
site along the boundary is kA

A�i+1�=kB
A�i� and kA

B�i+1�
=kB

B�i� for i=1, . . . ,N−2 as well as kA
A�1�=0 and kA

B�1�
=NAB�1� for a single A�i=1�. Consequently, the number of
A’s and B’s along the interface is given by nA�i�
=NAB�i� /kA

B�i� and nB�i�=NAB�i� /kB
A�i�. This results in a
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detailed description of the environment along the AB inter-
face, which in turn determines the evolutionary change.

The evolutionary dynamics on graphs represents a dis-
crete Markov process on the interval �0,N� with states 0 and
N being absorbing. At each time step, the number of A indi-
viduals, i, can increase by one, decrease by one, or stay the
same. Therefore, the transition matrix of this process is given
by

TA
+�i� =

nB�i�
nA�i� + nB�i�

kB
A�i�FB

A�i�
kB

A�i�FB
A�i� + kB

B�i�FB
B�i�

,

TA
−�i� =

nA�i�
nA�i� + nB�i�

kA
B�i�FA

B�i�
kA

A�i�FA
A�i� + kA

B�i�FA
B�i�

, �3�

where TA
+ ,TA

− indicates the probability that i increases �i→ i
+1� or decreases �i→ i−1�, respectively. With probability
TA

0�i�=1−TA
+�i�−TA

−�i�, i remains constant. All other entries
of the transition matrix are 0. We denote by xi the fixation
probability of A when starting from i A’s. We have

xi = TA
+�i�xi+1 + TA

0�i�xi + TA
−�i�xi−1, �4�

with boundary conditions x0=0 and xN=1.
In order to solve above recursive equation, rewriting Eq.

�4� we have

xi+1 − xi =
TA

−�i�
TA

+�i�
�xi − xi−1� = �

j=1

i
TA

−�j�
TA

+�j�
�x1 − x0� . �5�

Summing Eq. �5� from i=1 to i=N−1 we have

xN − x1 = �
i=1

N−1

�
j=1

i
TA

−�j�
TA

+�j�
�x1 − x0� . �6�

Let �A��B� denote the probability that a single randomly
placed A�B� individual in an otherwise homogeneous popu-
lation of B�A� types reaches fixation in the absence of muta-
tion. We thus have �A=x1 and �B=1−xN−1. According to Eqs.
�5� and �6� we obtain �24,36�

�A =
1

1 + �
i=1

N−1

�
j=1

i

TA
−�j�/TA

+�j�

�7�

and

�A

�B
= �

i=1

N−1
TA

+�i�
TA

−�i�
. �8�

If �A�1 /N, A has a higher fixation probability than a neutral
mutant. If, in addition, �A��B holds, A has a selective ad-
vantage over B such that in the long run and for rare muta-
tions, the population is more likely to consist of A individu-
als only.

III. RESULTS AND DISCUSSION

Specifically, consider neutral evolution on random regular
graphs �37� as well as on scale-free networks �38� �Fig. 1�.
The deviation between simulation data and pair approxima-
tion is evidently no longer negligible for small populations or
heterogeneous numbers of neighbors �Figs. 1�a� and 1�b��.
The invasion dynamics on regular random graphs is indepen-
dent of the location where the mutant occurs, and thus can be
seen as an unbiased random walk, namely, the probability of
increasing or decreasing the number of mutants is the same.
The invasion process of a single randomly placed neutral

FIG. 1. �Color online� Neutral evolution on graphs. �a� The equilibrium fraction of AA ���, AB ���, and BB ��� links as a function of
the fraction of A individuals on random regular graphs. The solid lines correspond to pair-approximation results. �b� The relative difference
of the empirically determined fraction of AB links to that of pair approximation. �c� Invasion process on scale-free networks starting from
a single randomly placed A. Average degree of A when the number of A increases ��� or decreases ���. �Population size �a� N=500, �b� 500
��, ��, 50 ���, and �c� 100 and average degree k=4. All data points are averaged over 107 runs.�
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mutant A in a B population becomes particularly interesting
on scale-free networks �Fig. 1�c��. In the initial phase, the
fate of A’s hinges on the odds to occupy large-degree nodes
�hubs�. The colony of A is more likely to expand if A indi-
viduals successfully control the hubs. Conversely, if A indi-
viduals are constrained to small-degree nodes they are more
likely to disappear. Thus, a rare mutant A is prone to extinc-
tion unless the mutation occurs in a hub or the mutant suc-
cessfully colonizes a hub. However, a randomly placed mu-
tant A is most likely to appear on small-degree nodes, since
most nodes have few neighbors in scale-free networks. In
this sense, degree heterogeneity opposes the initial spread of
mutants and thus creates a high invasion barrier. This result
has been confirmed by simulations and represents a key fac-
tor for understanding the evolutionary dynamics in heteroge-
neous populations.

Based on our approach, Eqs. �7� and �8� allow one to
easily determine and compare fixation probabilities on gen-
eral graphs for different games. In order to compare our re-
sults with previous studies �5,7�, let us turn to the prisoner
dilemma, which is widely employed in studying evolution of
cooperation. In every interaction, cooperators, C, pay a cost
c and provide a benefit b to their partner �b�c�. Defectors,
D, pay no cost and provide no benefits. The payoff matrix
becomes

C D

C

D
�b − c − c

b 0
� . �9�

Figure 2 shows the results of fixation probability, �C, on
regular random graphs and scale-free networks. The average
degree is k=4, and we use two different cost-to-benefit ra-
tios; in line with the b /c�k rule �5�, for b /c=10 natural
selection favors cooperation but favors defectors for b /c=2.
Comparisons with simulation results reveal good predictions
for both types of graphs but predictions are better and extend
to higher selection strengths on regular random graphs than
on scale-free networks. With increasing selection strength,

the coupling between the game dynamics and the underlying
graph topologies becomes stronger on scale-free networks
than on regular random graphs; thus the effect of degree
heterogeneity on the tolerance of our approach comes much
more prominent, since here we simply use empirically deter-
mined correlations under neutral evolution. In particular, our
approach returns better predictions than pair approximation
�Fig. 2�, while inclusive fitness analysis cannot directly pre-
dict the probability of fixation. Thus, our approach provides
not only a powerful numerical technique but also a conve-
nient framework for studying games on graphs.

The critical b /c ratio, above which cooperation is favored
by natural selection, i.e., �C�1 /N, is shown in Fig. 3. For
weak selection, �A�1 /N is equivalent to �A��B provided
that the payoff matrix satisfies the condition equal gains from
switching �i.e., MAA+MBB=MAB+MBA �33�� �7� and holds
for the payoff matrix �9�. Our results are in good agreement
with exact numerical simulations. In particular, they exceed
the average graph degree k, reflecting the finite-size effects
�Fig. 3�. For regular random graphs, the results fit well with
theoretical predictions �7� �Fig. 3�a�� and are in agreement
with pair approximation in the limit of large populations and
weak selection �see Appendix A�. Besides, we find degree-
heterogeneity results in higher critical b /c ratios for coopera-
tion to be favored on scale-free networks, as compared to
regular random graphs �Fig. 3�b��. This result can be under-
stood as follows: selection always works against the initial
increase in cooperators but degree heterogeneity additionally
opposes the spreading of rare types as demonstrated in Fig.
1�c�. More specifically, consider a star graph as an illustra-
tive example. A star graph is an extreme form of a heteroge-
neous graph, where all periphery nodes are connected to a
single central hub. Both simulations and analytical deriva-
tions show that the fixation probability �C of a randomly
placed cooperator is lower than 1 /N for any b /c ratio and
any nonzero intensity of selection �see Appendix B�. This
suggests that heterogeneous graphs generally impose higher
invasion barriers than regular graphs, which results in a
higher critical b /c ratio to compensate for the unfavorable

FIG. 2. �Color online� Fixation probability of a single randomly placed cooperator, �C, in the prisoner dilemma on �a� random regular
graphs and �b� scale-free networks. The fixation probability from simulations with benefit-to-cost ratio, b /c=10 ��� and 2 ���, respectively,
is determined by the fraction of runs where cooperators reached fixation out of 107 runs. The upper �lower� solid line corresponds to the
fixation probability obtained from our approach for the case of b /c=10 �b /c=2�. The upper �lower� dotted line corresponds to the
pair-approximation results for b /c=10 �b /c=2�. The middle horizontal solid line indicates the fixation probability 1 /N under neutral
evolution. �N=100 and k=4.�
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initial conditions. Noteworthy, it is reported that a heteroge-
neous graph is an inhospitable environment for a mutant to
evolve in the case of constant selection �21�. Complementing
this conclusion, our results show that it remains true for
weak selection. Paradoxically, previous investigations re-
vealed that scale-free networks provide a hospitable environ-
ment for cooperation �4,19�; however, this conclusion hinges
on the simultaneous appearance of a number of cooperators
to overcome the invasion barrier. In addition, the high coop-
eration level is attributed to the dynamical organization of
cooperators and defectors, which strongly depends on the
network topology and the game parameters �19�. Otherwise,
one would expect that invasion attempts of cooperators are
doomed under strong selection. Actually, for the updating
rule used in Ref. �4�, cooperation never evolves from a single
cooperator.

Thus far, we have demonstrated that degree heterogeneity
generally impedes the fixation of a single mutant cooperator
in the prisoner dilemma under weak selection. For a more
comprehensive insight let us consider the �quasi� stationary
frequency of cooperators on scale-free networks in the two
limiting cases of weak selection versus strong selection. In
both cases, we use an individual accumulated payoff accrued
from interactions with all its neighbors. To ensure non-

negative fitness values, we rescale the payoff matrix �9� as
MAA=1, MAB=0, MBA=1+c /b, and MBB=c /b �c /b denotes
the cost-to-benefit ratio�. Note that for strong selection very
different results are expected when using different payoff
accounting mechanisms �e.g., accumulated or normalized
payoff �39�� in heterogeneous graphs. In order to consider
stationary distributions, we introduce a small mutation rate,
�, such that the system can escape the absorbing states �all C
and all D�. With probability 1−� the offspring keeps the
strategy of the parent but with probability � and the off-
spring adopts the opposite strategic type. As mentioned be-
fore, if A has a selective advantage over B, that is, �A��B in
terms of fixation probabilities, A will be more abundant than
B in the long run for rare mutants. In other words, the sta-
tionary frequency of A should be larger than 0.5 if A is fa-
vored over B in this mutation-selection process.

Figures 4�a� and 4�b� show the stationary distribution of
states in scale-free networks for weak and strong selections,
respectively. The cost-to-benefit ratio b /c=2 is less than
the average graph degree 4, and hence weak selection
favors defection �5�. Consequently, the stationary frequency
of cooperators �0.495� lies slightly below 0.5. For strong
selection, cooperation is further inhibited and the stationary
frequency of cooperators is about 0.123. The apparent sym-

FIG. 3. �Color online� Evolution of cooperation in the prisoner dilemma; the benefit-to-cost, b /c, threshold ��: our approach; �:
simulations�, above which cooperators have a selective advantage over defectors, versus degree k on �a� random regular graphs and �b�
scale-free networks. Analytical prediction with finite-size correction �dotted line� �7� �i.e., b /c=k�N−2� / �N−2k�� and prediction from pair
approximation �solid line� �5� �i.e., b /c=k�. �N=100 and w=0.01.�

FIG. 4. �Color online� Stationary distribution of the mutation-selection process for �a� weak selection w=0.001 and for �b� strong
selection w=0.999 on scale-free networks. Panels �a� and �b� show stationary distribution of states for the prisoner dilemma on scale-free
networks with b /c=2. The stationary frequency of cooperators is �a� 0.495 and �b� 0.123. See text for details. �Mutation rate �=10−3, N
=100, and k=4. The results are averaged over 105 independent runs, each sampling time T=104.�
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metric distribution of states under weak selection is strongly
skewed by increasing selection strength �cf. Figs. 4�a� and
4�b��. Interestingly, for strong selection, this result indicates
that once rare cooperators successfully overcome the inva-
sion barrier imposed by the degree heterogeneity and the
increasing selection pressure, the system is more likely to
consist of more abundant cooperators than defectors. Never-
theless, strong selection makes it even harder for rare coop-
erators to get over this invasion barrier. As a consequence,
the system spends much more time in the all-D state than in
the all-C state. Most interestingly, if we average over inter-
mediate numbers of cooperators, say from 10 to 90, the frac-
tion of cooperators �0.596� is enhanced under strong selec-
tion, as compared to weak selection �0.499�. In fact, previous
studies �4,19� start from half-to-half mixing of cooperators
and defectors, and measure the dynamic equilibrium �quasis-
tationary� frequency of cooperators as an indicator of
whether or not cooperation is promoted on various types of
networks under strong selection. In these studies, the large
population size and the type of games result in exceedingly
long fixation times that render a mutation-selection frame-
work unfeasible. Our present work complements existing
studies �4,18,19,21� and furthers our understanding of the
evolutionary dynamics on heterogeneous graphs.

To illustrate the power of our numerical techniques we
demonstrate the influence of the network topology on evolu-
tionary dynamics for general payoff matrices. Following pre-
vious studies �40�, we normalize the payoff matrix �1� such
that MAA=1, MAB=S, MBA=T, and MBB=0 �−1	S	1 and
0	T	2�. The type of game is determined by the region in
the �S ,T� plane. For T�1 and S
0, this is the prisoner
dilemma; for T�1 and S�0, this is the snowdrift game; for
T
1 and S
0, this is the stag-hunt game; for T
1 and S
�0, this is the �by-product� mutualism. Thus, this payoff
matrix can represent different social dilemmas �41�. The ratio
of the fixation probability of A and of B, �A /�B, is shown as
a function of S ,T for random regular graphs, random graphs
�37�, and scale-free networks �38�, respectively �Fig. 5�.
Three types of graphs exhibit an increasing amount of degree
heterogeneity. In each case, we are interested in the critical
values of T and S such that �A=�B. For smaller T or larger S,
we have �A��B; that is, A is more abundant than B for rare
mutants in the stationary distribution of mutation-selection
dynamics.

In principle, it is rather time consuming to determine
these critical values of S ,T as this requires the fixation prob-
ability of A and B, respectively. Furthermore, the uncondi-
tional fixation time depends crucially on the type of game
under study �31�. In sharp contrast, our approach is quite
efficient; we only need to simulate neutral evolution for each
type of graph and then derive the evolutionary outcome for
every point in the �S ,T� plane. For all three types of network
structures we find excellent agreement between our predic-
tions �dashed lines in Figs. 5�b�–5�d�� and the actual simula-
tion results �circles in Figs. 5�b�–5�d��. Note that the regime
with �A��B is largest on random regular graphs and de-
creases with increasing heterogeneity, i.e., it is smaller on
random graphs and still smaller on scale-free networks. The
critical T as a function of S appears to follow a straight line
of slope 1 in the �S ,T� plane. The position of this line reflects

the influence of specific population structures on the evolu-
tionary dynamics. For star graphs this line passes through
�0,1�, which means that star graphs provide less hospitable
environments for cooperation than scale-free networks. As a
reference, Fig. 5�a� depicts results for well-mixed popula-
tions where the critical line for �A=�B under weak selection
passes through �0, N−2

N � �N is the population size; see Ref.
�24� for a detailed analysis�. Overall, these results demon-
strate that while spatial structures generally promote the evo-
lution of cooperation, degree heterogeneity generally op-
poses cooperation in social dilemmas.

Finally, analyzing the evolutionary dynamics of other
games does not require further simulations. Let A and B
denote the strategies tit for tat �in which the player cooper-
ates in the first round and then copies whatever the opponent
did in the previous round� and “always to defect” �AllD�,
respectively, in an iterated prisoner dilemma with n rounds
on average. The payoff matrix is MAA=n�b−c�, MAB=−c,
MBA=b, and MBB=0. Let b /c=1.5, such that for n�3, this
is a coordination �bistable� game between tit for tat and
AllD. Note that rescaling the payoffs as R=MAA=1, S
=MAB=−c / �n�b−c��, T=MBA=b / �n�b−c��, and P=MBB=0
maps this coordination game to the Stag-Hunt quadrant in
the �S ,T� plane shown in Fig. 5. In this case T+S=1 /n
holds, and thus for fixed n games between tit for tat and AllD
are represented by a line that is perpendicular to the critical
line for �A=�B in the �S ,T� plane. The intersection of these
two lines marks the critical b /c ratio for selection to favor tit
for tat replacing AllD. In well-mixed populations, this occurs
if MAA+2MAB�MBA+2MBB �24�. This condition, coined as
“1/3 rule” in Ref. �24�, corresponds to strategy A having
larger fitness than B at a frequency 1/3. We should point out
that this 1/3 rule corresponds to the dashed line plotted in
Fig. 5�a�; here this requires n�7 as explicitly shown in Fig.
6. On regular random graphs and for fixed b /c ratio, there
exists a critical minimum number of rounds that allows se-
lection of tit for tat �Fig. 6�. In the limit of weak selection,
the critical number of rounds monotonically increases with
the degree k, gradually recovering the 1/3 rule of well-mixed
populations �i.e., fully connected graphs� �Fig. 6�. Interest-
ingly, depending on the number of rounds, the graph degree
affects the evolution of tit for tat differently; for small n,
increasing the number of interaction partners reduces the
fixation probability of a single tit-for-tat player; in contrast,
for large n, an increasing of number of interaction partners
makes it easier for tit-for-tat players reaching fixation. The
advantages of the tit-for-tat strategy become much more pro-
nounced once tit-for-tat players have successfully established
a cluster. In this case, tit-for-tat players greatly benefit from
repeated interactions in a dense neighborhood �i.e., large de-
gree�. For small n, the benefit of assortment is not sufficient
to offset the exploitation by defectors along the periphery.
This effect is enhanced by increasing the number of neigh-
bors. Conversely, sufficiently large n stabilizes cooperation,
and this positive effect is, to a large extent, further enhanced
by increasing the neighborhood size. The nontrivial trade off
between number of neighbors and number of rounds indi-
cates an interesting interplay between game dynamics and
graph topologies.

In summary, neutral evolution on arbitrary graphs returns
the correlations between neighboring individuals and repre-
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sents the backbone of our approach to model evolutionary
dynamics in the limit of weak selection based on micro-
scopic descriptions of the transitions along the interface of
the two competing types. In particular, degree heterogeneity
generally increases the invasion barrier for rare mutants.
Consequently, for a mutant cooperator to thrive in a world of
defectors, regular graphs provide a more hospitable environ-
ment than scale-free networks, for example. Furthermore, the
emergence of the conditional cooperative strategy tit for tat
strongly depends on the tradeoff between the graph degree
and the number of rounds.
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FIG. 5. �Color online� The comparison of fixation probabilities on different types of graphs. The payoff matrix under study is MAA=1,
MAB=S, MBA=T, and MBB=0 �−1	S	1 and 0	T	2�. For T�1 and S
0, this is the prisoner dilemma �PD�; for T�1 and S�0, this is
the snowdrift game �SD�; for T
1 and S
0, this is the stag-hunt game �SH�; for T
1 and S�0, this is the �by-product� mutualism. As a
reference, panel �a� shows the comparison of fixation probabilities in well-mixed populations. The type of graph under consideration is �b�
random regular graphs, �c� random graphs, and �d� scale-free networks. The ratio of fixation probability of A to B, �A /�B, is shown as a
contour in the two-dimensional �2D� parameter space �S ,T� using our approach. Note that the range of �A /�B values increases with space and
with increasing degree heterogeneity. The dashed line corresponds to the situation of �A=�B predicted by our method. The circles ���
represent the simulation results regarding the critical T for each S such that �A=�B. In our simulations, the fixation probability of A�B� is
determined by the fraction of runs where A�B� reached fixation out of 107 runs. �Population size N=100 and average degree k=4. Selection
pressure w=5�10−3.�
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APPENDIX A: USING PAIR APPROXIMATION
IN OUR APPROACH

Let us consider evolutionary games on regular graphs
with degree k. Here we show that our present approach re-
covers the results obtained in Ref. �5� with pair approxima-
tion in the limit of large populations and weak selection. To
do this, we adopt analytical pair-approximated local configu-
rations in neutral case instead of simulation-determined data.
Note that pair approximation is exact for infinite degree-
regular graphs without loops �e.g., Cayley trees� and cannot
correct finite-size effects.

Let us denote by pA= i /N�pB� the abundance of A�B�. Let
pXY represent the probability of finding an XY pair in the
system, and let qY
X be the conditional probability to find a Y
player given that the adjacent node is occupied by an X
player. Here, both X and Y stand for either A or B. We find
the same local configurations for death-birth and birth-death
updatings under neutral evolution. Given an initial frequency
of A, pA�0�, the expected change in pA�t� is equal to 0 at all
time t, i.e., pA�t�� pA�0�. Furthermore, after some algebra
�detailed derivations can be found in Ref. �5�� we can obtain
the equilibrium pXY and qY
X as follows, respectively:

pXY =
1

k − 1

pX + pY

2
�X,Y +

k − 2

k − 1
pXpY , �A1�

qY
X =
1

k − 1
�X,Y +

k − 2

k − 1
pY . �A2�

Note that under neutral evolution equilibrium pXY and qY
X
are only dependent of pA�0� and the degree k.

Let us now couple the game in by calculating individual
payoffs according to these equilibrium local configurations.
That is,

�X
Y = ��X,A + �k − 1�qA
Y�MYA + ��X,B + �k − 1�qB
Y�MYB,

�A3�

where �X
Y denotes the payoff of a Y player within the focal

X-player neighborhood. The corresponding fitness is FX
Y =1

−w+w�X
Y.

For death-birth updating, the transition matrix for the
number of A individuals i in this process is given by

TA
+�i� = pB

qA
BFB
A

qA
BFB
A + qB
BFB

B , �A4�

TA
−�i� = pA

qB
AFA
B

qA
AFA
A + qB
AFA

B . �A5�

Moreover the number of A individuals remains constant with
probability TA

0�i�=1−TA
+�i�−TA

−�i�.
In parallel, for birth-death updating, the transition prob-

abilities become

TA
+�i� =

pAFB
A

�
j=1

N

Fj

qB
A, �A6�

TA
−�i� =

pBFA
B

�
j=1

N

Fj

qA
B, �A7�

where � j=1
N Fj represents the total fitness of the whole popu-

lation.
In the limit of weak selection, using Taylor-series expan-

sion at w=0 and neglecting the term O�wn� �n�2�, we ob-
tain the following conditions for death-birth and birth-death
update mechanisms, respectively:

�A � 1/N ⇔ �death-birth: �
j=1

N−1

�
i=1

j

qB
B��B
A − �B

B� + qA
A��A
A − �A

B� � 0

birth-death: �
j=1

N−1

�
i=1

j

��B
A − �A

B� � 0, � �A8�

FIG. 6. �Color online� Tit for tat �TFT� vs AllD in the iterated
prisoner dilemma. The fixation probability of a tit-for-tat mutant as
a function of number of rounds, n, on random regular graphs with
k=4 ���, k=8 ���, k=14 ���, as well as in well-mixed populations
���. Depending on the degree k, there exists a critical minimum
number of rounds, n, such that selection favors tit for tat. �N=100,
b /c=1.5, and w=10−4.�
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�A

�B
� 1 ⇔ �death-birth: �

i=1

N−1

qB
B��B
A − �B

B� + qA
A��A
A − �A

B� � 0

birth-death: �
i=1

N−1

��B
A − �A

B� � 0. � �A9�

Introducing the notation x= j /N and pA= i /N, we find in the continuum limit that the sums in inequalities �A8� and �A9�,
� j=1

N−1�i=1
j �·� and �i=1

N−1�·�, can be estimated as �0
1dx�0

xdpA�·� and �0
1dpA�·�, respectively. Using Eqs. �A1� and �A2� we obtain

�A � 1/N ⇔ �death-birth: �k + 1�2MAA + �2k2 − 2k − 1�MAB − �k2 − k + 1�MBA − �2k2 + k − 1�MBB � 0

birth-death: �k + 1�MAA + �2k − 1�MAB − �k + 1�MBA − �2k − 1�MBB � 0,
� �A10�

�A

�B
� 1 ⇔ �death-birth: �k + 1�MAA + �k − 1�MAB − �k − 1�MBA − �k + 1�MBB � 0

birth-death: MAA + MAB − MBA − MBB � 0.
� �A11�

Hereby, using discrete Markov chain we obtain the same
results derived from diffusion approximation in Ref. �5� for
large populations and weak selection.

APPENDIX B: FIXATION PROBABILITIES
ON STAR GRAPHS

We first consider neutral evolution on star graphs. For the
simplicity of notation, consider a star graph of N+1 nodes
with a center node and N periphery nodes. Let Pi

1�Pi
0� be the

probability of fixation of A given there are iA’s in the leaves
and an A in the center �a B in the center�. Here, we consider
death-birth update mechanism only. Hence, the fixation prob-
abilities can be solved by following two recurrence equa-
tions:

Pi
1 =

N − i

N + 1
Pi+1

1 +
1

N + 1

N − i

N
Pi

0

+ �1 −
N − i

N + 1
−

1

N + 1

N − i

N
�Pi

1, �B1�

Pi
0 =

i

N + 1
Pi−1

0 +
1

N + 1

i

N
Pi

1 + �1 −
i

N + 1
−

1

N + 1

i

N
�Pi

0,

�B2�

with boundary conditions P0
0=1 and PN

1 =1.
We have

	Pi
1

Pi
0
 = �

i + N

N
−

i

N

i

N

− i + N

N
�	P0

1

P1
0
 . �B3�

Thus, we obtain P0
1= 1

2 and P1
0= 1

2N .
Now we turn to the frequency-dependent fitness in death-

birth update. Consider a symmetric 2�2 game between A
and B according to matrix �1�. Let fA and fB �gA and gB� be
the fitness of A and B given that the hub is occupied by an
A�B�. We have

fA = 1 − w + w · MAA,

FIG. 7. �Color online� Fixation probability of a randomly placed cooperator, �C, in the prisoner dilemma on star graphs. �a� �C as a
function of cost-to-benefit ratio c /b for fixed intensity of selection w=0.05; �b� �C as a function of selection pressure w for fixed c /b
=0.05. Empty squares represent simulation data and solid lines represent theoretical results. Population size is 20, and the fixation probability
from simulations is determined by the fraction of runs where cooperators reached fixation out of 108 runs.
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fB = 1 − w + w · MBA,

gA = 1 − w + w · MAB,

gB = 1 − w + w · MBB,

where w represents the intensity of selection, w� �0,1�.
Then the Markov process can be expressed as

Pi
1 =

N − i

N + 1
Pi+1

1 +
1

N + 1

�N − i�fB

�N − i�fB + ifA
Pi

0

+ �1 −
N − i

N + 1
−

1

N + 1

�N − i�fB

�N − i�fB + ifA
�Pi

1, �B4�

Pi
0 =

i

N + 1
Pi−1

0 +
1

N + 1

igA

�N − i�gB + igA
Pi

1

+ �1 −
i

N + 1
−

1

N + 1

igA

�N − i�gB + igA
�Pi

0, �B5�

with boundary conditions P0
0=0 and PN

1 =1. Accordingly, P0
1

and P1
0 can be analytically determined by solving the above

two coupled recurrence equations. Both simulations and ana-
lytical results show that the fixation probability �C of a ran-
domly placed cooperator is lower than neutral case for any
b /c ratio and any nonzero intensity of selection �Fig. 7�.
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