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a b s t r a c t

Social dilemmas are an integral part of social interactions. Cooperative actions, ranging from secreting
extra-cellular products in microbial populations to donating blood in humans, are costly to the actor and
hence create an incentive to shirk and avoid the costs. Nevertheless, cooperation is ubiquitous in nature.
Both costs and benefits often depend non-linearly on the number and types of individuals involved—
as captured by idioms such as ‘too many cooks spoil the broth’ where additional contributions are dis-
counted, or ‘two heads are better than one’ where cooperators synergistically enhance the group benefit.
Interaction group sizes may depend on the size of the population and hence on ecological processes. This
results in feedback mechanisms between ecological and evolutionary processes, which jointly affect and
determine the evolutionary trajectory. Only recently combined eco-evolutionary processes became ex-
perimentally tractable in microbial social dilemmas. Here we analyse the evolutionary dynamics of non-
linear social dilemmas in settings where the population fluctuates in size and the environment changes
over time. In particular, cooperation is often supported and maintained at high densities through ecolog-
ical fluctuations. Moreover, we find that the combination of the two processes routinely reveals highly
complex dynamics, which suggests common occurrence in nature.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

The theory of evolution is based on Darwinian selection, mu-
tation and drift. These forces along with neo-Darwinian addi-
tions of phenotypic variability, frequency-dependence and, in
particular, cooperative interactions within and between species,
form the basis for major transitions in evolution (Maynard Smith
and Szathmáry, 1995; Nowak and Sigmund, 2004). Ecological ef-
fects such as varying population densities or changing environ-
ments are typically assumed to be minimal because they often
arise on faster timescales such that only ecological averages
matter for evolutionary processes. Consequently, evolutionary
and ecological dynamics have been studied independently for
long. While this assumption is justified in some situations, it
does not apply whenever timescales of ecological and evo-
lutionary dynamics are comparable (Day and Gandon, 2007).
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In such cases, ecological and evolutionary feedbackmay contribute
to the unfolding of the evolutionary process. Empirically, effects of
changes in population size arewell documented (Dobson andHud-
son, 1995; Bohannan and Lenski, 1999; Hudson et al., 1998; Fen-
ner and Fantini, 1999; Bohannan and Lenski, 2000) and has now
lead to a burgeoning field in evolutionary theory, which incorpo-
rates ecological variation (May and Anderson, 1983; Frank, 1991;
Heesterbeek and Roberts, 1995; Roberts et al., 1995; Kirby and Bur-
don, 1997;Gandon andNuismer, 2009; Salathé et al., 2005;Quigley
et al., 2012; Gokhale et al., 2013; Song et al., 2015).

In particular, the independent study of ecological and evo-
lutionary processes may not be able to capture the complex
dynamics that often emerge in the combined system. Such
potentially rich eco-evolutionary dynamics has been explored the-
oretically and, more recently, empirically confirmed (Post and
Palkovacs, 2009; Hanski, 2011; Sanchez and Gore, 2013). Popu-
lation genetics and adaptive dynamics readily embrace ecological
scenarios (see e.g. Pagie and Hogeweg, 1999; Aviles, 1999; Yoshida
et al., 2003; Day, 2005; Hauert et al., 2006b; Day andGandon, 2006,
2007; Lion and Gandon, 2009; Jones et al., 2009; Gandon and Day,
2009; Wakano et al., 2009; Cremer et al., 2011) whereas the tradi-
tional focus of evolutionary game theory lies on trait frequencies
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or constant population sizes (Taylor and Jonker, 1978; Hofbauer
and Sigmund, 1998; Nowak et al., 2004). Here we propose ways to
incorporate intricacies of ecological dynamics along with environ-
mental variation in evolutionary games.

1.1. Ecological setting

Evolutionary game dynamics is typically assumed to take place
in a population of individualswith fixed types or ‘strategies’, which
determine their behaviour in interactions with other members of
the population (Maynard Smith and Price, 1973; Zeeman, 1981).
Payoffs determine the success of each strategy. Strategies that
perform better than the average increase in abundance. This is the
essence of the replicator equation (Hofbauer and Sigmund, 1998)
but neglects that evolutionary changes may alter the population
dynamics or vice versa. Traditionally the population consists of two
strategies whose frequencies are given by x and y = 1− x. In order
to incorporate ecological dynamics we assume that x and y are
(normalized) densities of the two strategies with x+y ≤ 1 (Hauert
et al., 2006a). Consequently, z = 1 − x − y provides a measure
for reproductive opportunities, e.g. available space. Ecological
dynamics is reflected in the change of the population density, x+y.
The evolutionary dynamics of the strategies is affected by intrinsic
changes in population density as well as extrinsic sources such
as seasonal fluctuations in the interaction parameters and hence
the payoffs. For example, in epidemiology the coevolutionary
dynamics of virulence and transmission rate of pathogens depends
on ecological parameters of the host population. More specifically,
changes in the mortality rate of hosts evokes a direct response
in the transmission rate of pathogens while virulence covaries
with transmission (Day and Gandon, 2006). Another approach to
implement eco-evolutionary feedback is, for example, to explicitly
model spatial structure and the resulting reproductive constraints
(Lion and Gandon, 2009; Alizon and Taylor, 2008; Le Gaillard
et al., 2003; Van Baalen and Rand, 1998), which then requires
approximations in terms of weak selection or moment closures
to derive an analytically tractable framework. In contrast, while
our model neglects spatial correlations, it enables a more detailed
look at evolutionary consequences arising from intrinsically and
extrinsically driven ecological changes.

1.2. Non-linear social dilemmas

Social dilemmas occur whenever groups of cooperators per-
form better than groups of defectors but inmixed groups defectors
outcompete cooperators (Dawes, 1980). This creates conflicts of
interest between the individual and the group. In traditional (lin-
ear) public goods (PG) interactions cooperators contribute a fixed
amount c > 0 to a common pool, while defectors contribute
nothing. In a group of size N with m cooperators the payoff for
defectors is PD(m) = r m c/N where r > 1 denotes the multi-
plication factor of cooperative investments and reflects that the
public good is a valuable resource. Similarly, cooperators receive
PC (m) = PD(m) − c = PD(m − 1) + rc/N − c , where the sec-
ond equality highlights that cooperators ‘see’ one less cooperator
among their co-players and illustrates that the net costs of coop-
eration are −rc/N + c because a share of the benefits produced by
a cooperator returns to itself. Therefore, it becomes beneficial to
switch to cooperation for large multiplication factors, r > N , but
defectors nevertheless keep outperforming cooperators in mixed
groups. The total investment in the PG is based on the number of
cooperators in the group but the benefits returned by the com-
mon resource may depend non-linearly on the total investments.
For example, the marginal benefits provided additional coopera-
torsmaydecrease,which is often termeddiminishing returns. Con-
versely, addingmore cooperators could synergistically increase the
benefits produced as in economies of scale. While well studied
in economics (Taylor and Ward, 1982; Kollock, 1998; Schelling,
2006) such ideas were touched upon earlier in biology (Eshel and
Motro, 1988) but only recently have they garnered renewed atten-
tion (Bach et al., 2006; Hauert et al., 2006b; Wakano et al., 2009;
Pacheco et al., 2009; Wakano and Hauert, 2011; Archetti et al.,
2011; Purcell et al., 2012; Peña et al., 2014, 2015).

The nonlinearity in PG can be captured by introducing a
parameter ω, which rescales the effective value of contributions
by cooperators based on the number of cooperators present
(Hauert et al., 2006b). Hence, the payoff for defectors, PD(m), and
cooperators, PC (m), respectively, is given by,

PD(m) =
rc
N

(1 + ω + ω2
+ · · · + ωm−1) =

rc
N

1 − ωm

1 − ω
(1a)

PC (m) = PD(m) − c =
rc
N

ω(1 + ω + · · · + ωm−2) +
rc
N

− c,

(1b)

such that the benefits provided by each additional cooperator are
either discounted, ω < 1, or synergistically enhanced, ω > 1.
The classic, linear PG is recovered for ω = 1. This parametrization
provides a general framework for the study of cooperation and
recovers all traditional scenarios of social dilemmas as special cases
(Nowak and Sigmund, 2004; Hauert et al., 2006b).

2. Eco-evolutionary dynamics

The overall population density, x + y, can grow or shrink from
0 (extinction) to an absolute maximum of 1 (normalization). The
average payoffs of cooperators and defectors, fC and fD, determine
their respective birth rates but individuals can successfully
reproduce if reproductive opportunities, z > 0, are available.
All individuals are assumed to die at equal and constant rate, d.
Formally, changes in frequencies of cooperators and defectors over
time are governed by the following extension of the replicator
dynamics (Hauert et al., 2006a),

ẋ = x(zfC − d) (2a)
ẏ = y(zfD − d) (2b)
ż = −ẋ − ẏ = (x + y)d − z(xfC + yfD). (2c)

The average payoffs are calculated following Eq. (1), where the
interaction group size depends on the population density (see
Appendix A). This extends the eco-evolutionary dynamics for the
linear PG (Hauert et al., 2006a) to account for discounted or
synergistically enhanced accumulation of benefits (Hauert et al.,
2006b). The difference in the average fitness between defectors
and cooperators, F(x, z) = fD − fC is now given by

F(x, z) = 1 + (r − 1)zN−1
−

r
N

(1 − x(1 − ω))N − zN

1 − z − x(1 − ω)
(3)

and provides a gradient of selection. Note that in the special case
of the linear PG, ω = 1, Eq. (3) reduces to a function of z alone.

2.1. Intrinsic fluctuations

Homogeneous defector populations go extinct but pure coop-
erator populations can persist and withstand larger death rates d
under synergy than discounting (see Appendix A.1, Fig. A.8). In or-
der to analyse the dynamics in heterogeneous populations it is use-
ful to rewrite Eq. (2) in terms of z and the fraction of cooperators,
f = x/(1 − z):

ḟ =
ẋy − ẏx
(1 − z)2

= −zf (1 − f )F(f , z) (4a)

ż = −(1 − z)(fz(r − 1)(1 − zN−1) − d). (4b)
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Fig. 1. Eco-evolutionary dynamics of public goods interactions with synergy/discounting in the (1−z, f )-phase plane. Along the null-clines of Eq. (4) the population density
(ż = 0, dashed line) or the population composition (ḟ = 0, solid line) does not change. For ω = 1 the null-cline ḟ = 0 is a vertical line and hence admits at most one interior
equilibrium denoted by Q. The non-linearity introduced by synergy and discounting can admit a second interior equilibrium P. We set the parameters to N = 8, d = 0.5
and illustrate the dynamics under discounting (ω < 1, left column), linear public goods (ω = 1, middle column), and synergy (ω > 1, right column) for increasing r (top to
bottom): (a) 2.2, (b) 2.7, (c) 2.8 and (d) 5.0. The stability of the fixed points is discussed in Appendix B. Example trajectories are shown in red starting at the starred initial
configuration. Compared to the linear public goods (centre column), synergistic benefits (right column) admit stable co-existence at lower r whereas higher r are required
for discounting (left column). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
This change of variable introduces a convenient separation in terms
evolutionary and ecological dynamics: evolutionary changes affect
strategy abundances and are captured by f , whereas ecological
dynamics are reflected in changes of the (normalized) population
density, x + y = 1 − z.

Eco-evolutionary trajectories are visualized in the phase plane
(1 − z, f ) ∈ [0, 1]2. In contrast to Hauert et al. (2002a,
2006a, 2008) the interior of the phase plane can support more
than one fixed point, because of the non-linearity introduced by
synergy/discounting, see Fig. 1. In addition to the equilibria along
the boundary, interior equilibria of Eq. (4) are determined by the
intersections of the two null-clines given by f = d/[z(r − 1)(1 −

zN−1)] (ż = 0) and solutions of F(f , z) = 0 (ḟ = 0). Unfortunately
an analytical stability analysis of the interior fixed point(s) is
inaccessible but a numerical analysis suggests that a single fixed
point, Q, can exhibit various stability properties depending on r ,
whereas the second fixed point, P, whenever present, is always a
saddle (see Appendix B).

Fig. 2 depicts the null-clines for increasing r and fixed ω. The
stability of Q defines four dynamical regimes: for small r Q does
not exist but when increasing r it (i) appears as an unstable node,
(ii) turns into an unstable focus, (iii) then becomes a stable focus
and, finally, (iv) a stable node before Q disappears again at high r .
Similarly, changing ω with fixed r , triggers a series of bifurcations
because the f -null-cline depends on ω whereas the z-null-cline
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Fig. 2. Internal fixed points for varying r . The z-null-cline (dashed lines), f = d/[z(r − 1)(1 − zN−1)] is independent of synergy/discounting, ω. The f -null-cline (solid
lines), is given by the solution of F(f , z) = 0. The null-clines are shown for specific r (numerically explored range r ∈ [2, 7.95] in increments of 1r = 0.05), where the
stability of Q (solid circles) changes and separates dynamical regimes: (i) unstable node (orange) (ii) unstable focus (light red) (iii) stable focus (light blue) (iv) stable node
(yellow). Between (ii) and (iii) (red) Andronov–Hopf and other complex bifurcations are possible (Hauert et al., 2006a, 2008). Only under discounting or synergy another
fixed point (P, open circle) may appear. (a) Discounting: both internal fixed points appear for r = 2.65 where P is a saddle and Q an unstable node. While P exits the phase
space immediately, Q is still present for r = 7.5. (b) Linear public goods: only a single internal fixed point (Q) can exist and for its detailed stability analysis, see Hauert
et al. (2008). (c) Synergy: Q is already present at r = 2 as an unstable focus, P appears at r = 2.35 as a saddle while Q is a stable focus. Both fixed points persist until they
annihilate each other close to r = 3.1. As ω increases, smaller r are sufficient to render Q stable and prevent extinction. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
Fig. 3. Internal fixed points for varying ω. The z-null-cline (f = d/[z(r − 1)(1 − zN−1)], dashed line), and various f -null-cline, (F(f , z) = 0, solid lines), are shown under
synergy/discounting forω ∈ [0.05, 2.0] and increments of1ω = 0.005. The stability ofQ again delineates different dynamical regimes. Note that depending on r not all four
regimesmay occur as is the case in panels (a) and (d). Parameters are N = 8, d = 0.5 and r as (a) 2.2, (b) 2.7, (c) 2.8 and (d) 5.0. (i) at smallω the fixed point(s) appear (except
in (d) where already for ω = 0.05 both fixed points exist). Of the two fixed points, one is always a saddle, P (open circles), whereas the other, Q (solid circles), typically
enters the phase plane as an unstable node (orange). (ii) Q becomes an unstable focus (light red). Between regions (ii) and (iii) (red) complex bifurcations are possible. (iii)
Q is a stable focus (light blue). (iv) Q turns into a stable node (yellow). For still larger ω the two interior fixed points collide and annihilate each other. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
does not, see Fig. 3. Note that all f -null-clines run through the
point defined by F(0, z) = 0 at the lower boundary of the phase
plane.

A detailed description of the changes in the stability of the fixed
point Q and hence the eventual dynamics is given in Appendix B.
In Figs. 2, 3 we describe the dynamics for some fixed values
of r and ω, i.e. the rate of return of the public good and the
synergy/discounting factor. However what would happen if the
actual values of these parameters changed in a continuous fashion
over time?

3. Environmental fluctuations

A constant feature of evolutionary as well as ecological pro-
cesses is their dynamic nature. However, most evolutionary mod-
els assume a deterministic and usually constant environment in
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which populations evolve—either deterministically or stochasti-
cally (Taylor and Jonker, 1978; Hofbauer and Sigmund, 1998;
Nowak et al., 2004; Moran, 1962). Considering variable environ-
ments is a natural way of incorporating changing ecological condi-
tions. Stochastic or periodic fluctuations in the environment may
alter evolutionary trajectories as has been shown experimentally
(Beaumont et al., 2009). Variable environments have been con-
sidered for a variety of interesting phenomena from bet hedging
strategies and Red Queen dynamics to the evolution of sex (Salathé
et al., 2008; Wolinska and King, 2009). When considering stochas-
tic dynamics, the fixation probability of a trait is a crucial determi-
nant of evolutionary change. In classical population genetics, it is
possible to determine the fixation probability under demographic
fluctuations (Ewens, 1979; Kimura and Ohta, 1974; Otto andWhit-
lock, 1997), temporally variable selection strength (Jensen, 1973;
Karlin and Levikson, 1974; Uecker and Hermisson, 2011; Carja
et al., 2013) as well as both (Waxman, 2011), provided that the fit-
ness of traits is frequency independent. In contrast, in evolutionary
games and the evolution of cooperation, in particular, fitnesses are
intrinsically frequency dependent and a theoretical understand-
ing of the effects of demographic fluctuations and/or temporally
fluctuating game parameters is nascent and has received sporadic
attention (Uyenoyama, 1979; Van Baalen and Rand, 1998; Hauert
et al., 2006a; Alizon and Taylor, 2008; Wakano et al., 2009; Lion
andGandon, 2009, 2010; Lehmann and Rousset, 2010; Huang et al.,
2012).

Ecological variation can result from feedback between repro-
ductive rates and population densities – an intrinsic source of vari-
ation – or as a response to extrinsic changes of the environment,
which can be implemented by altering the interactions or by vary-
ing game parameters.

3.1. Variation of interaction types

In order to mimic seasonal variation, for example, consider
two types of PG interactions, discounting (D) and synergy (S),
both with N = 8 and d = 0.5: In D benefits are discounted
by ωD = 0.9 but the multiplication factor is high, rD = 4.2,
whereas in S benefits are synergistically enhanced by ωS = 1.1
but for a lower multiplication factor, rS = 2.1. This combination
of parameter values ensures that groups of cooperators have the
same fitness in D and S. With probability pD(t) = (sin(at + δ) +

1)/2 individuals engage in D and with pS(t) = 1 − pD(t) in S, i.e.
the probability to engage in one or the other type of interaction
changes over time reflecting changes in resource abundance or
relating to seasonal tasks. The parameter a indicates the relation
between the timescales of environmental fluctuations and the eco-
evolutionary dynamics while δ tunes the phase of the oscillating
wave. For a > 1 environmental fluctuations are faster than the
eco-evolutionary dynamics, slower for a < 1, and for a = 1 the
two timescales are the same. The dynamical equations, Eq. (4), thus
become:

ḟ = −zf (1 − f )

pD(t)F(f , z, rD, ωD)

+ pS(t)F(f , z, rS, ωS)


(5a)

ż = −(1 − z)

zf ((pD(t)rD + pS(t)rS) − 1) (1 − zN−1) − d


. (5b)

The gradient of selection, F(f , z), is split into F(f , z, rS, ωS) and
F(f , z, rD, ωD) for the two types of interactions. Based onnumerical
integration, the trajectories of periodic fluctuations betweenD and
S reveal qualitatively similar dynamical properties as the average
interaction, (D + S)/2, provided that environmental fluctuations
are sufficiently fast (a > 1) (compare Fig. 4 with Appendix C and
Fig. C.10).

As pD(t) oscillates the location and even stability of the fixed
point Q changes periodically, see Fig. 4 for ωD = 0.9, ωS = 1.1,
rD = 4.2, rS = 2.1, N = 8, and d = 0.5. In the pure D
scenario, pD(t) = 1, Q is stable, while for pure S, pD(t) = 0,
Q changes position and is unstable (manipulate both at Gokhale,
2014). In order to illustrate the detailed dynamics, we consider
the stability of Q as a function of pD, which is indicated by the
colours and cartoons in the top row of Fig. 4. For small pD (S
scenario), the fixed point Q is unstable (going from an unstable
node, orange to an unstable focus, pink) but becomes stable
for pD ≥ 0.35 (as a stable focus, blue). For slow oscillations
(a ≪ 1) the population invariably goes extinct because Q remains
unstable for extended periods. Note that in this case the initial
condition might matter, i.e. whether the S or D scenario applies
first. While this indeed affects the trajectories it does not alter the
eventual outcome, see Fig. 4. In contrast, for comparable timescales
(a ≈ 1) or fast oscillations (a ≫ 1), Q is moving fast and
changes stability frequently with the net effect that trajectories
are attracted towards Q and the population manages to escape
extinction. More specifically, for a ≈ 1 or larger, the coexistence
region essentially reflects the averaged case but as a decreases,
more and more initial conditions lead to extinction. Conversely,
for larger a, the sizes of the two basins seem no longer affected for
large a (comparing a = 1 and a = 10), which suggests an upper
limit for the basin leading to extinction.

3.2. Variation of the rate of return

Changes in the richness of biological environments, or the
economic situation of governing bodies in social settings, can be
captured by varying the multiplication factor r . For the traditional,
linear PG game (ω = 1) we consider r(t) = 3 sin(at + δ) + 4.5,
which ensures 1 < r(t) < N for N = 8. As before, a relates the
timescales of the eco-evolutionary dynamics and environmental
fluctuations and δ to the phase.

Again, for comparable timescales (a ≈ 1), or fast oscillations
(a ≫ 1), the qualitative dynamics is well captured by the average
multiplication factor, r̄ = 4.5, which also extends to non-linear
PG’s (ω ≠ 1). Observing the dynamics at fixed, incremental values
of r from 1 to 8 in discrete steps of 1r = 0.05, we find that for
small r the fixed point Q is missing and extinction is inevitable.
Q only appears at r = 2.2 but is still unstable. Only for r = 2.8, Q
turns into a stable fixed point and renders co-existence possible up
to r = 7.35 at which point Q disappears again and homogeneous
cooperation becomes a possible stable outcome for most of the
initial conditions. However, the trajectories for the oscillating r(t)
are strikingly different, see Fig. 5—extinction for slow oscillations
(small a), oscillating trajectories for a ≈ 1 and co-existence for fast
oscillations (large a).

3.3. Variation of synergy/discounting

In order to mimic marginal benefits of joining PG interactions
that change over time, we introduce temporal variation in the
synergy/discounting parameter,ω(t). This reflects another form of
changes to resource abundance or wealth as compared to variable
rates of return, r(t).

Implementing periodically oscillatingω(t) turns out to bemore
challenging because the range for discounting is bounded, ω ∈

(0, 1), whereas the range for synergy is not, ω ∈ (1, ∞). Because
of this asymmetry, we chose

ω(t) =


1

1 + sin(at + δ)
if sin(at + δ) ≥ 0 (discounting)

1 − sin(at + δ) if sin(at + δ) < 0 (synergy).
(6)

This ensures that the heaviest discounting, here 1/2, is counter-
balanced by the strongest synergy, here 2. As before, a relates the
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Fig. 4. Eco-evolutionary dynamics under environmental fluctuations: oscillations between interaction types, pD(t). In scenario D benefits are discounted, ωD = 0.9, with a
rate of return of rD = 4.2, as compared to scenario S where benefits are synergistically enhanced,ωS = 1.1, but at a reduced rate of return, rS = 2.1. The probability for each
type of interaction oscillates over time according to pD(t) = (sin(at + δ) + 1)/2 (top row) with a = {0.1, 1, 10} (columns). The fixed point Q is stable for larger pD(t) (blue)
and unstable for smaller ones (red, orange). The dynamics for the three phases δ = {π/2, 0, −π/2} labelled (i), (ii) and (iii) are shown in the bottom three rows. Trajectories
are obtained by numerically integrating Eq. (4) with a grain of 0.1 and those leading to extinction are coloured black while those surviving are green. The background colours
are obtained by integrating from initial conditions with a finer grain of 0.01.When compared to the average interaction (D+S)/2, i.e. when pD(t) = 0.5 (Fig. C.10), the panel
for a = 1 and a = 10 are in good qualitative agreement (sample trajectory (red, dashed) plotted in a = 10 (i)). For a = 0.1 the trajectories follow different paths but all lead
eventually to extinction. Even when beginning with coexistence (i), this is only transient as pD(t) eventually renders Q unstable and leads the trajectories to extinction from
which there is no recovery. Parameters: N = 8 and d = 0.5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
timescales of environmental fluctuations and eco-evolutionary dy-
namics and δ tunes the phase of the oscillation. The asymmetry
in the range of discounting and of synergy makes the appropriate
derivation of the average discounting/synergy, ω̄, difficult. Since
the arithmetic mean would overestimate the effect of synergy, we
choose the geometric mean, which is ω̄ ≈ 1. Interestingly, how-
ever, the characteristics of trajectories for ω(t) turn out to be very
different from the dynamics for the average ω̄—regardless of the
derivation of ω̄, see Figs. 6 and C.10. For comparable or fast oscil-
lations in ω(t), most initial conditions lead to homogeneous co-
operation at high densities. This outcome can be attributed to the
fact that for most ω ∈ [0.5, 2] the homogeneous cooperator equi-
librium is stable. However, for slow oscillations the evolutionary
outcome becomes highly susceptible to the initial configuration
as well as the initial phase of ω(t), either leading to extinction or
homogeneous cooperator populations. In particular, for very slow
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Fig. 5. Eco-evolutionary dynamics under environmental fluctuations: variable rates of return, r(t). The dynamics are depicted for oscillating rates of return, r(t) =

3 sin(at + δ) + 4.5 (top row), three timescales a = {0.1, 1.0, 10} (columns), and three phases δ = {π/2, 0, −π/2} (last three rows). The fixed point Q is stable if r(t)
lies in the yellow or blue regions, stable for red or orange and absent in white regions. The trajectories for comparable and fast ecological timescales are again in good
agreement with the dynamics based on the average return, r̄ = 4.5, which exhibits coexistence (Fig. C.10). A sample trajectory (red, dashed) for r̄ = 4.5 is plotted for a = 10
(i). For comparable timescales (a = 1) trajectories oscillate in response to the changing location and stability of Q, whereas for fast oscillations environmental changes
occur faster than the population can react, which results in an averaging effect. For slower oscillations extinction is inevitable but the initial phase of r(t) determines the
trajectory and thus the time to extinction. In particular, starting with a high rate of return, (i), the population persists for a longer time. Parameters: N = 8 and d = 0.5. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
oscillations, a ≪ 1, extinction is inevitable because it represents
the only stable state for extended periods of time. This is in stark
contrast to the dynamics for the average ω̄ = 1, which suggests
persistence of the population and co-existence of cooperators and
defectors for most initial configurations (Gokhale, 2014). The dis-
crepancy between the dynamics for the mean ω̄, see Fig. C.10, and
the trajectories for oscillating ω, see Fig. 6, arises because the gra-
dient of selection, F(f , z) is non-linear with respect to ω, which
means that the mean of the gradient is not the same as the gradi-
ent of themean, see Appendix C for details. In contrast, the gradient
F(f , z) is linear in r , which then supports the agreement between
the dynamics for r̄ and oscillating rates of return, cf. Figs. 5 and
C.10.

4. Discussion

Evolutionary models of social interactions traditionally as-
sume a separation of timescales from ecological processes such
that evolutionary selection always acts on ecological equilibria.
However, ecological ‘equilibria’ may not simply refer to stable
population sizes but also oscillatory dynamics based on stable
limit cycles and a clear separation of timescales may not always
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Fig. 6. Eco-evolutionary dynamics under environmental fluctuations: variable synergy/discounting, ω(t). For periodic oscillations between synergy and discounting, we
varyω ∈ [0.5, 2] according to Eq. (6) (top row) and illustrate the dynamics for three timescales a = {0.1, 1.0, 10} (columns), and three phases δ = {π/2, 0, −π/2} (rows (i),
(ii) and (iii)). For comparison, a sample trajectory (red, dashed) is shown for the dynamics of themean, ω̄ = 1 (panel (i), a = 10; cf. Fig. C.10). Interestingly, in the long run all
trajectories either lead to extinction of the entire population (black trajectories) or to the extinction of defectors (green trajectories) resulting in pure cooperator populations,
regardless of the initial phase or the timescale of oscillations. Similarly, for sufficiently fast oscillations (a = 1 and a = 10) the basins of attraction of each outcome are
hardly affected by phase or timescale. In contrast, for slow oscillations (a = 0.1) the basins of attraction sensitively depend on the initial phase and the population likely
goes extinct if it takes too long beforeω enters the synergistic regime.With a negative a, if the oscillations are slow i.e. a = −0.1, the dynamics in case of (ii) are qualitatively
different: as ω enters the synergistic regime first due to slow oscillations most trajectories have enough time to move towards the all cooperator edge. Parameters: N = 8,
r = 3 and d = 0.5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
apply. Nevertheless, two prominent theoretical frameworks for
modelling frequency-dependent evolutionary processes neglect
ecological changes: (i) the deterministic replicator dynamics
(Taylor and Jonker, 1978; Hofbauer and Sigmund, 1998) assumes
infinite population sizes and tracks only relative abundances of
strategies and (ii) the stochastic dynamics of the (frequency de-
pendent) Moran process (Nowak et al., 2004; Moran, 1962) as-
sumes that the population size is fixed. Implicitly this assumes that
the carrying capacity is independent of the type and abundance
of strategies. For a complete understanding of evolutionary pro-
cesses it is therefore important to incorporate ecological changes.
Especially evolutionary changes occurring on timescales compara-
ble to ecological changes necessitate an amalgamation into an eco-
evolutionary framework (Doebeli et al., 1997; Aviles, 1999; Avilés
et al., 2002; McNamara et al., 2004; Hauert et al., 2006a; Miekisz,
2008; Bailey et al., 2009). The importance of more comprehensive
theoretical approaches is supported by recent experimental results
(Beaumont et al., 2009; Sanchez and Gore, 2013).

We extended the eco-evolutionary framework for linear PG
(Hauert et al., 2006a) to include more general forms of social
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dilemmas by considering non-linear PG interactions through
discounted or synergistically enhanced accumulation of benefits
(Hauert et al., 2006b). We further the study into the ecological
domain by considering extrinsic environmental variations, which
affect the parameters of social interactions. Intrinsic ecological
changes affect the group size in public goods games through
variable population densities. This effect is similar to abstaining in
public goods interactions, although voluntary participation alone
is insufficient to stabilize cooperation and relies on additional
mechanisms including spatial structure (Hauert et al., 2002b),
punishment (Hauert et al., 2007) or institutional incentives
(Sigmund et al., 2010; Sasaki et al., 2012).

Ecological dynamics essentially affects the group size of the
public goods game. As group sizes increase, so do intuitively the
possibilities for social conflict. However, the reasons for forming
groups may qualitatively change the outcome. For example,
defending a resource against a common intruder can reduce social
conflict even if group sizes increase (Shen et al., 2014). Group
size is also essential in foraging (Motro, 1991) and variations may
promotemore egalitarian outcomes in the tragedy of the commune
(Killingback et al., 2010; Brännström et al., 2011).

Including spatial dimensions either explicitly through unoccu-
pied sites (Alizon and Taylor, 2008) or implicitly by limiting repro-
ductive opportunities (Hauert et al., 2006a) effectively reduces the
interaction group size and shows interesting parallels to voluntary
public goods games (Hauert et al., 2002b). Loners, who do not par-
ticipate in the public goods game receive benefits between that for
mutual cooperation and mutual defection. An abundance of lon-
ers implies smaller interaction group sizes which are favourable
for cooperators. As a consequence, the number of participants in-
creases and the public good becomes susceptible to exploitation by
defectors. However, once defectors prevail, they are outperformed
by defectors and the cycle starts all over again. Although, the dy-
namics of such voluntary public goods interactions does not admit
stable interior fixed points as opposed to the ecological feedback
mechanisms discussed herein—unless, of course, further mecha-
nisms such as institutionalized incentives come into play (Sasaki
et al., 2012).

Synergy and discounting generate non-linearities in the rate
of return of the PG and hence reflect diminishing returns
or economies of scale, which are common features of group
interactions in biological and social systems (Archetti, 2009;
Archetti and Scheuring, 2010; Boyd and Mathew, 2007; Peña
et al., 2015). For example, in cooperative breeding cichlid fish the
optimumbreeding group size changes depending on the perceived
environmental threats as compared to the potential benefits an
additional member could provide to the group (Zöttl et al., 2013).
Additionalmembers can dilute the risk of predation and/or actively
take part in territory defence. Costs due to enhanced brood
parasitism, cannibalism and growth reduction (Heg and Hamilton,
2008; Bruintjes et al., 2011), however, reduce the benefit leading
to active eviction of immigrants (Taborsky, 1985; Buston, 2003;
Cant et al., 2010). In addition, the cichlid example emphasizes an
important ecological factor: variable risks. In the presence of a
predator, being in a group dilutes the risk per individual and also
confuses the predator (Wrona and Jamieson Dixon, 1991; Kokko
et al., 2001). Moreover, it might be possible to actively deter the
predator, whichwould be impossible alone. However, larger group
sizes also imply larger visibility and higher encounter rates with
predators (Hebblewhite and Pletscher, 2002). Thus, changes in
environmental/ecological factors may alter the characteristics of
social interactions and, in turn, affect the evolutionary trajectory,
as demonstrated in theory (Uyenoyama, 1979; Fudenberg and
Harris, 1992; Wakano and Hauert, 2011; Libby and Rainey, 2011;
Hanski, 2012) and experiments (Beaumont et al., 2009; Zhang and
Rainey, 2010; Sanchez and Gore, 2013).
Here we considered two sources of ecological variation:
intrinsic effects based on population dynamics (Section 2.1) and
extrinsic effects based on changes in the environment (Section 3),
which are exemplified by three types of extrinsic, periodic
variation in: (i) probabilities to engage either in discounted
(diminishing returns) or synergistically enhanced (economies of
scale) PG interactions, (ii) efficiency of the PG (varying rate of
return, r), and (iii) non-linearity in the accumulation of benefits
(varying synergy/discounting, ω).

In the first two cases the characteristics of the trajectories gen-
erated under periodical oscillations are in good qualitative agree-
ment with the corresponding average dynamics – the average of
the two games in (i), and the average multiplication factor r̄ in
(ii) – provided that environmental fluctuations are sufficiently fast.
Interestingly, in scenario (iii) the dynamics based on the aver-
age ω̄ suggests stable co-existence of cooperators and defectors at
intermediate population densities, see Gokhale (2014). The trajec-
tories under fluctuating ω converge to high densities of homoge-
neous cooperator populations. More specifically, oscillations in ω
not only promote cooperation but even eliminate defection, pro-
vided that the environmental fluctuations arise on a sufficiently
fast timescale. For sufficiently slow oscillations the population will
inevitably go extinct in all three cases, if for any value of the oscil-
lating function, extinction is the only stable state. The initial config-
uration and initial phase of environmental oscillations only affects
the time and trajectories leading to extinction.

Effects of ecological variation based on intrinsic or extrinsic
sources can alter the fitness landscape or, similarly, pleiotropy
between traits can change the effective selection pressure
observed on a single trait (McNamara, 2013). Seasonal variation
can affect the epidemiology of important vector borne diseases
and could have triggered the evolution of plastic transmission
strategies thatmatch the temporally varying density ofmosquitoes
(Cornet et al., 2014). Even the interaction patterns themselves can
be stochastic, furthermore complicating the population dynamics
(Huang et al., 2015). Comparisons between data and predictions,
which account for such complications, reflects a recent trend
in experimental studies (Sanchez and Gore, 2013; Lewis and
Dumbrell, 2013). Including non-linear payoffs and temporally
fluctuating interaction parameters renders evolutionary game
dynamics more complex but provides a window to investigate the
rich dynamical scenarios routinely seen in nature. Herewepropose
ways towards richer evolutionary game theory.
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Appendix A. Average fitness of cooperators and defectors

The public goods interaction admits up to N players. However,
at low population densities it may be difficult to recruit N players
and hence the effective interaction group size S ranges from 2 toN .
Note that at least two players are required for social interactions—
a single player gets a zero payoff. For a focal individual the
probability that there arem cooperators among its S−1 co-players
is given by
S − 1
m

 
x

1 − z

m 
y

1 − z

S−1−m

. (A.1)
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Setting the costs of cooperation to c = 1, the payoffs for defectors
and cooperators in a group of size S are

PD(S) =
r
S

S−1
m=0


S − 1
m

 
x

1 − z

m 
y

1 − z

S−1−m 1 − ωm

1 − ω

(A.2a)

PC (S) =
r
S

− 1 +
r
S

S−1
m=0


S − 1
m

 
x

1 − z

m 
y

1 − z

S−1−m

× ω
1 − ωm

1 − ω
. (A.2b)

The probability that an individual interacts in a group of size S,
i.e. faces S − 1 co-players, is
N − 1
S − 1


(1 − z)S−1zN−S . (A.3)

This yields the average payoffs for cooperators and defectors:

fD =

N
S=2


N − 1
S − 1


(1 − z)S−1zN−SPD(S) (A.4a)

fC =

N
S=2


N − 1
S − 1


(1 − z)S−1zN−SPC (S), (A.4b)

which simplify to

fD =
r
N

1
1 − z − x(1 − ω)


(x(ω − 1) + 1)N − 1

ω − 1
−

x(1 − zN)

1 − z


(A.5a)

fC = fD − F(x, z), (A.5b)

with

F(x, z) = 1 + (r − 1)zN−1
−

r
N

(1 − x(1 − ω))N − zN

1 − z − x(1 − ω)
. (A.6)

In the special case of ω = 1 this reduces to a function in z alone
(Hauert et al., 2006a). Effects of fluctuating population densities on
the characteristics of evolutionary games can be investigated by
considering the fitness of the two strategies, Eq. (A.5), at particular
densities, see Fig. A.7. For discounting, ω < 1, the resulting
interactions are either dominance or co-existence games, whereas
for synergy, ω > 1, the resulting interactions are either bi-stable
or dominance of cooperators (by-product mutualism). In either
case the population dynamics is capable of triggering a qualitative
change in the type of interaction because the population density
determines the average interaction group size S. At sufficiently low
densities S < r holds, which supports cooperators, while at higher
densities S > r holds and favours defectors.

A.1. Homogeneous population

If the population consists of only defectors, x = 0, their average
payoff is fD = 0 and we have ẏ < 0. Thus, defectors continue
to decrease in abundance and eventually go extinct. In contrast,
in a population of only cooperators, y = 0, the dynamics of the
cooperator density is given by ẋ = x(zfC − d) and their average
fitness, fC , from Eq. (A.5) simplifies to

fC =


(1 − r)(1 − (1 − x)N−1) if ω = 1

(1 − r)(1 − x)N−1

+
r

(x(ω − 1) + 1)N − 1


N(ω − 1)x

− 1 otherwise.
(A.7)

Apart from the trivial fixed point x = 0, which marks extinction,
further fixed points may exist whenever d = zfC , see Fig. A.8. For
ω = 1 an explicit expression for the maximum death rate that
a population of only cooperators can sustain is given by dmax =

(r − 1)(N − 1)N−N/(N−1). For d > dmax the population invariably
goes extinct. For d < dmax the populationmaypersist provided that
the initial population density is sufficiently high. Unfortunately, for
generalω (andN) analytical expressions for dmax are not accessible.
However, for ω > 1 cooperators can sustain greater death rates
while the converse holds for ω < 1, see Fig. A.8. If the density of
cooperators is low then the benefits produced by the public good
are unable to offset the death rate and the population goes extinct.
The threshold density required to sustain the population decreases
with increasing ω, i.e. moving from discounted to synergistically
enhanced benefits. In ecology, density dependent effects reflecting
difficulties in finding interaction partners (or mates) are referred
to as the Allee effect (Stephens and Sutherland, 1999).

Appendix B. Fixed points and stability

In order to determine the stability of the interior fixed points,Q
and P, we need to resort to numerical evaluations of the trace, τ ,
and determinant, ∆, of the Jacobian of Eq. (5) at each interior fixed
point. The interior fixed points are given by non-trivial solutions to
ḟ = 0 and ż = 0, see Eq. (5). From ż = 0 follows that

feq =
d

(r − 1)z(1 − zN−1)
(B.1)

and similarly, ḟ = 0 requires that F(feq, z) = 0 where

F(feq, z) = 1 + (r − 1)zN−1
−

r
N

(1 − feq(1 − z)(1 − ω))N − zN

1 − z − feq(1 − z)(1 − ω)
,

(B.2)

which implicitly defines zeq and may admit several solutions in
[0, 1]. Unfortunately zeq is analytically inaccessible. Numerical
analysis shows that depending on r and N there are zero, one or
two solutions, which corresponds to no interior fixed point, one
fixed point Q or two fixed points Q and P. Calculating the Jacobian
at Q and P using F(feq, zeq) = 0 and Eq. (B.1) yields,

J =

 −zf (1 − f )
∂F(f , z)

∂ f
−zf (1 − f )

∂F(f , z)
∂z

−(r − 1)(1 − z)z(1 − zN−1) −(r − 1)(1 − z)f (1 − NzN−1)

 .

(B.3)

The trace τ and determinant ∆ are then given by,

τ = −f

(r − 1)(1 − z)


1 − NzN−1

+ z(1 − f )
∂F(f , z)

∂ f


,

(B.4)

∆ = f (1 − f )z(1 − z)(r − 1)

f

1 − NzN−1 ∂F(f , z)

∂ f

− z

1 − zN−1 ∂F(f , z)

∂z


. (B.5)

Numerical evaluations of τ and ∆ for both internal fixed points P
and Q reveal that Q can exhibit a variety of dynamical properties
but interestingly, P, whenever present, is always a saddle point,
∆ < 0. Asω changes, the fixed pointQ follows a curve through the
space spanned by τ and ∆, see Fig. B.9.

For strong discounting (small ω) no interior fixed point exists
and the population goes invariably extinct. As ω increases one
interior fixed point may appear through a transcritical bifurcation
or two fixed points through a saddle node bifurcation. The
presence, location and stability of the fixed points Q and P is
analytically inaccessible (except when ω = 1 Hauert et al.,
2006a, 2008) and has been determined numerically Fig. B.9. Since
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Fig. A.7. Average payoffs for different ecological scenarios. The payoffs for cooperators, fC (solid, blue), and defectors, fD (dotted, red), are shown at high (left, z = 1/4),
middle (centre, z = 1/2), and low (right, z = 3/4) population densities, under discounting (rows (a) and (b), ω = 0.6) and synergy (rows (c) and (d), ω = 1.2), as well as
for low (rows (a) and (d), r = 3) and high (rows (b) and (c), r = 3) multiplication factors with cost c = 1 and N = 8. Together this can generate the four characteristic
scenarios of social dilemmas. For example, at z = 1/2 (centre column), defectors dominate in (a), co-existence in (b), cooperators dominate in (c) (by-product mutualism),
and bi-stability in (d) (coordination game). The characteristics of the game changewith population density because low densities support cooperators whereas high densities
promote defectors. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
in the absence of synergy or discounting, ω = 1, at most a
single interior fixed point exists, the second interior fixed point
disappears through a transcritical bifurcation (leaving the (1 −

z, f )-plane), while ω is still in the discounting regime. The interior
fixed point then undergoes a Hopf-bifurcation—either sub- or
super-critical depending on the game parameters (Hauert et al.,
2008). In the synergistic regime, a second interior fixedmay (again)
appear and for still higher ω the two interior fixed points collide
and disappear in another saddle node bifurcation or one interior
fixed point disappears through a transcritical bifurcation. Finally,
for strong synergistic effects defectors always go extinct leaving
a homogeneous population of cooperators behind. Interactive
simulations provide opportunities for further online explorations
of the rich eco-evolutionary dynamics (Gokhale, 2014).

Typically, Q passes through various phases of stability (illus-
trated by the cartoons for local stability)—starting as an unsta-
ble node at low ω, turning into an unstable focus, then a sta-
ble focus and finally into a stable node before Q disappears at
high ω. Since τ is polynomial in ω and ω is continuous, the fixed
point becomes a centre (degenerate focus) for particular values
of ω.

Appendix C. Average dynamics under oscillating environments

The trajectories calculated using the oscillating functions
have been shown in the main text for (i) variation in the
interaction types, Fig. 4; (ii) variation in the rate of return,
Fig. 5; and (iii) variation in the synergy/discounting factor, Fig. 6.
Typically assuming a separation of timescales between the faster
environmental oscillations and the slower evolutionary dynamics,
the environmental effects can be averaged out. Here we show the
dynamics, which emerges following this assumption in Fig. C.10.
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Fig. A.8. Homogeneous cooperator populations. In the absence of defectors, y = 0, a population of cooperators can persist for sufficiently low death rates, d. For ω = 1, the
maximum is given by dmax = (r −1)(N −1)N−N/(N−1) . As soon as d exceeds the threshold, dmax , the population goes extinct. The maximum sustainable death rate increases
with ω such that cooperators can sustain higher death rates for synergistically enhanced benefits, ω > 1, than for discounted benefits, ω < 1. Solid lines indicate stable
population densities and unstable states are indicated by dashed lines.
Fig. B.9. Stability analysis of the interior fixed points while varying the synergy/discounting parameter ω. Parameters are the same as in Fig. 1: N = 8, d = 0.5 (a) r = 2.2
(b) r = 2.7 (c) r = 2.8 (d) r = 5. For ω = 1 at most a single fixed point Q can exist in the interior of the (1 − z, f )-phase plane. Varying the synergy/discounting parameter
ω, another fixed point P may appear. Whenever P exists, it is always a saddle, ∆ < 0. Therefore we track only the stability and dynamical characteristics of Q by following
its trajectory through the space spanned by the determinant ∆ and the trace τ of the Jacobian matrix, Eq. (B.3), as a function of ω. The curves τ = 0 and τ 2

− 4∆ = 0
(parabola) divide the space in four regions with different dynamical features as indicated in panel (a). Typically, Q appears as an unstable node at low ω. As ω increases, Q
first turns into an unstable focus, then a stable focus and usually ends up as a stable node before disappearing again. Note that not all dynamical regimes may be observed
for all parameters. For example, in (d) Q already appears as a stable focus. The presence of the second fixed point P is indicated by open circles.
For fast and even comparable timescales between the oscilla-
tions in the interaction types and the rate of return we do indeed
see the trajectories reflecting qualitatively similar dynamics as that
for the average (compare Figs. 4, 5 with left and middle panels in
Fig. C.10). For oscillating synergy/discounting ω, however, neither
fast nor comparable timescales recover the dynamics for the aver-
age, ω̄ (compare Figs. 6 and C.10, right panel). One reason that the
dynamics is well captured by the average in the case of oscillat-
ing rates of returns, r , but not for oscillating synergy/discounting,
ω, is that the gradient of selection F(f , z) is a linear function of r
whereas it is nonlinear in ω. In order to illustrate this difference,
we consider Jensen’s inequality, which states that the average of
a non-linear function is different from the function evaluated at
the average of a random variable (Jensen, 1906; Gillespie, 1977).
More specifically, we consider two Gaussian random variables, R
and Ω , centred around r̄ = 4.5 and ω̄ = 1, respectively, with
variance 1. To avoid meaningless negative values, the distribution
is symmetrically truncated at 0. From the linearity in r follows
that E(F(f , z)[R]) = F(f , z)[E(R)] for fixed N and ω. As a conse-
quence the dynamics for fluctuating r matches that of r̄ , provided
that fluctuations arise on sufficiently fast time scales. In contrast,
E(F(f , z)[Ω]) ≠ F(f , z)[E(Ω)] for fixed N and r , see Fig. C.11. It
turns out that the function of the mean exceeds the mean of the
function,E(F(f , z)[Ω]) < F(f , z)[E(Ω)]. Since F(f , z) denotes the
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Fig. C.10. Dynamics under average of the environmental oscillations. Taking the average of the environmental oscillations allows us to analytically evaluate the dynamics
and the fixed points. For a variation in interaction types, the discounting and synergistic scenarios oscillate with probability pD(t) = (sin(at)+1)/2. Here taking the average
value of pD(t) = 0.5 such that we have (D + S)/2 the dynamics is visualized in the left panel with relevant parameters being ωD = 0.9, ωS = 1.1, rD = 4.2, rS = 2.1.
For a variation in the rate of return, oscillating as per r(t) = 3 sin(at) + 4.5, the average is r̄ = 4.5 as shown in the central panel with ω = 1. For a variation in the
synergy/discounting parameter, oscillating as per Eq. (6), the geometric average is ω̄ = 1 resulting in the dynamics as visualized in the right panel for r = 3. For all scenarios,
we have N = 8 and d = 0.5.
Fig. C.11. Illustration of Jensen’s inequality. (a) For Gaussian distributed rates of return, r , with mean r̄ = 4.5 and variance 1 the payoff difference F(f , z) = fD − fC of the
mean equals the mean of the payoff difference, E(F(f , z, R)) = F(f , z, E(R)) because it linearly depends on r . (b) In contrast, for Gaussian distributed ω the function of the
mean F(f , z)[E(Ω)] (blue, translucent surface) differs from the mean of the function E(F(f , z)[Ω]) (red, solid surface). The latter turns out to be consistently smaller and
hence fluctuations in ω favour cooperators. Parameters: N = 8 (a) ω = 1.2 (b) r = 2. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
advantage of defectors over cooperators, it follows that fluctua-
tions in ω are beneficial for cooperation and has been verified for
various r .

If environmental variations occur at a slower timescale than
the evolutionary dynamics then the results are drastically different
from the averages (compare left columns in Figs. 4–6 with the
averages in Fig. C.10). In these cases even the phase, in which
the system enters the particular scenarios, is important for the
trajectories eventual unravelling.
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