
Sixty replicates were obtained for each of these randomly distributed networks. These
were then overlaid with species distributional data to analyse the number of gap species in
each case. See Supplementary Information for the confidence intervals for each of the
models.

Richness of protected and unprotected cells
The richness of each quarter-degree cell touching land (outside Antarctica) was calculated
for all species, restricted-range species16 (occupying #50,000 km2) and threatened species.
Cells touching protected areas were considered ‘protected’. Protected cells are significantly
(P , 0.001) biased towards higher richness of all, restricted-range and threatened species.
See Supplementary Information for a comparison of frequency distributions.
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Understanding the emergence of cooperation is a fundamental
problem in evolutionary biology1. Evolutionary game theory2,3

has become a powerful framework with which to investigate this
problem. Two simple games have attracted most attention in
theoretical and experimental studies: the Prisoner’s Dilemma4

and the snowdrift game (also known as the hawk–dove or chicken
game)5. In the Prisoner’s Dilemma, the non-cooperative state is
evolutionarily stable, which has inspired numerous investi-
gations of suitable extensions that enable cooperative behaviour
to persist. In particular, on the basis of spatial extensions of the
Prisoner’s Dilemma, it is widely accepted that spatial structure
promotes the evolution of cooperation6–8. Here we show that no
such general predictions can be made for the effects of spatial
structure in the snowdrift game. In unstructured snowdrift
games, intermediate levels of cooperation persist. Unexpectedly,
spatial structure reduces the proportion of cooperators for a wide
range of parameters. In particular, spatial structure eliminates
cooperation if the cost-to-benefit ratio of cooperation is high.
Our results caution against the common belief that spatial
structure is necessarily beneficial for cooperative behaviour.

The Prisoner’s Dilemma illustrates that cooperating individuals
are prone to exploitation, and that natural selection should favour
cheaters. In this game, two players simultaneously decide whether to
cooperate or defect. Cooperation results in a benefit b to the
recipient but incurs a cost c to the donor (b . c . 0). Mutual
cooperation thus pays a net benefit of R ¼ b 2 c, whereas mutual
defection results in payoff P ¼ 0 for both players. With unilateral
cooperation, defection yields the highest payoff, T ¼ b, at the
expense of the cooperator bearing the cost S ¼ 2c. It follows that
it is best to defect regardless of the co-player’s decision. Thus,
defection is the evolutionarily stable strategy, even though all
individuals would be better off if they all cooperated. This outcome
is a simple consequence of the ranking of the four payoff values:
T . R . P . S. Despite this seemingly convincing argument,
many natural species show altruism, with individuals bearing
costs to the benefit of others: vampire bats share blood9, alarm
calls warn from predators10, monkeys groom each other11, and fish
inspect predators preferably in pairs12.

In field and experimental studies it is often difficult to assess the
fitness payoffs for different behavioural patterns, and even the
proper ranking of the payoffs is challenging13,14. This has led to a
considerable gap between theory and experimental evidence, and to
an increasing discomfort with the Prisoner’s Dilemma as the only
model to discuss cooperative behaviour15,16. The snowdrift game is a
viable and biologically interesting alternative. It differs from the
Prisoner’s Dilemma in that the payoffs P and S have a reverse order:
T . R . S . P. This changes the situation fundamentally and
leads to persistence of cooperation.

To illustrate the snowdrift game, imagine two drivers that are
caught in a blizzard and trapped on either side of a snowdrift. They
can either get out and start shovelling (cooperate) or remain in the
car (defect). If both cooperate, they have the benefit b of getting
home while sharing the labour c. Thus, R ¼ b 2 c/2. If both defect,
they do not get anywhere and P ¼ 0. If only one shovels, however,
they both get home but the defector avoids the labour cost and gets
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T ¼ b, whereas the cooperator gets S ¼ b 2 c. If costs are high
(2b . c . b . 0), these payoffs recover the Prisoner’s Dilemma. By
contrast, if b . c . 0, the payoffs generate the snowdrift game, in
which the best action depends on the co-player: to defect if the other
cooperates, but to cooperate if the other defects. This leads to stable
coexistence of cooperators and defectors in well-mixed populations.

According to the replicator dynamics17, the equilibrium
frequency of cooperators in the snowdrift game is 1 2 r, where
r ¼ c/(2b 2 c) is the cost-to-benefit ratio of mutual cooperation.
Note, however, that the average population payoff at evolutionary
equilibrium is smaller than the average payoff in a population of
only cooperators, as in the Prisoner’s Dilemma. Thus, the paradox
of cooperation is also apparent in the snowdrift game.

An important insight is that spatial structure can promote
persistence of cooperation. In particular, if the Prisoner’s Dilemma
is played in spatially structured populations, in which individuals
interact only within a limited local neighbourhood, then
cooperation can be maintained. Here we investigate the effects of
spatial structure in the snowdrift game. To model spatial structure,
we assume that individuals occupy sites on a regular lattice.
Whenever a site is updated, the present occupant and its nearest
neighbours compete to populate the site with their offspring.
Generalizing the replicator dynamics to lattices, competitive success
is determined according to differences between the payoffs that each
potential parent obtained from game interactions with their nearest
neighbours. Updating can be synchronous across the lattice,
describing populations with discrete, non-overlapping generations,
or asynchronous, describing populations with overlapping genera-

tions in continuous time (see Methods).
Intriguingly, spatial structure fails to enhance cooperation in the

snowdrift game and actually tends to reduce the proportion of
cooperators. Figure 1 shows equilibrium proportions of coopera-
tors in spatial populations as a function of the cost-to-benefit ratio
r ¼ c/(2b 2 c). Only for small r (high benefits, low costs) is the
proportion of cooperators higher than the 1 2 r expected in well-
mixed populations (Fig. 1, dotted line). By contrast, spatial struc-
ture favours defectors for larger r. The threshold above which the
proportion of defectors is higher than in well-mixed populations
depends on the lattice geometry (Fig. 1) and decreases with
increasing neighbourhood size N. In all cases, cooperation is
eliminated altogether for sufficiently high r, which is again in
stark contrast to the well-mixed case. Ultimately, these results are
due to the small interaction neighbourhoods in spatially structured
populations. Although the qualitative results do not depend on the
exact number of neighbours N, some quantitative features do, such
as the extinction thresholds for cooperators and defectors (Fig. 1).
For example, cooperators vanish near the r value for which a single
cooperator in a given neighbourhood constitutes a higher frequency
of cooperation than the well-mixed expectation, that is, for which
1/N . 1 2 r.

For an intuitive understanding of the contrary effects of spatial
structure in the Prisoner’s Dilemma and in the snowdrift game, it is
useful to look at snapshots of spatial configurations at stochastic
equilibrium near the extinction threshold of cooperators (see
Virtual Labs in evolutionary game theory: http://www.univie.a-
c.at/virtuallabs). In the spatial Prisoner’s Dilemma, cooperators
can survive by forming large, compact clusters (Fig. 2a), thus
reducing exploitation by defectors. By contrast, in the spatial
snowdrift game cooperators form small filament-like clusters (Fig.
2b). These spatial patterns arise from microscopic processes that are
dictated by the payoff structure of the snowdrift game, which makes
it advantageous to adopt strategies that are opposite to neighbour-
ing strategies. As a consequence, an isolated cooperator acts as a seed
for expanding dendritic structures, but lacks the ability to give rise
to compact clusters (Fig. 2c). On average, these emergent spatial

Figure 1 Frequency of cooperators as a function of the cost-to-benefit ratio r ¼

c/(2b 2 c ) in the snowdrift game for different lattice geometries. a, Triangular lattice,

neighbourhood size N ¼ 3; b, square lattice, N ¼ 4; c, hexagonal lattice, N ¼ 6;

d, square lattice, N ¼ 8. For small r, spatial structure promotes cooperation; however, for

intermediate and high r, the fraction of cooperators is lower than in well-mixed

populations (dotted line). This result is largely independent of whether updating is

synchronous (filled squares) or asynchronous (open squares). The tendency is correctly

predicted by pair approximations (unbroken line), but pair approximation underestimates

the effects of local configurations at high and low r. In individual-based simulations, the

range of coexistence of cooperators and defectors is delimited by two threshold values:

below r 1 defectors vanish, whereas above r 2 cooperators are doomed. Both thresholds

correlate with the fate of local configurations: near r 1 defector pairs tend to annihilate and

vanish, whereas near r 2 single cooperators and cooperator pairs cannot survive in a sea

of defectors. See Methods for simulation details.

Figure 2 Snapshots of equilibrium configurations of cooperators (black) and defectors

(white) in the spatial Prisoner’s Dilemma and spatial snowdrift game on a square lattice

with N ¼ 4 neighbours near the extinction threshold of cooperators. a, In the Prisoner’s

Dilemma, cooperators survive by forming compact clusters (R ¼ 1, T ¼ 1.07,

S ¼ 20.07, P ¼ 0). b, In the corresponding snowdrift game, cooperators are spread

out, forming many small and isolated patches (r ¼ 0.62; that is, R ¼ 1, T ¼ 1.62,

S ¼ 0.38, P ¼ 0). This result also holds for other lattice structures (not shown).

c, Microscopic pattern formation in the spatial snowdrift game. An isolated cooperator can

grow into a row of cooperators and then form cross-like structures; however, cooperators

cannot expand to compact clusters because the payoff structure protects the defectors in

the corners. Eventually, cooperators form a dendritic skeleton. Occasionally, dendrites

break off to form new seeds.
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patterns generate an advantage for defectors, owing to increased
exploitation in the fractal-like zone of contact between the two
strategies. This leads to an overall reduction in cooperators as
compared with well-mixed populations.

The relevant spatial pattern formation is most evident near the
extinction threshold of cooperators, that is, in the parameter region
in which the detrimental effects of spatial structure on cooperation
are most pronounced. For lower values of the cost-to-benefit ratio r,
additional mechanisms that favour cooperation start to be import-
ant. For example, despite the fact that it is always better to adopt
strategies that are opposite to neighbouring strategies, it is clearly
advantageous to have cooperating neighbours. Accordingly, clus-
tering of cooperators can lead to the extinction of defectors for low r,
which is in line with the established view that spatial structure
should benefit cooperation. We have confirmed the results from our
individual-based models using the technique of pair approximation
(see Methods and Supplementary Information). Results from this
deterministic approximation of the spatial dynamics (Fig. 1,
unbroken line) are in good agreement with the stochastic simu-
lations. We also note that our main findings are robust with respect
to variations in lattice geometry, in synchrony of updating and in
update rules (see Supplementary Information).

When studying cooperation, it is often useful to allow for
continuously varying degrees of cooperative behaviour, which
can be achieved by considering mixed strategies describing an
individual’s propensity to cooperate. This approach has been
often applied to the hawk–dove game3,18, a version of the snowdrift
game traditionally used in behavioural ecology: when competing for
resources or mates, hawks escalate conflicts, whereas doves are
conciliatory. When two doves meet they share the resource b and

both get R ¼ b/2, but when facing an escalating hawk the dove takes
flight (S ¼ 0) and the hawk gets the whole resource (T ¼ b). If two
hawks meet, they escalate until one is injured and incurs a fitness
loss g(g . b). Escalation thus yields, on average, P ¼ (b 2 g)/
2 , 0. With b ¼ (b þ g)/2 and c ¼ b, this game is equivalent to the
snowdrift game in the sense that the payoff matrices only differ by a
constant, so that update rules based on payoff differences yield
identical results. In particular, for the replicator dynamics in well-
mixed populations, the evolutionarily stable mixture consists of r
hawks and 1 2 r doves, where r ¼ b/g. This game can be viewed as a
mixed strategy game, in which one individual adopts the beha-
vioural patterns of hawk and dove with specific probabilities19. In
correspondence with the pure strategy game, the evolutionarily
stable mixed strategy plays dove with a probability 1 2 r.

We have investigated the mixed-strategy hawk–dove game in
spatially structured populations (see Methods). For synchronously
updated populations (Fig. 3, filled squares), spatial structure sys-
tematically lowers the probability to show dove-like behaviour. In
particular, cooperation vanishes for high r, for which all conflicts
escalate. For N ¼ 3 this happens for r * 0.8 (Fig. 3a), whereas the
corresponding well-mixed populations (Fig. 3a, dotted line) sup-
port up to 20% dove-like behaviour. This effect decreases for
increasing N, such that results for N ¼ 8 (Fig. 3d) are essentially
indistinguishable from well-mixed populations. With asynchro-
nous updating (Fig. 3, open squares), the effects of spatial structure
are negligible, independent of the lattice geometry and neighbour-
hood size.

Our results show that spatial extension generally fails to promote
cooperative behaviour in the hawk–dove or snowdrift game. In fact,
with the exception of small cost-to-benefit ratios, spatial structure
tends to reduce the level of cooperation. In contrast to the Prisoner’s
Dilemma, the snowdrift game is a simple model for the evolution of
cooperation when defection is not an evolutionarily stable strategy.
We therefore conclude that spatial structure may be rarely bene-
ficial, but often detrimental, to cooperation in such schemes.

It is generally thought that any form of associative interactions,
such as those that are due to kinship20, discrimination21 or “popu-
lation viscosity”22, which includes spatial structure, would favour
the evolution of cooperation (see refs 23, 24, for some exceptions).
Such associations can lead to the formation of clusters of coopera-
tors that can maintain cooperation against defecting invaders at the
cluster boundaries25. However, this mechanism does not operate in
the spatial hawk–dove and snowdrift games. Ironically, the ultimate
reason for this is that cooperation is already maintained in the well-
mixed versions of these games, because the payoffs are such that it is
best to adopt strategies that differ from the strategies of the
opponents. This hinders cluster formation of cooperators in spatial
populations.

Even though determination of payoff matrices in real systems is
notoriously difficult, our results may be relevant for many natural
populations. For example, predator inspection in sticklebacks is an
often cited application of the Prisoner’s Dilemma12, but only the
payoff ranking T . R . S has been experimentally confirmed13. If P
turns out to be less than S, predator inspection would actually be a
snowdrift game. Similarly, RNA phages engage in Prisoner’s
Dilemma interactions in cells14, but selection alters the payoff
structure, leading to stable coexistence of cooperating and defecting
types in a snowdrift game26. Other well-known examples of poten-
tial snowdrift or hawk–dove games include alarm calls in meerkat10

and fighting in large ungulates27. Cooperation seems to be ubiqui-
tous in meerkat, whereas serious escalations of fights seem to be
common in musk ox. Because costs of alarm calls seem to be small10,
whereas costs of forgoing reproduction are high, both observations
are in agreement with our results that space should benefit
cooperation for low cost-to-benefit ratios, but should lead to
more frequent escalations for high ratios.

Overall, our results indicate that spatial extension of natural

Figure 3 Average mixed strategy at stochastic equilibrium in the spatial hawk–dove game

as a function of the parameter r ¼ b/g for different lattice geometries. a, Triangular

lattice, neighbourhood size N ¼ 3; b, square lattice, N ¼ 4; c, hexagonal lattice, N ¼ 6;

d, square lattice, N ¼ 8. For synchronous updates (filled squares), spatial structure

systematically increases the frequency of hawk-like behaviour as compared with well-

mixed populations (dotted line). This effect becomes more pronounced for smaller N. By

contrast, spatial structure barely affects the equilibrium strategy for asynchronous

updates (open squares). See Methods for simulation details. Note that the equilibrium

proportion of hawk-like behaviour in the mixed-strategy case is generally different from

the equilibrium proportion of hawks in the pure strategy case (see Fig. 1). This contrasts

with well-mixed populations, where the evolutionarily stable equilibrium is the same in

both cases.
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populations may decrease cooperation and lead to more frequent
escalations of conflicts in situations in which cooperation persists in
well-mixed populations. Thus, spatial structure may not be as
universally beneficial for cooperation as previously thought. A

Methods
Spatial structure
In our spatially structured populations, individuals are confined to sites on regular
100 £ 100 lattices with periodic boundary conditions, and interact with their neighbours.
We used square lattices with N ¼ 4 and N ¼ 8 neighbours, hexagonal lattices (N ¼ 6) and
triangular lattices (N ¼ 3). Whenever a site x is updated, a neighbour y is drawn at random
among all N neighbours; the chosen neighbour takes over site x with probability
w y ¼ f(Py 2 Px), where the function f translates payoff differences into reproductive
success, reflecting natural selection based on relative fitness. The site x remains unchanged,
with probability 1 2 wy . Lattice updating can be either synchronous or asynchronous. For
synchronous updates, first all individuals interact in their respective neighbourhood and
then all sites are updated simultaneously through competition with a randomly chosen
neighbour. For asynchronous updates, only a single, randomly selected focal site is
updated at each simulation step: first the payoffs of the focal individual and a random
neighbour are determined, after which these two individuals compete to re-populate the
focal site. See Supplementary Information for the case where competition involves all
neighbours, rather than just a randomly chosen one.

Pure strategies
With pure strategies, each individual is either a cooperator or a defector. Lattices are
initialized randomly with equal proportions of the two strategies. f(z) ¼ zþ/a determines
the transition probabilities, where zþ is equal to z if z . 0 and 0 otherwise, and where
a ¼ T 2 P in the snowdrift game and a ¼ T 2 S in the Prisoner’s Dilemma, ensuring
that f(Py 2 Px) # 1. In well-mixed populations this implements the replicator
dynamics17. Equilibrium frequencies of cooperators and defectors are obtained by
averaging over 1,000 generations after a relaxation time of 5,000 generations.

The individual-based spatial models are complemented by deterministic pair-
approximation (ref. 28 and see Supplementary Information). This approach correctly
predicts a decrease in the frequency of cooperators in spatially structured populations, but
it underestimates the effects of local correlations: for larger r the fragility of cooperative
clusters is underrated, as is the ability of cooperators to displace defectors for small r
(Fig. 1). Near the extinction thresholds, interesting symmetrical dynamics occur: tiny
patches of defectors (cooperators) meander in a sea of cooperators (defectors).
Occasionally they divide into pairs or collide and vanish. This resembles a branching
and annihilating random walk, which suggests that there are critical phase transitions
and points to interesting relationships between game theory and condensed matter
physics29.

Mixed strategies
For mixed strategies in the hawk–dove game, an individual is characterized by the
probability p to show dove-like behaviour. Exploration of this continuous strategy space
requires mutations. Whenever an individual with strategy p reproduces, a mutation occurs
with a small probability (0.01) that assigns the offspring the strategy p þ y, where y

denotes a gaussian-distributed random variable with a mean of 0 and an s.d. of 0.002. To
speed up simulations, the lattice is initialized with random strategies drawn from a normal
distribution with a mean corresponding to the equilibrium strategy in well-mixed
populations and an s.d. of 0.02. The simulation results are insensitive to the initialization
details.

An individual in x with strategy p interacting with a neighbour with strategy q gets an
average payoff Px ¼ pqR þ p(1 2 q)S þ (1 2 p)qT þ (1 2 p)(1 2 q)P. The small
difference in the strategies of parents and mutant offspring leads to small payoff
differences Py 2 Px between neighbouring individuals. Thus, the update rule for pure
strategies returns small probabilities for a strategy change, which slows down the
simulations. We therefore used the nonlinear function f(z) ¼ [1 þ exp( 2 z/k)]21, in
which k is a noise term that reflects uncertainties in assessing the payoffs. This nonlinearity
greatly speeds up the simulations and introduces an interesting and realistic form of error,
whereby a worse performing player occasionally manages to reproduce. For k ! 1, errors
in assessing the payoffs increase until no information is left and the players randomly
adopt neighbouring strategies. We used k ¼ 0.1 in our simulations. The equilibrium levels
of dove-like behaviour were determined by evolving the lattice over 10,000 generations
and then averaging the mixed strategies over another 1,000 generations.

Received 11 September 2003; accepted 21 January 2004; doi:10.1038/nature02360.
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29. Szabó, G. & Hauert, C. Phase transitions and volunteering in spatial public goods games. Phys. Rev.

Lett. 89, 118101 (2002).

Supplementary Information accompanies the paper on www.nature.com/nature.

Acknowledgements We thank M. Ackermann and G. Szabó for comments. C.H. acknowledges
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To explain the evolution of cooperation by natural selection has
been a major goal of biologists since Darwin. Cooperators help
others at a cost to themselves, while defectors receive the benefits
of altruism without providing any help in return. The standard
game dynamical formulation is the ‘Prisoner’s Dilemma’1–11, in
which two players have a choice between cooperation and defec-
tion. In the repeated game, cooperators using direct reciprocity
cannot be exploited by defectors, but it is unclear how such
cooperators can arise in the first place12–15. In general, defectors
are stable against invasion by cooperators. This understanding is
based on traditional concepts of evolutionary stability and
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