
J. theor. Biol. (2002) 218, 261–272
doi:10.1006/yjtbi.3072, available online at http://www.idealibrary.com on
Simple Adaptive Strategy Wins the Prisoner’s Dilemma

Christoph Hauert
nwzy and Olaf Stenully

wInstitut für Mathematik, Universität Wien Strudlhofgasse 4, A-1090 Vienna, Austria, zDepartment of

Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, B.C., Canada V6T
1Z4 and yInstitut für Theoretische Physik III Heinrich–Heine–Universität Düsseldorf Universitätsstraße 1,
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The prisoner’s dilemma has become the leading paradigm to explain the evolution of
cooperation among selfish individuals. Here, we present an adaptive strategy that implements
new mechanisms to process information about past encounters. The history of moves is
summarized in an internal state which then determines the subsequent move. This enables the
strategy to adjust its decisions to the character of the current opponent and to adapt the most
promising strategic behavior. For this reason, we call such strategies Adaptor. Through
evolutionary simulations, we demonstrate that the concept of Adaptor leads to strategical
patterns that are (a) highly cooperative when playing against kin, (b) stable in a sense that
goes far beyond the concept of evolutionary stability, (c) robust to environmental changes,
i.e. variations of the parameter values and finally (d) superior in performance to the most
prominent strategies in the literature.

r 2002 Elsevier Science Ltd. All rights reserved.
1. Introduction

The evolution of cooperation and altruistic
behavior among unrelated selfish individuals is
one of the most fundamental questions in
disciplines as diverse as biology and economics
(Colman, 1995; Dugatkin, 1997; Kagel & Roth,
1995). Tremendous scientific effort has been
dedicated to theoretical and experimental inves-
tigations to understand the superiority of
mutually beneficial interactions despite their
obvious vulnerability to exploitation through
defective individuals. Across disciplines, the
prisoner’s dilemma (PD) (Axelrod & Hamilton,
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1981) became a widely accepted mathematical
framework to study cooperative behavior.
In the PD; individuals engage in pairwise

interactions with two behavioral options. They
must simultaneously decide whether to coop-
erate or to defect. Their joint behavior then
determines their payoffs. A cooperative act
involves a cost c to the donor and provides a
benefit b to the recipient. For obvious reasons
b4c must hold. Thus, mutual cooperation pays
a reward R ¼ b � c; while mutual defection
results in a punishment P ¼ 0: If one player
opts for D and the other for C; the former
obtains the temptation to defect T ¼ b and the
latter is left with the sucker’s payoff S ¼ �c:
Hence, defectors are always better off regardless
of their opponents decision. Consequentially,
‘‘rational’’ individuals, i.e. players attempting to
r 2002 Elsevier Science Ltd. All rights reserved.
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maximize their short-term profits, always end up
with the punishment P instead of the higher
reward R for cooperation. The general definition
of the PD requires the following rank ordering
of the payoff values:

T4R4P4S: ð1Þ

Note that the notation involving costs c and
benefits b always satisfies this ordering. In the
following, we generally stick to this simpler
notation with only two parameters.
In recent years, several scenarios have been

proposed and experimentally verified to over-
come this dilemma and to allow for cooperative
behavior to emerge even among unrelated
individuals. All of them are based on simple
discrimination mechanisms that enable coopera-
tive individuals to target their altruistic acts
towards certain other individuals only. These
mechanisms can be divided into three scenarios:
(a) direct reciprocity, (b) indirect reciprocity and
(c) spatial extension. In (a) the same individuals
interact repeatedly. This enables them to trigger
their behavior on the outcome of previous
rounds and therefore to cooperate only with
cooperative opponents (see below). In the case of
indirect reciprocity (b), individuals interact only
in one direction, i.e. there is no chance to
reciprocate and return a service. Recent models
(Leimar & Hammerstein, 2001; Nowak &
Sigmund, 1998) suggest that individuals carry
some sort of reputation that essentially sum-
marizes their past actions. This enables coopera-
tive individuals to direct altruistic acts selectively
towards helpful individuals by following the
experimentally verified rule help and you shall be

helped (Wedekind & Milinski, 2000). Finally, in
spatially extended systems (c) individuals inter-
act once in a local neighborhood. This enables
cooperators to prosper by forming clusters and
thereby minimizing interactions with defective
individuals (Hauert, 2001, 2002; Herz, 1994;
Killingback et al., 1999; Lindgren & Nordahl,
1994; Nowak & May, 1992).

1.1. DIRECT RECIPROCITY

The concept of direct reciprocity was summar-
ized in a famous review by Trivers (1971)
and has become very popular through game
theoretical computer tournaments organized by
Axelrod (1984). In these tournaments, submitted
strategies competed in the repeated or iterated
prisoner’s dilemma (IPD). The IPD imposes a
second constraint on the payoff values
R;S;T ;P:

R4
T þ S

2
: ð2Þ

This ensures that mutual cooperation pays the
highest reward to the community. In particular,
this prohibits that periodic alternations of C and
D moves lead to more favorable outcomes.
The notation with c and b always satisfies
condition (2).
Axelrod’s tournaments were won by a surpris-

ingly simple strategy called Tit-for-Tat (TFT).
This strategy cooperates in the first round and
from then on imitates the opponents move of the
previous round. Thus, TFT cooperates against
kin, but retaliates against defectors. The weak
side of TFT becomes apparent in noisy environ-
ments where erroneous moves occur. In long-
lasting interactions, this reduces the payoff of
TFT against itself to that of a random strategy
which cooperates or defects by tossing a coin.
This serious drawback of TFT was resolved by
another simple strategy called Pavlov (Nowak &
Sigmund, 1993). It follows the concept of win-
stay, lose-shift: a payoff of R or T is considered
as a win and Pavlov sticks to its decision, but
switches whenever it gets S or P points. This
simple rule enables Pavlov to readily correct
errors when playing against kin and to return to
cooperation.
Other prominent strategies include the always

cooperate and always defect strategies all C and
all D; Grim (Binmore & Samuelson, 1992),
generous TFT (Nowak & Sigmund, 1992) and
Firm-but-Fair (FbF ) (Frean, 1994; Nowak &
Sigmund, 1994). All these theoretical investiga-
tions were complemented by many biological
field observations as well as experiments
on human and animal behavior (Dugatkin,
1997; Milinski, 1987; Milinski & Wedekind,
1998; Packer, 1977; Wedekind & Milinski, 1996;
Wilkinson, 1984).
The basic mechanism that promotes coopera-

tion in repeated interactions is summarized by a
quote of Axelrod stating that the shadow of the
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future, i.e. the fear from retaliation, motivates
individuals to cooperate in the present.

1.2. MEMORY ONE STRATEGIES AND BEYOND

All strategies introduced so far belong to the
class of memory one strategies. This means that
the conditional probabilities to cooperate re-
quire the memory of one round. The strategic
behavior is encoded by a quadruple of para-
meters ð pR; pS; pT ; pPÞ denoting the probabilities
to cooperate after receiving R;S;T or P points,
respectively. For example, TFT corresponds to
ð1; 0; 1; 0Þ; Pavlov to ð1; 0; 0; 1Þ; Grim to ð1; 0; 0; 0Þ;
FbF to ð1; 0; 1; 2=3Þ; etc. If erroneous moves
occur with a small probability perr the following
changes apply: 1-1� perr and 0-perr:
Interestingly, generalizing the concept of

memory one strategies to include longer memory
sizes did not reveal substantially new strategical
patterns (Hauert & Schuster, 1997). Apparently,
the crucial information is covered by the knowl-
edge about the outcome of the previous round.
In the following, we refer to memory one

strategies in order to demonstrate the superiority
of a new and conceptually different class of
strategies. These strategies accumulate knowl-
edge about the history of the game in an internal
state which then determines the probability to
cooperate in the following round. This approach
enables strategies to adjust their strategical
behavior to the character of the opponent and
to adopt the most promising behavior. For this
reason, we call these strategies Adaptors.

2. Concept of Adaptor

In the context of direct reciprocity, apparently
the majority of people does not behave accord-
ing to the rules prescribed to homo oeconomicus.
A series of experiments has significantly con-
tributed to the decline of this rationality concept
(see, e.g. Fehr & G.achter, 1998, 1999; Henrich
et al., 2001; Nowak et al., 2000; Wedekind &
Milinski, 1996) and have demonstrated that
other factors such as fairness considerations
and emotions often play a dominating role in
at least human interactions and decision making.
Memory one strategies represent nothing

more but simple automata. The outcome of
the previous round serves as an input that is
translated directly (by means of the rules
defining the automaton) into an output, i.e. the
subsequent move. But real players engaged in
the IPD hardly fit into this simple framework.
That is mainly because they process information
and eventually develop an intuition and aware-
ness about the character of their opponent.
Our motivation for Adaptor is to go beyond

the limitations of memory one strategies towards
a more realistic scenario by implementing a
simple yet effective information processing
scheme, i.e. to provide a framework for suitable
learning rules. These rules are based on an
internal state which can be viewed as memory
and interpreted in terms of emotions.
Mathematically speaking, we consider strate-

gies that trigger their next move on an internal
state st: This internal state summarizes the
outcomes of the past rounds with one particular
opponent up to time t: The outcome of one
round modifies st according to the following
rule:

stþ1 ¼ st þ Dt; ð3Þ

where Dt takes the values dR; dS; dT ; dP if round
t yields a payoff of R;S;T or P points,
respectively. The average number of rounds,
i.e. the average length l of an interaction with
one particular opponent is specified by the
continuation probability w: l ¼ 1=ð1� wÞ:
The internal state st specifies the probability

to cooperate pcðstÞ in the subsequent round. We
consider a particularly simple functional shape
of pcðstÞ where a cooperative region is bounded
by defecting ones (see Fig. 1):

pcðstÞ ¼ perr þ ð1� 2perrÞ½Yðst þ 1Þ

�Yðst � 1Þ�; ð4Þ

whereY denotes the Heaviside step-function and
perr51 a small amount of noise, i.e. the
probability to misimplement a move. This means
that only for stA½�1; 1� Adaptor most likely
cooperates but defects otherwise. Since the
interval of st is not bounded, the chosen width
of the cooperative region poses no restriction of
generality. Its width relative to the values of
dR; dS; dT ; and dP determines the strategical
characteristics of Adaptor: Actually, this defines



Fig. 1. The probability to cooperate pc of Adaptor
depends on its internal state st in round t: st changes in the
course of an IPD interaction [see eqn (3)] and triggers the
subsequent move of Adaptor. As long as st remains in
region I, Adaptor most likely cooperates, but defects as
soon as st enters regions II or III. perr indicates a small
probability to mis-implement a move.
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the learning rule of Adaptor, i.e. prescribes how
to tune subsequent decisions and adapt to an
opponent. The concept of Adaptor essentially
allows to classify opponents either as dumb or
unconditional cooperators, defectors or retalia-
tors. If Adaptor realizes that an opponent can be
exploited, the internal state may leave the
cooperative regime turning Adaptor into a mean
and unforgiving character. Similarly, against
defective opponents, Adaptor may quickly adopt
a defensive strategy and retaliate with defection.
Only in balanced interactions, where erroneous
defection is met by retaliation but apologizing
handshakes are accepted, cooperation persists.
In this sense, cooperative behavior represents a
delicate equilibrium between testing the oppo-
nents strategy and the ability to correct errors.
However, note that this summarizes only the key
characteristics of Adaptor’s framework. It re-
mains to be seen, to what extend successful
learning rules actually take advantage of these
possibilities.
Between memory one strategies and the

concept of Adaptor a two-fold analogy exists:
the outcome of the previous round serves as
input and both depend on four parameters.
The choice of the cooperation probabilities
pR; pS; pT ; pP is crucial for the success of memory
one strategies, as is the choice of dR; dS; dT ; and
dP for the success of Adaptor and, in particular,
of its error correcting mechanism. In addition,
the analogy manifests itself in the fact that
Adaptor reproduces many well-known memory
one strategies for specific choices of its four
parameters.
Also note the conceptual differences to other

strategies implementing an internal state like
contrite Tit-for-Tat (cTFT) based on the stand-
ing of a player (Boerlijst et al., 1997). cTFT

needs to know the internal state of the opponent
to find its next decision, whereas the internal
state of Adaptor is invisible to the outside world.
In that sense, relating the internal state to
emotions, cTFT requires additional information
on the standing of the opponent while Adaptor’s
decisions are based solely on its own experiences.
Another interesting concept in this context refers
to strategies implementing an aspiration level
(Posch, 1999; Posch et al., 1999). The most
prominent of these strategies is certainly the
aforementioned Pavlov:

3. Evolving Adaptor

Successful learning rules of Adaptor, i.e.
promising sets of parameter values are deter-
mined by extensive simulations. We evolve a
large and generally heterogeneous population of
Adaptors under the influence of selection and
mutation over many generations. In each gen-
eration, all individuals engage in an IPD with all
others. According to the rules of evolutionary
game theory (Maynard Smith, 1982), the payoff
achieved by an individual determines its fitness,
i.e. its reproductive success. This means that only
strategies achieving higher than average fitness
will spread in the population and those with
lower payoffs are bound to go extinct.
The selection reproduction scheme is governed

by the difference equation:

xtþ1
i ¼ xt

i f t
i =

X

j

xt
j f t

j ; ð5Þ

where xt
i denotes the frequency of strategy i and

f t
i its fitness at time t: f t

i corresponds to the
payoff achieved by strategy i when engaging
in the IPD with all strategies present in the
population. In the continuous time limit, eqn (5)
reduces to the replicator equation (Hofbauer &
Sigmund, 1998).
For the simulations, we set the cost of

cooperation c ¼ 1 and the benefit to b ¼ 3:
According to the characteristics of the replicator
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dynamics, this is equivalent to setting R ¼ 3;S ¼
0;T ¼ 4 and P ¼ 1: At time t ¼ 0; we start with
a homogeneous population of Adaptors with
randomly drawn parameters dR; dS; dT ; dP: The
four parameter values are real numbers from the
interval ½�2; 2�: The restriction to this interval
guarantees that the internal state may not cross
from one defective domain to the other (regions
II, III in Fig. 1, eqn (3)) without visiting the
cooperative domain at least once (region I in
Fig. 1). Because pcðstÞ is an even function [see
eqn (4)], we may restrict either one of the four
parameters to ½0; 2� without loss of generality.
We exploit this symmetry to reduce the para-
meter space and choose dTA½0; 2�: Finally, all
Adaptors start their interactions with an initial
value of the internal state s0 ¼ 0: This choice is
motivated by our primary interest in cooperative
solutions of the IPD and this makes sure that all
Adaptors cooperate at least on their first move.
On average, once in 1000 generations a

mutation occurs and a new brand of Adaptor

with randomly drawn parameters is introduced.
The initial frequency of the mutant is set to
fmut ¼ 0:11%: Whenever the frequency of any
strategy drops below a certain noise level of
fnoise ¼ 0:1%; it is removed. This corresponds
Fig. 2. Evolution of Adaptor’s learning rule determined b
eventually lead to the most successful strategical patterns are
mean population payoff lies close to the maximum R ¼ 3 in
concerns the parameter dS which is negative for w ¼ 0:9; bu
behavior and important changes in the error correction mecha
essentially to considering a population of size
1000: Ten such simulation runs are carried out
over 108 generations. The results clearly indicate
that only strategies with dRE0 are capable of
achieving payoffs close to the maximum R: For
this reason, we did another ten simulation runs
with dR ¼ 0; fixed.
In a second stage, all strategies present at the

end of the 20 simulation runs are merged into a
new population. The initial frequencies of the
strategies are set proportional to their frequen-
cies at the end of the respective simulation run.
This population is evolved in absence of muta-
tion according to eqn (5) until only one strategy
survives.
This entire procedure is carried out for two

different values of the continuation probability
w: brief interactions (w ¼ 0:9) with an average
length of l ¼ 10 rounds and long interactions
(w ¼ 0:999) with l ¼ 1000 rounds. Figure 2
shows the two runs that eventually lead to the
most successful set of parameters for Adaptor.
The resulting numerical values are summarized
in Table 1.
Note that if we additionally include memory

one strategies with randomly drawn pR; pS; pT ;
pPA½perr; 1� perr�; the following results remain
y the four parameter values dT ; dR; dP; dS: The runs that
shown for (a) w ¼ 0:9 and (b) w ¼ 0:999: In both runs, the
dicating highly cooperative strategies. The main difference
t positive for w ¼ 0:999: This leads to different strategical
nisms.



Table 1
Results of evolving Adaptor’s learning rule

determined by the parameters dS; dP; dR; and
dT for two values of the continuation probability

w: By definition dT40 holds, but the changing
sign of dS gives rise to important differences in the

strategical patterns of Adaptor in brief and long
lasting interactions (see text)

w dR dS dT dP

0.9 0 �1.001505 0.992107 �0.638734
0.999 0 1.888159 1.858883 �0.995703

Table 2
Payoff for several important strategies in the

simultaneous IPD with w ¼ 0:9 [c.f. Fig. 3(a)]n

w ¼ 0:9 Adaptor c all C d all D c Pavlov

Adaptor 2.966 2.994 0.916 2.826
c all C 2.944 2.982 0.035 2.636
c all D 1.322 3.964 1.018 2.570
c Pavlov 2.772 3.097 0.501 2.951

nThe entries indicate the payoffs achieved by the
strategy listed in the first column against the row strategy.
The lowercase c and d in front indicates the initial move.
The probability of mis-implementing moves is set to perr ¼
0:01; i.e. the strategy quadruple for e.g. all C is
ð0:99; 0:99; 0:99; 0:99Þ:

Table 3
Error correcting pattern of Adaptor against kin

for w ¼ 0:9$

Adaptor1 ? C Dn C C ?
Adaptor2 ? C C D C ?

$After playing an erroneous D, marked by an asterisk,
the mistaken Adaptor offers a handshake by switching to C
and accepts punishment for the erroneous move. The
number of D’s played is minimal, so that the loss during the
error correction procedure is minimized. Once the error is
corrected, the internal states are equal and almost un-
changed. For short interaction lengths, it is therefore highly
unlikely that another type of error correction scheme would
be ever observed.
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unchanged. Generally, Adaptors with the same
strategical characteristics emerge. Only in few
cases and only for w ¼ 0:999 Pavlov-like strate-
gies were found. But this is due to the finite
simulation time, in Section 4 we actually show
that Adaptor is able to outperform Pavlov:
Interestingly, significantly different strategical

patterns evolve for brief and long-lasting inter-
actions. This difference essentially results from
dS and dT having opposite signs for w ¼ 0:9; but
are both positive for w ¼ 0:999:

3.1. BRIEF INTERACTIONS

In brief interactions w ¼ 0:9 the learning rule
of Adaptor exploits all the features provided
by the framework: exploitation of cooperators,
retaliation against defectors and cooperation
against retaliators and kin. Against defective
opponents like all D; the internal state takes its
values primarily in region II and hence Adaptor
acts not cooperatively. Similarly, Adaptor tends
to defect against unconditional cooperators like
all C because its internal state primarily lies in
sector III. Typical payoff values against promi-
nent memory one strategies are gathered in
Table 2. Another important feature of Adaptor
is its error correcting capability when playing
against kin. A typical sequence of moves
following an error is depicted in Table 3. The
number of defective moves played to correct an
error is minimal. Compared to Pavlov0s error
correction scheme Adaptor plays no round of
mutual defection. This is in favor of Adaptor’s
score against itself. At the same time Adaptor

gets hardly exploited by all D; but is also less
ready to exploit all C: It has to be mentioned,
however, that Adaptor’s error correction scheme
cannot prevent conflicts from escalating if an
unfortunate sequence of fast following erroneous
moves occurs.
In order to investigate the robustness of this

concept, we consider variations of two external
parameters: the continuation probability w and
the temptation to defect T : Figure 3(a) shows the
payoff of several strategies as a function of w:
Most importantly this demonstrates that (a)
all D always scores significantly less against
Adaptor than against Pavlov and (b) for long
interactions (l4500) Adaptor’s payoff decreases
when playing against its kin. This is a conse-
quence of the small probability of escalations
resulting in deadlocks of mutual defection.
Figure 4(a) similarly shows the payoff of the

same strategies as a function of T : Adaptor and
Pavlov do almost equally well: both perform



Fig. 3. Effects of the average interaction length on the payoffs of Adaptor, Pavlov; and all D: Adaptor’s learning rule is
tuned for (a) short interactions (w ¼ 0:9) and (b) for long-lasting encounters (w ¼ 0:999) with perr ¼ 0:01: Vertical markers
indicate the interaction lengths when evolving Adaptor’s learning rule. The three rows refer to the payoffs achieved (from top
to bottom) by Adaptor, Pavlov and all D: Solid lines indicate payoffs against Adaptor, dashed lines against Pavlov; and
dotted lines against all D: Key points to note: (1) When playing against its own kin, Adaptor achieves payoffs close to the
maximum of R ¼ 3; provided that the interaction length does not significantly exceed the original length (note the
logarithmic scale of the ordinate). (2) Adaptor does systematically better against Pavlov than vice versa which is more
pronounced for long interactions. (3) All D scores significantly less against Adaptor than against Pavlov:
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slightly better when playing against kin than
against the other strategy. However, Adaptor

scores roughly twice as much against all D: This
is also reflected in the score of all D against the
two strategies: while the score against Adaptor
increases very slowly with T ; it increases
significantly faster against Pavlov: It is the score
of all D against Pavlov that delimits the para-
meter range where Pavlov is a limit ESS [see
Section 4 and eqn (6)].

3.2. LONG INTERACTIONS

In long-lasting interactions w ¼ 0:999; the
efficient exploitation of unconditional coopera-
tors as well as the relentless retaliation against
defectors become apparently far less relevant
compared to the enhanced importance of error
correcting abilities. The most successful learning
rule basically prevents the internal state from
entering region II because dS and dT have the
same sign. The resulting strategical patterns are
closely related to Pavlov: This is not too
surprising because Pavlov implements probably
the most robust error correction mechanism.
Typical payoff values are compiled in Table 4
and the relevant error correction scheme of
Adaptor is illustrated in Table 5. The first error is
corrected identical to Pavlov; i.e. a single round
of mutual defection is required to overcome the
error. From then on, Adaptor plays two succes-
sive rounds of mutual defection before returning
to cooperation (Lindgren, 1991). Occasionally, a
more complicated sequence of moves may occur
before cooperation is re-established. Unlike for
brief interactions, the risk of escalations is
almost negligible since it requires synchronized
occurrences of erroneous moves.
The robustness of Adaptor is again investi-

gated by varying w and T : Figure 3(b) shows
that Adaptor’s payoff remains essentially un-
affected by the interaction length. At the same



Fig. 4. Effects of varying the temptation on the payoffs of Adaptor, Pavlov; and all D: Adaptor is evolved for a
temptation T ¼ 4: For our choice of R ¼ 3;S ¼ 0 and P ¼ 1; the range of acceptable values for T ; i.e. satisfying the
conditions of the IPD [see eqns (1), (2)] must lie in the open interval TAð3; 6Þ: Arrangement of the graphs and legend is as in
Fig. 3. Note that the payoffs of Pavlov and all D against kin and each other are almost identical for (a) w ¼ 0:9 and (b)
w ¼ 0:999: As in Fig. 3, Adaptor always scores more against Pavlov than vice versa and all D does significantly better against
Pavlov than against Adaptor.

Table 4
Payoff for several important strategies in the

simultaneous IPD with w ¼ 0:999 [c.f. Fig. 3(b)].
The entries are defined as in Table 2

w ¼ 0:999 Adaptor c all C d all D c Pavlov

Adaptor 2.900 3.912 0.698 2.534
c all C 0.184 2.980 0.040 1.549
d all D 1.986 3.960 1.020 2.491
c Pavlov 0.761 3.457 0.530 2.941

Table 5
Typical error correcting mechanism of Adaptor

against its own kin for w ¼ 0:999$

Adaptor1 ? C Dn D D C ?
Adaptor2 ? C C D D C ?

$The erroneous move is marked by an asterisk. The
first error is corrected according to the well-known scheme
of Pavlov (not shown). From then on, errors are followed
by two rounds of mutual defection. Occasionally, errors are
corrected involving more complicated sequences of moves
requiring as much as seven rounds (not shown)
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time, the score of Pavlov against Adaptor
crucially depends on w: For w ¼ 0:999; its payoff
is almost as low as against all D: As for w ¼ 0:9;
all D scores less against Adaptor than against
Pavlov:
Effects of variations of T are shown in

Fig. 4(b). Adaptor’s performance against kin is
almost independent of T and remains close to
the maximum R: The payoffs of Pavlov and
all D against kin and each other are largely
equal for brief and long interactions. Significant
differences occur only in the payoffs of Adaptor

against Pavlov and all D and vice versa. Adaptor
is able to exploit Pavlov while Pavlov earns little
more than against all D: Compared to w ¼ 0:9;
Adaptor does less well against all D; but the
latter scores still significantly less against Adap-
tor than against Pavlov:
Important distinctions between Adaptor and

Pavlov concern the formers ability to reduce its
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loss against all DFnote that this results from
the second round of mutual defection in the
error correcting scheme of Adaptor. At the same
time Adaptor exploits all C more effectively.
Even after an erroneous D of all C; Adaptor
does not return to cooperation.

4. Adaptor vs. Memory one Strategies

To analyse Adaptor’s performance in depth,
we carry out evolutionary tournaments in which
Adaptor competes with memory one strategies.
One might argue that such a comparison is
unfair because Adaptor has a higher memory
capacity than memory one strategies. Adaptor is
capable of storing a real number, whereas
memory one strategies are storing merely an
integer variable which takes on the values
R;S;T or P: However, we think that such a
comparison is valuable for two reasons. First,
memory one strategies have gained most interest
in the past and are best studied. Second,
generalizing the concept of memory one strate-
gies to include longer memory sizes apparently
does not lead to substantial changes in behavior
and performance compared to Pavlov (Hauert &
Schuster, 1997). Among the memory one strate-
gies, we restrict ourselves to those which may
be specified by ð pR; pS; pT ; pPÞ with piAS ¼
fperr; 1=3; 2=3; 1� perrg; iAfR;S;T ;Pg and initial
moves of C or D: Note that most of the
strategies well established in literature are
covered by this choice.
For our parameter values Pavlov is a limit ESS

(Leimar, 1997) for a sufficiently high continua-
tion probability w:

w4
T � R

R � P
ð6Þ

(Nowak & Sigmund, 1995). However, note that
Pavlov is not an evolutionarily stable strategy
(Boyd & Lorberbaum, 1987; Lorberbaum, 1994)
because strategies doing equally well could
invade and possibly undermine the resident
population through random drift. Evolutionary
stability (Maynard Smith, 1982), however, re-
quires that no mutant strategy introduced with
an arbitrary small frequency is able to invade the
resident population.
Our tournaments are based on the usual
selection dynamics [see eqn (5)] augmented by
mutation. Mutations occur on average every
1000 generations. However, instead of introdu-
cing mutants at a fixed initial frequency fmut;
we proceed in analogy to the optimization
technique of simulated annealing: the initial
frequency #fmutðtÞ assigned to mutants decreases
with time t:

#fmutðtÞ ¼
1

2
�

1=2� fnoise

tmax

t ; ð7Þ

where tmax specifies the total number of genera-
tions. Thus, early mutants are introduced with
frequencies close to 1=2 while late mutants occur
with frequencies close to the noise level fnoise ¼
0:1%: If the frequency of any strategy drops
below this fixed noise level, it is removed. New
strategies are drawn with equal probabilities out
of a set consisting of Adaptor and memory one
strategies with piAS: Since we consider only
a finite number of strategies, each strategy
is selected on average roughly 20 times
(tmax ¼ 107) at different frequencies of the
mutant. Note that this estimation distinguishes
between strategies playing C or D on their first
move.
At time t ¼ 0; we start with a homogeneous

population playing a completely random strat-
egy ð0:5; 0:5; 0:5; 0:5Þ: We perform these simula-
tions for both w ¼ 0:9 and 0:999: Typical
simulation runs are depicted in Fig. 5. In all
our simulations, we observed similar patterns
where Adaptor takes over the population after
some stage of equilibration. When introduced
with high frequency mutants can invade the
population until Adaptor takes over again.
This interplay manifests itself in a sequence of
meta-stable states. With decreasing #fmutðtÞ; the
population of Adaptors becomes noteworthy
stable. For w ¼ 0:9; all invasion attempts
fail for #fmutðtÞt44%: The same holds for
w ¼ 0:999 with #fmutðtÞt38%: In both cases,
the average payoff in homogeneous populations
of Adaptors is close to the maximum value R;
i.e. cooperative behavior dominates. The princi-
ple finding of our simulations is that Adaptor is
capable of invading a population playing Pavlov
whereas Adaptor is immune to invasions, in
particular by Pavlov:



Fig. 5. Evolutionary simulations of Adaptor vs. memory one strategies for (a) w ¼ 0:9 and (b) w ¼ 0:999 in typical
simulation runs with perr ¼ 0:01: The average population payoff and the number of strategies present in the population are
displayed at the top, the initial frequency of mutants #fmutðtÞ together with the frequency of Adaptor and Pavlov-like strategies
at the bottom. If introduced with sufficiently high frequencies, mutants can temporarily invade the population until Adaptor
takes over again. For #fmutðtÞ below roughly 44% (w ¼ 0:9) and 38% (w ¼ 0:999), respectively, successful invasions are no
longer observed.
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5. Conclusions

The concept of Adaptor was motivated by
experimental findings documenting the impor-
tance of emotions rather than rational reasoning
in at least human decision making. The concept
of the Adaptor strategy provides a powerful
framework for learning rules attempting to
model this process. Adaptor is determined by
four parameters dR; dS; dT and dP defining the
learning rule together with an internal state
summarizing the course of the game. This
internal state triggers Adaptor’s subsequent
moves and enables the strategy to adjust its
decisions to the opponent and to adapt the most
promising strategical behavior.
Through evolutionary simulations, we deter-

mine successful learning rules for brief and long-
lasting interactions. In both cases, Adaptor turns
out to be highly cooperative when playing
against kin, implementing an efficient error
correcting mechanism. However, as in real
situations, it cannot prevent conflicts from
escalating if unfortunate sequences of fast
following erroneous moves occur.
The results clearly show that cooperative

behavior strongly correlates with dRE0; i.e.
the internal state remains unchanged after
obtaining R points. This seems reasonable
because it prevents the internal state from
leaving the cooperative regime without cause.
The other three parameters determine Adaptor’s
error correcting scheme as well as its behavior
when competing against other strategies. The
resulting strategical patterns depend on the
characteristic interaction length as determined
by the continuation probability w: For brief
interactions (w ¼ 0:9), dS and dT have opposite
signs. This enables Adaptor to distinguish
between unconditional cooperators, defectors
and retaliators reflected by the three regimes of
the internal state. The strategical patterns
suggest an interpretation in emotional terms as
satisfied, frustrated and ruthless. Dumb coop-
erators are remorselessly exploited while defec-
tors face tough retaliation. Cooperative behavior
then resembles a tightrope walk between testing
the opponents strategy and the ability to readily
correct erroneous moves and re-establish
cooperation.
The importance of efficient and reliable error

correcting mechanisms is far more pronounced
in long-lasting interactions (w ¼ 0:999). This is
reflected in dS and dT having the same signs
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which leads to strategical patterns closely related
to Pavlov: Consequentially, only two out of the
three regimes of the internal state essentially
determine Adaptor’s behavior. This blurs the
above distinction between ruthlessness and
frustration. In that case, even against defectors,
Adaptor occasionally offers a cooperative hand-
shake hoping to re-establish cooperation.
The performance of Adaptor is surprisingly

robust to environmental changes, i.e. variations
of external parameters. Because of its parame-
trization, Adaptor is immune to changes of the
payoff values R;S;T and P: Basically, this also
holds for its performance against memory one
strategies. With respect to changes in the average
length of an interaction, the score of Adaptor
against kin remains largely unaffected. However,
for interaction lengths that considerably exceed
the settings when evolving the learning rule,
escalations leading to deadlocks in states of
mutual defection become important.
Of particular interest was Adaptor’s perfor-

mance against memory one strategies well
established in the literature. In another set of
evolutionary simulations Adaptor competes
against memory one strategies in a population
where mutants are introduced with decreasing
frequency. The main results of these simulations
show: (a) Adaptor is superior in performance to
memory one strategies. In particular, it outper-
forms Pavlov known as a most successful
strategy in the IPD: One major reason for this
is certainly its better ability to resist exploitation
by all D: In long interactions, Adaptor resembles
Pavlov but after an erroneous defection it
resumes cooperation only after two consecutive
rounds of mutual defection (see also Lindg-
ren,1991). (b) Adaptor displays a remarkable
robustness, i.e. it is not only stable with respect
to arbitrary small perturbations as requested by
evolutionary stability, but also to mutants
introduced with frequencies as high as roughly
40%: This makes Adaptor a stable cooperative
strategy even in tiny populations or groups of as
few as three individuals.
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