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The evolution of cooperation among unrelated individuals in human and animal societies remains a challeng-
ing issue across disciplines. In this context, two models have attracted most attention: the prisoner’s dilemma for
pairwise interactions and the public goods game for group interactions. The two games share many features as
demonstrated by the close linkage of their cores. In spatially structured systems with individuals arranged on a
lattice we investigate effects of group size and lattice geometry on the success of cooperators and defectors in
compulsory and voluntary interactions. The geometry (square versus honeycomb), i.e., the connectivity turns out
to have surprisingly pronounced and robust effects on the fate of cooperators. Apparently they thrive more easily
on honeycomb lattices. As expected, it becomes increasingly difficult to promote cooperation in sizable groups
but voluntary participation significantly lowers the threshold for persistent cooperative behavior. In fact, this
effect is even more pronounced for larger groups. The risk avoiding option to not participate provides additional
protection to clusters of cooperators against exploitation and introduces rock-scissors-paper-type cyclic domi-
nance, which gives rise to intriguing spatio-temporal patterns. © 2003 Wiley Periodicals, Inc.
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1. INTRODUCTION

I n biology and social sciences, the prisoner’s dilemma

(PD) [1] has become the leading paradigm to explain

cooperative behavior (see e.g., [2,3]). It captures pairwise

interactions where two players have two behavioral options:

they decide simultaneously whether to cooperate or to de-

fect. Mutual cooperation pays each player a reward R,

whereas mutual defection yields the punishment P. If a

cooperator meets a defector, the former gets the sucker’s

payoff S and the latter gets away with the temptation to

defect T. The payoffs must satisfy T � R � P � S. Therefore,

“rational” players always choose defect because they are

better off regardless of the opponent’s decision. Thus, ulti-

mately the players end up with the lower punishment P

instead of the higher reward R—and hence the dilemma.

Usually, an altruistic act is characterized by the cost � to the
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donor and the benefit � to the recipient. Obviously � � � �

0 must hold and we get R � � � �, S � ��, T � �, and
P � 0.

In economics, the related public goods game (PGG) (see
e.g., [4,5]) attracts increasing attention to study cooperative
behavior and, in particular, deviations from the “rational”
equilibrium [6]. The PGG describes group interactions
where, typically, an experimenter endows, e.g., four players
with $10 each. The players then have the opportunity to
invest part or all of their money into a common pool,
knowing that the total amount will be doubled and split
equally among all players, irrespective of their contribu-
tions. If everybody invests their money, they end up with
$20. However, each player faces the temptation to free-ride
on the other’s contributions by withholding the money be-
cause each invested dollar yields only a return of 50 cents to
the investor. If everybody adopts this “rational” strategy, no
one will increase the initial capital and forego the public
good.

For both games, traditional and evolutionary game the-
ory invariably predict dominance of asocial, defecting be-
havior. PD and PGG interactions are abundant in nature.
They range from virus strategies, feeding behavior in vam-
pire bats, and predator inspection in sticklebacks to nature
conservation, environmental issues, or social security, to
name only a few [7–10]. As everybody knows, not all of these
examples have evolved into cooperative systems. However,
far more important is the surprisingly high and abiding
readiness to cooperate. The contrast to theoretical predic-
tions becomes even more striking given the considerable
difficulties to establish and maintain cooperative behavior
in sizable groups [11].

Advances in theory and experiments have identified sev-
eral mechanisms capable of promoting and stabilizing co-
operation, such as direct or indirect reciprocity [12,13] and
reward or punishment [14 –17]. In the following, we focus
on and combine two further mechanisms: spatial extension
[18 –20] and voluntary participation [21,22]. In spatially ex-
tended systems cooperators may thrive by forming clusters,
which reduces exploitation through defectors, whereas vol-
untary participation in public enterprises may provide an
escape hatch out of some social traps.

2. PRISONER’S DILEMMA VERSUS
PUBLIC GOODS GAMES
In order to compare and link the two games, we first gen-
eralize the PD to an arbitrary number of players following a
simple rule [23]: (a) cooperators obtain R points from every
other cooperator and S points from defectors. (b) defectors
draw T points from cooperators and P points from other
defectors. In groups of N players with nc cooperators (and
N � nc defectors) the payoffs are given by

Pc � �nc � 1�R � �N � nc�S � �nc � 1�� � �N � 1��

Pd � ncT � �N � nc � 1�P � nc�. (1)

In the limit of pairwise interactions this reduces to the
payoff values introduced above. Also note that with T � R �

P � S the dilemma is preserved for any N. Regardless of the
group composition, defectors are always better off than
cooperators, but groups of defectors get only (N � 1) P or 0
as opposed to (N � 1) R or (N � 1)(� � �) for mutual
cooperation.

Second, we reduce the PGG to its core by considering
only two levels of investment: zero, corresponding to defec-
tors withholding their money, or a fixed amount c denoting
the cooperators contribution. The value of the public good
is determined by the multiplication factor r of the common
pool. r � 1 must hold such that mutual cooperation per-
forms better than mutual defection. Note that for r � N the
social dilemma raised by the PGG is relaxed in the sense
that each invested dollar has a positive net return. At the
same time, the higher gain of defectors is preserved regard-
less of the group composition. The payoffs for N players
engaged in a PGG are then given by

Pc � � rnc

N
� 1� c

Pd �
rnc

N
c. (1)

From Equations (1), (2) we then obtain the transforma-
tion between the PD and PGG:

� 3
r
N

c

� 3
N � r

N�N � 1�
c. (3)

Note that the condition � � � in the PD becomes equivalent
to demanding r � 1 in the PGG and similarly, from � � 0
follows r � N. Because of this simple transformation, we no
longer distinguish between the PD and PGG. Although we
generally stick to the PGG, the discussion of various group
sizes includes pairwise interactions, i.e., the traditional PD.
As an additional simplification but without loss of general-
ity, we normalize the investment costs c of the PGG to unity.

3. VOLUNTEERS IN SPACE
So far we implicitly assumed compulsory participation in
the PGG by restricting the behavioral options to cooperation
and defection. In nature, however, individuals often have
the ability and possibility to choose their partners or to
abstain from unpromising public enterprises. We model this
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by introducing a third strategical character: the loners. Lon-
ers are risk averse and refuse to participate in PGGs. They
prefer an autarkic way of living and rather rely on a small
but fixed source of income � with 0 � � � r � 1. The two
inequalities indicate that loners are assumed to perform
better than groups of defectors but worse than mutual co-
operation. Because the payoffs now depend on the number
of loners in the group, we need to modify Equation (2):

Pc �
rnc

nc � nd
� 1

Pd �
rnc

nc � nd

Pl � �, (4)

where nc � nd indicates the actual number of participants in
the PGG. Solitary cooperators or defectors are assumed to
act as loners. The three strategies exhibit cyclic dominance:
if cooperators abound, it pays to defect, but if defectors

prevail, it is best to abstain, and if no one participates, small

groups can form which render cooperation attractive again.

Although voluntary participation is not able to stabilize

cooperation, it provides a natural way to avoid deadlocks in

states of mutual defection and economic stalemate. It en-

ables cooperators to thrive and persist at substantial levels

even in sizable groups, in absence of repeated interactions

and under full anonymity [21]. In well-mixed populations

with replicator dynamics [24] this system can be solved

analytically despite the highly nonlinear payoff terms [22].

In this article, we consider spatially extended variants of

the PGG where players are arranged on a rigid regular lattice

and interact only within their immediate neighborhood.

The size of the neighborhood determines the maximum

number of participants N in the PGG. In the following we

discuss various different neighborhood types on square and

honeycomb lattices ranging from pairwise interactions to

the Moore neighborhood with N � 9. According to the

principles of evolutionary game theory [25], we assume that

the average payoff achieved in PGG interactions, i.e., the

FIGURE 1

Pairwise interactions in the compulsory PGG on square (a)–(c) versus honeycomb lattices (d)–(f): equilibrium frequencies (a,d) and payoffs (b,e) of
cooperators (blue) and defectors (red) as a function of the multiplication factor r together with typical snapshots of the lattice for r � 1.78 (c,f). The bold
black line shows the average population payoff P� . Below the threshold value r � rc cooperators quickly vanish, whereas for high r � rd defectors go
extinct. For intermediate r the two strategies co-exist in dynamical equilibrium. As soon as cooperators are able to survive (r � rc), their average payoff
is consistently and significantly higher than for defectors. Interestingly, honeycomb lattices promote cooperation as indicated by the lower threshold value
rc � 1.675, contrasting with rc � 1.735 on a square lattice. Similarly, cooperators are capable of displacing defectors already for significantly lower r.
A 200 � 200 lattice with periodic boundaries is randomly initialized with 80% cooperators and 20% defectors. This asymmetry compensates for the inherent
advantage of defectors in random environments and reduces the risk of accidental extinctions of cooperators due to random fluctuations. The system is
then relaxed over 5000 Monte-Carlo (MC) steps. One such step covers M interactions where M stands for the number of sites on the lattice. The equilibrium
frequencies and payoffs are determined by averaging over another 5000 MC steps. To improve the accuracy in the vicinity of rc and rd, several simulations
were run on 300 � 300 lattices and relaxation times of 104 MC steps. The snapshots show a 100 � 100 lattice after 300 MC steps where intermediate
color shades indicate sites that have recently changed their strategy.
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score of a player determines its reproductive success. In the
present context this refers to the probability that neighbors
imitate and adopt the player’s strategy [24,26].

In order to determine the equilibrium frequencies of the
strategies, the lattice is evolved in time according to the
following procedure: a randomly selected player compares
his score to those of his neighbors and switches to better
performing strategies with a probability proportional to the
difference in scores but sticks to his current strategy other-
wise. Note that this represents a spatial analogue of the
replicator or imitation dynamics. Whenever a player decides
to switch strategy, its score is reset. After reconsidering the
strategy, a PGG is offered to the player and its neighbors.
Finally, the scores of all players involved are updated ac-
cording to their individual performance.

4. PAIRWISE INTERACTIONS
Pairwise interactions, i.e., the PD, in spatially extended sys-
tems and the emergent complex dynamics have been ex-
tensively studied in the literature [27–29]. The spatial exten-
sion enables cooperators to prosper through cluster
formation and thereby reducing exploitation by defectors.
In well-mixed populations with random encounters and

identical game parameters, cooperators do not stand a

chance and invariably defectors dominate.

Here we focus on two other aspects: effects of the lattice

geometry as well as voluntary participation on the equilib-

rium frequency of the strategies. Let us first consider the

compulsory game on the traditional square lattice com-

pared to honeycomb or hexagonal lattices. On the square

lattice a randomly selected player compares its score to a

randomly chosen neighbor out of a Moore neighborhood,

i.e., out of the eight adjacent sites reachable by a chess-

kings-move. Similarly, on a honeycomb lattice, one neigh-

bor is chosen at random out of the six adjoining sites. After

reassessing its strategy, the player interacts with possibly

another, again randomly chosen, neighbor out of the same

neighborhood. Figure 1 shows the equilibrium frequencies

and payoffs of cooperators and defectors as a function of

the multiplication factor r. On both lattice types three dy-

namical domains are identified: for low r � rc cooperators

are doomed and defectors dominate, whereas for suffi-

ciently high r � rd the clustering advantage of cooperators

becomes large enough to eventually displace all defectors.

Intermediate values of rc � r � rd lead to co-existence of the

two strategies. The index 	 of the thresholds r	 always refers

FIGURE 2

Pairwise interactions in the voluntary PGG on square (a–c) versus honeycomb lattices (d–f): equilibrium frequencies (a,d) and payoffs (b,e) of cooperators
(blue), defectors (red), and loners (green) as a function of r with � � 0.8 together with typical snapshots for r � 1.82 (loners yellow). The bold black line
indicates the average population payoff P� . For r � 1 � � loners dominate because they outperform even groups of cooperators. Above this threshold
cooperators immediately take over on honeycomb lattices, whereas on square lattices a domain of co-existence follows. At first, all three strategies co-exist
until for r � rl � 1.86 loners go extinct and cooperators thrive without their assistance. Soon after, for r � rd � 1.925, defectors follow and only
cooperators remain. In (f) the system has not yet completely relaxed and few small patches of defectors still exist, bound to vanish soon. The simulation
parameters are the same as specified in Figure 1, except that at initialization the frequencies of the strategies were set to 20% defectors with 40%
cooperators and loners.
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to the vanishing strategy. Despite these identical qualitative

features, surprisingly pronounced differences are observed

on the quantitative level originating solely in the different

geometries. Regardless of considerable noise in the update

procedure, it is apparently far easier for cooperators to

prosper on honeycomb lattices, as reflected by the signifi-

cantly lower threshold values rc, rd for the appearance/

extinction of cooperators and defectors, respectively. The

reason for this difference lies in the connectivity of the two

lattice types, i.e., in the different numbers of potential part-

ners. With a higher individual connectivity, clusters of co-

operators are more exposed to exploitation. Consequen-

tially it becomes more difficult to establish cooperation on a

square lattice with the Moore neighborhood (eight neigh-

bors) than on a honeycomb lattice with six neighbors.

TABLE 1

Approximate Threshold Values rc, rd and Width rc � rd of the
Co-existence Region for All Neighborhood Types under Consideration

N rc rd Width Neighborhood

2 1.675 1.8 0.125 Pairwise (honeycomb)
2 1.735 1.9375 0.2025 Pairwise (square)
5 2.4 3.1 0.7 von Neumann
7 2.75 3.75 1.0 Honeycomb
9 3.265 4.725 1.46 Moore

All values increase with group size N confirming that it gets increas-
ingly difficult to promote cooperation in larger groups, i.e., requiring
significantly higher r and widening the region of co-existence.

FIGURE 3

Equilibrium frequencies (a,d,g) and payoffs (b,e,h) of cooperators (blue) and defectors (red) on regular lattices in the compulsory PGG as a function of r
together with typical snapshots for r � 3.2 (c,f,i). The bold black line indicates the average population payoff P� . The group size N decreases from top to
bottom: (a–c) square lattice with Moore neighborhood N � 9, (d–f) honeycomb lattice (N � 7) and (g–i) square lattice with the smaller von Neumann
neighborhood (N � 5). The dynamics displays three domains (cf., Figure 1): below the threshold rc cooperators quickly vanish, but for r � rd they
eventually displace all defectors and for intermediate values rc � r � rd the two strategies co-exist. The group size N dominantly determines the fate
of cooperators: first, the threshold for persisting cooperation rc and second, the region of co-existence both increase with N (see Table 1). Both effects
underline the increased difficulty to establish cooperation in sizable groups. All simulation parameters are as specified in Figure 1.
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Allowing for voluntary participation, i.e., introducing the
loner strategy, considerably affects the fate of cooperators
and defectors. The equilibrium frequencies and payoffs are
shown in Figure 2 for a fixed income of loners with � � 0.8.
For r � 1 � � loners trivially dominate because they gain
even more than groups of cooperators. On honeycomb lat-
tices the regions of co-existence are missing. Once mutual
cooperation outperforms loners (r � 1 � �), cooperators
readily and seamlessly take over. This is not too surprising
because in absence of loners, cooperators took over for rd �

1 � �. In contrast, on square lattices [see Figure 2(a,b)] above
this threshold all three strategies co-exist giving rise to in-
triguing spatio-temporal patterns. Somewhat surprisingly
this is accompanied by a drop in average population payoff
P� � �. This indicates that the population would be better off

without the opportunity to participate in the PGG, i.e., in
homogenous states of all loners. Above another threshold
rl 	 1.86 loners no longer provide a viable option and
vanish. One might say that the players have, out of free will,
changed the voluntary game into a compulsory one. In this
domain P� quickly recovers and exceeds �. For r � rl coop-
erators thrive on their own and soon displace defectors
entirely (cf., Figure 1).

Interestingly, in well-mixed populations the voluntary
PGG with pairwise interactions (r � 2) always relaxes into a
homogenous state of all loners. Only in spatially structured
systems, the loner strategy becomes a valuable alternative
providing additional protection to cooperative clusters
against exploitation by defectors. However, this mechanism
becomes apparent only for smaller values of �, i.e., for � �

FIGURE 4

Equilibrium frequencies (a,d,g) and payoffs (b,c,h) of cooperators (blue), defectors (red), and loners (green) in voluntary PGG as a function of r with � �
0.8, together with typical snapshots for r � 3.0 in (c,f,i) (loners yellow). The bold black line indicates the average population payoff P� . The graphs
are arranged as in Figure 3: (a–c) Moore neighborhood (N � 9), (d–f) honeycomb lattice (N � 7), (g–i) von Neumann neighborhood (N � 5). For
r � 1 � � loners dominate but above that threshold or soon after, a domain follows with all three strategies co-existing. For larger r � rl, cooperators
thrive on their own and loners go extinct. Consequentially, the results become identical to the compulsory game (cf., Figure 3). Voluntary participa-
tion significantly increases the parameter range where cooperative behavior persists (see Table 2), an effect that is even more pronounced for larger group
sizes.
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rc � 1. In order to simplify comparisons we kept � fixed for
all simulations presented here. This results in fairly large
values for pairwise interactions, but � appears far smaller in
groups as large as N � 9, which generally require higher r.

5. GROUP INTERACTIONS
According to the original application of the PGG we now
turn to larger groups of interacting individuals. On square
lattices we consider the Moore neighborhood with N � 9
consisting of the chosen player and its eight nearest neigh-
bors and the smaller von Neumann neighborhood including
only the four neighbors to the north, east, south, and west
resulting in N � 5. An intermediate size with N � 7 is
considered on a honeycomb lattice.

For all three neighborhood sizes the equilibrium fre-
quencies of cooperators and defectors and their payoffs
are shown in Figure 3 for the compulsory game, i.e., in
absence of the loner strategy. The qualitative features
discussed for pairwise interactions remain unchanged for
larger N. Again three domains are observed: for low r � rc

defectors dominate, co-existence for intermediate values and
homogenous cooperation for high r � rd. Once cooperators
persist, they achieve significantly higher payoffs than defec-
tors.

On quantitative levels, interesting differences and trends
are observed (see Table 1). The threshold value rc as well as
the width of the region of co-existence increases with N.
Both trends indicate that it becomes increasingly difficult to
establish cooperation in larger groups.

Voluntary participation has pronounced effects on the
fate of cooperators in larger groups (see Figure 4). In fact,
the simulations suggest that the cooperators advantage
tends to increase with N. For r � 1 � � loners invariably
dominate. Above this threshold or soon after, a region fol-
lows where all strategies co-exist in dynamical equilibrium.
The rock-scissors-paper-type dominance of cooperators,
defectors and loners induces traveling waves sweeping
across the lattice and give rise to intriguing dynamically
changing patterns. Increasing r further eventually leads to
the extinction of loners at rl. For r � rl the system is equiv-
alent to the compulsory game (see Figure 3) because loners
no longer provide a viable alternative.

The increase in the parameter range of persistent coop-
erative behavior is shown in Table 2 for all N under consid-
eration. The threshold rc is shifted toward significantly
lower r. This results from the additional protection provided
by loners: obviously they mitigate exploitation simply by
occupying sites along the cluster boundary, but in addition,
they reduce the number of participants in the PGG, which
may result in groups small enough to relax the social di-
lemma and render cooperation more attractive [22]. Note
that in the voluntary PGG both cooperators and defectors
vanish at rc leaving the field to loners. For a detailed discus-
sion of second-order phase transitions, occurring when co-

operators go extinct for r3 rc in the compulsory game and
in the voluntary variant for the extinction of defectors for r
3 1 � �, as well as their relation to direct percolation, we
refer to Szabó and Hauert [30].

To illustrate the potential complexity of the emerging
spatio-temporal patterns, we note that in principle, the
spatial PGG can be formulated as a probabilistic cellular
automaton [31], but for the Moore neighborhood this re-
quires a noticeable number of 349 	 1023 transition rules.
The dynamics of this neat system can be interactively ver-
ified and further explored at Hauert’s Web site [32]. Note
that for r in the region where all three strategies co-exist
together with synchronized lattice updates and determinis-
tic update rules for the players, i.e., imitate the best neigh-
bor (including himself) with certainty, fascinating evolu-
tionary kaleidoscopes are obtained for symmetrical initial
conditions. Admittedly, this is of limited scientific interest
but deserves attention for its entertainment value.

Interestingly, for N � 2 the average population payoff
P� remains within narrow limits and very close to � for r in
the region of co-existence including all three strategies.
This is related to findings for well-mixed populations,
where voluntary participation induces a red queen mech-
anism, which results in an equal long-term average payoff
� for all strategies. Therefore, everybody would do equally
well without the possibility to participate in a PGG. How-
ever, at the same time, note that everybody is significantly
better off in voluntary PGG interactions than in compul-
sory games.

For pairwise interactions, cooperation persists only in spa-
tially extended systems [33]. The compulsory PGG leads to
economic stalemate in states of mutual defection, whereas in

TABLE 2

Approximate Threshold Values rc, rl and rd (note, at rc both cooperators
and defectors vanish)

N rc rl rd Advantage Neighborhood

2 1.8 1.8 1.8 — Pairwise (honeycomb)
2 1.8 1.87 1.9375 — Pairwise (square)
5 1.8 2.7 3.1 0.6 von Neumann
7 1.8 3.15 3.75 1.35 Honeycomb
9 2.03 3.7 4.725 1.235 Moore

For rc � r � rl all three strategies co-exist, but for r � rl loners go
extinct leaving a mixture of cooperators and defectors behind (rl �

r � rd). The advantage indicates the shift of rc due to voluntary
participation compared to the compulsory PGG. For � � 0.8 the loner
option did not increase the cooperative range in pairwise interactions
because of rc � 1 � �. Apparently the advantage provided by
voluntary participation tends to increase with N, but the honeycomb
lattice seems to further promote cooperation such that the biggest
advantage is obtained for N � 7.
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the voluntary game no one is willing to participate, and all opt
for the loner strategy. In both cases cluster formation enables
cooperators to prosper, but voluntary participation may fur-
ther increase the range of suitable r for appropriately chosen �.

Changing compulsory into voluntary participation by
introducing the risk averse loners results in a rock-scissors-
paper type dominance of the three strategies. In spatial
settings this results in intriguing spatio-temporal patterns
[34 –36]. Most importantly, however, it enables cooperators
to thrive for a much wider parameter range. In particular,
cooperative behavior persists already for significantly lower
multiplication factors r, i.e., smaller values of the public

good. The group size predominantly determines the fate of
cooperators mainly characterized by the thresholds for per-
sistent cooperative behavior. Cooperation in larger groups
requires significantly higher r in compulsory games,
whereas with voluntary participation this effect is largely
neutralized. In fact, effects of the loner option are even
more pronounced in larger groups. In addition, we demon-
strated that the lattice geometry, i.e., the connectivity or the
number of potential partners has additional effects: for pair-
wise interactions on honeycomb lattices with six neighbors
cooperation spreads more easily than on square lattices
with eight neighbors.
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