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Effects of sampling interaction partners and competitors in evolutionary games
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The sampling of interaction partners depends on often implicit modeling assumptions, yet has marked effects
on the dynamics in evolutionary games. One particularly important aspect is whether or not competitors
also interact. Population structures naturally affect sampling such that in a microscopic interpretation of
the replicator dynamics in well-mixed populations competing individuals do not interact but do interact in
structured populations. In social dilemmas interactions with competitors invariably inhibit cooperation, while
limited local interactions in structured populations support cooperation by reducing exploitation through cluster
formation. These antagonistic effects of population structures on cooperation affect interpretations and the
conclusions depend on the details of the comparison. For example, in the snowdrift game, spatial structure may
inhibit cooperation when compared to the replicator dynamics. However, modifying the replicator dynamics
to include interactions between competitors lowers the equilibrium frequency of cooperators, which changes
the conclusions, and space is invariably beneficial, just as in the prisoner’s dilemma. These conclusions are
confirmed by comparisons with random-matching models, which mimic population structures but randomly
reshuffle individuals to inhibit spatial correlations. Finally, the differences in the dynamics with and without
interactions among competing individuals underlie the differences between death-birth and birth-death updating
in the spatial Moran process: death-birth updating supports cooperation because competitors tend not to interact
whereas they tend to do for birth-death updating and hence cooperators provide direct support to competitors to
their own detriment.
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I. INTRODUCTION

Cooperation between unrelated individuals in animal and
human societies is an intriguing issue in biology and social
sciences [1–5]. In the Darwinian world of survival of the
fittest, altruistic behavior that is costly to the individual and
benefits others should be selected against, yet cooperation is
ubiquitous in nature. Cooperation represents a social dilemma
because everyone is better off cooperating, but each individual
is tempted to free-ride on the benefits created by others,
which creates a conflict of interest between the group and
the individual [6]. This fundamental challenge in behavioral
sciences can be addressed with evolutionary game theory
where the prisoner’s dilemma, the snowdrift game, and the
stag-hunt game represent different instances and variants of
the underlying social dilemma [7].

In the prisoner’s dilemma cooperators pay a cost c to
provide a benefit b to their interaction partner (b > c), while
defectors neither incur costs nor provide benefits. If two
cooperators meet they mutually benefit from the interaction,
but both participants face the temptation to defect and avoid
the costs of cooperation. However, if both participants choose
to defect neither one gains anything from this interaction. The
prisoner’s dilemma represents the most stringent form of a
social dilemma. In order to maintain cooperative behavior,
positive assortment among cooperators is required [8], i.e.,
cooperators must more likely interact with other cooperators
than in random encounters. The necessary assortment of
cooperators or, more precisely, of acts of cooperation can be

achieved through various mechanisms, including conditional
response in repeated interactions through direct or indirect
reciprocity [9–12] or through limited local interactions in spa-
tially structured populations [13,14]. In particular, population
structures impose constraints on the sampling of interaction
partners. These constraints not only affect an individual’s
fitness by restricting interactions to a subset of the entire
population but also limit its exposure to individuals with
alternative strategies that could be imitated or whose offspring
might displace the individual. More specifically, in the pris-
oner’s dilemma, population structures facilitate assortment
by enabling cooperators to form clusters, thereby reducing
exploitation from defection.

The snowdrift game relaxes the social dilemma to the ex-
tent that cooperators and defectors can coexist in the absence
of assortment [15]. The name of the game refers to the situa-
tion where two drivers on their way home are trapped on either
side of a snowdrift. If both cooperate and start shoveling they
both get the benefit of getting home while splitting the costs
for clearing the way, b − c/2. However, if only one shovels
both still get the benefit but the cooperator bears the full costs.
Finally, if no one shovels no one gets anywhere. In contrast
to the prisoner’s dilemma, the best strategy now depends on
the opponent: If the other cooperates it is better to defect,
as before, but if the other defects it is better to cooperate
and get b − c instead of nothing for mutual defection. Note
that the snowdrift game turns into a prisoner’s dilemma for
large costs c > b, and for even larger costs c > 2b cooperation
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FIG. 1. Sampling of interaction partners in (a) and (b) well-mixed and (c) spatially structured populations. (a) The two competitors (red
and blue) both interact with a random sample of k = 4 other members of the population (light red and light blue, respectively). (b) The two
competitors interact with each other plus k − 1 = 3 random members of the population. (c) In spatially structured populations competitors are
always neighbors and interact with each other as well as with their other neighbors, some of which may be shared depending on the underlying
geometry.

is no longer a viable strategy, the dilemma disappears, and
defection becomes the mutually preferred strategy.

Formally, the snowdrift game is equivalent to the chicken
or hawk-dove game [16] but provides an interpretation in
terms of cooperation rather than conflict and competition.
Interestingly, the effects of assortment and spatial structure
in particular on cooperation in the snowdrift game [17] are
not as clear-cut as in the prisoner’s dilemma. In particular,
the conclusion whether spatial structure promotes or inhibits
cooperation depends on the details of the reference setup
and ultimately on the sampling of interaction partners and
competitors.

Finally, the stag-hunt game is an instance of a coordination
game where the best strategy also depends on the opponent,
but this time it is best to do the same as the opponent. The
stag-hunt game is inspired by Rousseau’s social contract [18],
noting that hunting a stag requires the concerted cooperative
efforts of a hunting party but each hunter faces the temptation
to defect and catch a hare instead. Although the hare feeds
the hunter, doing so spoils the group’s efforts to bag the
preferred stag. In this case, the conflict of interest reduces
to a coordination game because even though both players
prefer mutual cooperation, they may get trapped in states of
mutual defection because neither party has an incentive to
(unilaterally) switch strategy.

Here we consider the effects of sampling individuals for
interaction and competition on the evolutionary dynamics and
in particular on cooperation in social dilemmas. More specif-
ically, we consider sampling in well-mixed, i.e., unstructured,
populations for the classical, deterministic replicator dynam-
ics [19,20] as well as stochastic finite population models
[21,22] and compare the dynamics to random-matching mod-
els [23–25] as well as structured population models [14,26].

II. SAMPLING IN INFINITE POPULATIONS

The replicator dynamics [19,20,27] describes evolutionary
changes in infinite populations that consist of d strategic types
with frequencies xi for i = 1, . . . , d,

ẋi = xi (fi − f̄ ), (1)

where fi denotes the average fitness of type i derived from
random interactions with other members of the unstructured

(well-mixed) population and f̄ = ∑d
i=1 xifi indicates the av-

erage fitness of the population. Naturally
∑d

i=1 xi = 1 must
hold and hence the dynamics unfolds on the simplex Sd .
Equation (1) states that any strategic type, which performs
better than the population on average, increases in abundance.
More specifically, the fitness fi reflects the payoffs achieved
in interactions with other members of the population. If in-
teractions occur randomly and among pairs of individuals (as
opposed to larger groups), the payoffs are given by a matrix
A = [aij ], where the element aij indicates the payoff of an
individual of type i interacting with an individual of type j . In
that case the replicator equation can be written in matrix form

ẋi = xi[(Ax)i − xAx], (2)

with fi = (Ax)i , f̄ = xAx, and x = (x1, . . . , xd ) denoting the
current state of the population.

From a microscopic perspective, the evolutionary dynam-
ics unfolds in two stages. First, all individuals interact with
other members of the population by playing games and re-
ceiving payoffs according to the payoff matrix A, which then
affects and determines their fitness. Second, individuals com-
pete for reproduction and succeed at rates (or probabilities)
proportional to their fitness, which changes the composition
of the population x. Together the two stages result in a
Darwinian process based on variation (differences in traits)
and selection (differences in fitness). In a cultural context, the
population composition changes if individuals preferentially
imitate or learn strategies of more successful types, i.e., those
that have a higher fitness fi . Similarly, in a biological (genetic)
context, the population composition changes through differ-
ential reproduction rates, again represented by the fitness fi ,
where offspring replace other members of the population. The
replicator equation (1) represents the infinite-population limit
of either process [22,28,29].

The fitness fi in Eq. (1) is determined by the payoffs of
an individual of type i when interacting with other members
of the population in state x. If each individual interacts with
k randomly chosen partners, then there are on average kxi

interaction partners of type i [see Fig. 1(a)]. For fi based
on average payoffs fi = [A(kx)]i/k = (Ax)i , the matrix form
(2) is recovered and the average fitness remains unaffected by
the number of interactions k. Only the variance of the fitness
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between individuals of the same type increases for small k

and vanishes for k → ∞, but in infinite populations this has
no effect on the evolutionary dynamics.

Implicit in the conclusion that the dynamic is independent
of k is the assumption that the focal and model individuals
do not interact and hence assumes that no correlation exists
between interactions and competition. However, if the two
competitors, the focal and model individuals, do interact and
only the remaining k − 1 interaction partners are randomly
sampled, then a focal individual of type i and a model of type
j have on average fitness

fi = (k − 1)[A(x)]i + aij

k
, (3a)

fj = (k − 1)[A(x)]j + aji

k
, (3b)

respectively [see Fig. 1(b)]. Clearly, the effects of sampling on
fitness vanish in the limit k → ∞ and are strongest for small k

such that for k = 1 individuals exclusively interact with their
current competitor.

The replicator dynamics (1) is recovered for pairwise
comparison processes where a focal individual u compares
its payoff to a model individual v [22]. In a cultural context
the focal individual adopts the model’s strategy at a rate
proportional to their payoff difference fv − fu, whereas in a
genetic context the focal individual gets displaced by (clonal)
offspring of the model. Suppose pi→j is the rate at which an
individual of type i adopts the strategy of (or gets displaced
by) an individual of type j . Then the rate of change of the
frequency of type i is given by

ẋi =
d∑

j=1

xixjpj→i −
d∑

j=1

xixjpi→j

= xi

d∑
j=1

xj (pj→i − pi→j ). (4)

If the rates pj→i are linear functions of the payoff differences
fi − fj , then Eq. (4) recovers the replicator dynamics (1).
For example, this applies for the pairwise comparison process
given by

pj→i = 1

2
+ ω

2
(fi − fj ), (5)

where ω � 0 indicates the selection strength. For ω = 0 se-
lection is absent and the process is neutral, whereas for large
ω even small fitness differences translate to large selective
advantages. Here ω � 1 refers to the important limit of weak
selection. This yields ẋi = ωxi (fi − f̄ ), which is the same as
Eq. (1) except for a constant rescaling of time by ω. Hence
the net effect of changing the selection strength is a change
in the timescale of the replicator dynamics. Often it is useful
to interpret pj→i as transition probabilities in which case an
upper bound ωmax exists to ensure that pj→i remains confined
to [0,1].

A. 2 × 2 games

In order to highlight the differences in dynamics due
to the sampling process, consider pairwise interactions, two

strategies A and B, and the generic, symmetric payoff matrix

( A B

A α β

B γ δ

)
. (6)

The replicator equation (1) then reduces to

ẋ = x(fA − f̄ ) = x(1 − x)(fA − fB ), (7)

where x denotes the frequency of type-A individuals. The
dynamics admits two trivial equilibria at x = 0 and x = 1 plus
possibly a third, interior equilibrium x∗ for which fA = fB

holds. The existence and location of x∗ depend on the sam-
pling process to select interaction partners for type-A and -B
individuals, which then determine fA and fB , respectively. If
all k interaction partners are randomly sampled the interior
equilibrium is given by

x∗ = δ − β

α − β − γ + δ
, (8)

provided 0 < x∗ < 1 and is independent of k. Moreover,
the interior equilibrium is invariant to adding constants to
columns in the payoff matrix, which is a consequence of the
corresponding invariance of the replicator dynamics (1). Con-
sequently, the generic dynamics can be effectively reduced
to two instead of four parameters (payoffs) [30], but this
generally does not extend to other dynamics or population
structures. Naturally, Eq. (8) also represents the mixed Nash
equilibrium of the game (6). However, if competing individ-
uals always interact [see Eq. (3)], then for k � 2 the interior
equilibrium is shifted to

x∗
k = x∗ − 1

k − 1

β − γ

α − β − γ + δ
. (9)

The shift solely originates in the choice of sampling scheme to
determine the fitness of A- and B-type individuals. Moreover,
the interior equilibrium x∗

k no longer preserves the invariance
of x∗ and hence the generic dynamics now relies on three
payoffs (one can still be absorbed in a rescaling of time). In the
limit k → ∞ the differences vanish and x∗

k → x∗. For k = 1
the fitness of an individual is exclusively determined by the
interaction with its competitor and the replicator equation (7)
reduces to

ẋ = x(1 − x)(β − γ ) (10)

and hence no interior equilibrium exists regardless of the
game. In fact, any game is reduced to a purely competitive
interaction: If A outperforms B (β > γ ) then A types keep
increasing and x = 1 is the only stable state. The converse
holds if B outperforms A (β < γ ) and A types dwindle and
disappear.

In the following we focus on canonical forms of social
dilemmas involving only one or two parameters (payoffs)
while maintaining the characteristic and representative fea-
tures of the interaction.

1. Prisoner’s dilemma

The prisoner’s dilemma is characterized by the payoff
ranking γ > α > δ > β, which ensures that B (defection)
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dominates A (cooperation) and the third equilibrium x∗ does
not exist. The donation game [4] outlined in the Introduction
is a popular instance of the prisoner’s dilemma

( C D

C b − c −c

D b 0

)
, (11)

which can be rescaled and reduced to a single-parameter
interaction based on the cost-to-benefit ration r = c/b. More-
over, the donation game satisfies equal gains from switching
[31] γ − α = β − δ and hence renders the replicator dynam-
ics frequency independent. The modified sampling scheme
yields

ẋ = x(1 − x)

(
−c − 1

k
b

)
. (12)

Changing the sampling scheme only rescales time but does not
affect the outcome: Cooperators remain doomed and actually
disappear even faster for decreasing k.

2. Snowdrift game

The characteristic payoff ranking of the snowdrift game is
very similar with γ > α > β > δ, i.e., only the last inequality
is reversed, which renders A (cooperation) attractive when
facing B (defection) and consequentially admits a globally
stable interior fixed point x∗. Traditionally the snowdrift game
is parametrized as

( C D

C b − c
2 b − c

D b 0

)
, (13)

with b > c > 0 such that x∗ = 1 − r with the cost-to-benefit
ratio of mutual cooperation r = c/(2b − c). Thus, if coop-
eration is cheap, c � b, most individuals cooperate at equi-
librium, whereas if it is expensive, c � b, few cooperators
persist. Regardless of costs and benefits, the equilibrium state
is always a stable mixture of cooperators and defectors. This
is no longer the case when changing the sampling scheme to
always include the competing individual. For k � 2 this shifts
the equilibrium to

x∗
k = 1 − k + 1

k − 1
r = x∗ − 2

k − 1
r (14)

and hence invariably lowers the fraction of cooperators at
equilibrium. In particular, this change introduces a threshold
rc = (k − 1)/(k + 1) above which cooperation is no longer
sustainable [see Figs. 2(a) and 2(b)].

3. Stag-hunt game

The stag-hunt game is an instance of a coordination game
characterized by the payoff ranking α > γ � δ > β such that
it is always best to choose the same strategy as the opponent.
The traditional parametrization of the stag-hunt game is given
by the payoff matrix

( C D

C 1 0
D a a

)
, (15)

(a)

(b)

FIG. 2. Equilibrium fraction of cooperators in well-mixed pop-
ulations interacting in the snowdrift game, x∗ (dashed line) and x∗

k

(dash-dotted line) for k = 4, as a function of the cost-to-benefit ratio
r compared to individual based simulations (�) for N = 104 and
selection strength ω = 0.01. (a) Random sampling of interaction
partners matches x∗ even close to 0 or 1, indicating that for N = 104

stochastic fluctuations, which may result in the extinction or fixation
of cooperators, are negligible. (b) The modified sampling scheme
to include the competitor among the interaction partners matches
x∗

k and is consistently lower than x∗. Above rc = (k − 1)/(k + 1) =
3/5 cooperators can no longer persist.

where the value of a stag is conveniently normalized to 1 and
a hare is worth 1 > a > 0. Similar to the snowdrift game,
the stag-hunt game also admits an interior fixed point x∗ = a

but now x∗ is unstable and the two trivial equilibria x = 0
and x = 1 are both stable. Consequently, x∗ also marks the
basin of attraction for each of the two stable homogeneous
equilibria. In populations with x > x∗ the frequency of coop-
erators keeps increasing while if x < x∗ it keeps decreasing. If
x∗ > 1/2 then defection is risk dominant (has the larger basin
of attraction) and if x∗ < 1/2 cooperation is risk dominant,
but in either case mutual cooperation is the preferred, or effi-
cient, outcome [32,33]. Hence cooperation is risk dominant
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as long as hares are lean and worth less than half a stag
a < 1/2.

Changing the sampling scheme to always include the com-
peting individual shifts the separating equilibrium to

x∗
k = k

k − 1
a = x∗ + 1

k − 1
a (16)

for k � 2 and hence consistently increases the basin of at-
traction of defection. For k(1 − a) � 1 (including k = 1) the
basin of attraction of efficient cooperation disappears and
defection remains the sole globally stable equilibrium.

B. Structured populations

In structured populations individuals do not randomly in-
teract with any other member of the population but rather
interactions are confined to an individual’s neighborhood as
defined by a graph structure where each vertex represents an
individual and edges reflect interactions. Consequently, the
fitness of individuals is stochastic and based on the particular
realization of the strategies in their neighborhood rather than
expected payoffs as in Eq. (1) or (4).

As before, individuals update their strategies based on
probabilistic comparisons of their fitness with the fitness
of other members of the population but now the pool of
competitors is restricted to an individual’s neighborhood.
This generates positive assortment among both strategic
types through cluster formation, which benefits cooperators
in social dilemmas by increasing interactions with other
cooperators [8]. However, clusters can only expand along their
periphery where cooperators are pitched against defectors to
their disadvantage. In the prisoner’s dilemma the benefits of
assortment prevail and prevent the extinction of cooperation.
The spatial arrangement reduces exploitation by defectors
and hence enables cooperators and defectors to coexist [26].
In contrast, in the snowdrift game spatial structure may both
enhance or inhibit cooperation [17] when compared to the
equilibrium fraction in the replicator dynamics [see Fig. 3(a)].

When comparing interactions and updating in well-mixed
and spatial games, the spatial structure obviously restricts the
interaction partners of each individual to a small subset of
the population, but for pairwise comparison processes it also
imposes that competing neighbors interact with each other
at least with high probability. Consequently, it may be more
appropriate to compare the effect of spatial structure to a
well-mixed population where the two competitors interact as
well. This corresponds to the fitness according to Eq. (3),
which lowers the equilibrium frequency of cooperators in the
snowdrift game [Eq. (14)]. Using this scenario as a reference,
it turns out that spatial structure also invariably benefits coop-
eration [see Fig. 3(b)].

1. Moran process

Note that this relates to broader patterns observed in
the spatial Moran process [34]. The original Moran process
[35,36] represents a stochastic birth-death process to model
evolution in finite well-mixed populations. Individuals are
selected to reproduce with a probability proportional to their
fitness. Their offspring inherits the strategic type of the parent
and replaces a randomly selected member of the population.

(a)

(b)

FIG. 3. Equilibrium fraction of cooperators in structured popula-
tions interacting in the snowdrift game as a function of the cost-to-
benefit ratio r from individual based simulations (�) with selection
strength ω = 0.01. As a reference, the equilibrium of the replicator
dynamics is shown for the standard sampling scheme x∗ (dashed
line) as well as for the modified sampling scheme x∗

k (dash-dotted
line) with k = 4. (a) Lattice population (N = 100 × 100) interacting
with the four nearest neighbors (k = 4). Compared to x∗, spatial
structure turns out to be detrimental to cooperation for larger r;
however, compared to x∗

k , spatial structure remains beneficial. (b)
A random regular graph with four neighbors (N = 104 and k = 4)
results in equilibrium frequencies of cooperators between the lattice
and x∗ due to the decrease in ordered structure and hence local
clustering.

As a consequence, the overall population size N remains
constant and only the number of each strategic type changes.
The dynamics in well-mixed populations is essentially in-
different to whether birth or death events are processed first
[37]. More specifically, it is intuitive that the differences are
of order 1/N because the essential distinction between the
birth-death and death-birth scenarios is that the latter reduces
the number of potential parents to N − 1. In the limit of large
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populations N → ∞, the Moran process recovers the adjusted
replicator dynamics [22]. The adjusted replicator dynamics
[38] rescales time proportional to 1/f̄ (the inverse of the
average population fitness) such that changes happen fast in
poorly performing populations but slower in populations that
are well off but exhibits the same equilibria as the (standard)
replicator dynamics (1).

2. Birth-death and death-birth processes

Interestingly, this is strikingly different in spatially struc-
tured populations: Death-birth updates are significantly
stronger promoters of cooperation than birth-death updates
in the prisoner’s dilemma. In particular, in the limit of weak
selection, spatial structure provides no support to cooperators
for birth-death updating and cooperation remains doomed just
as in well-mixed populations. However, for death-birth updat-
ing cooperators can thrive provided the benefits exceed the
k-fold costs, b > ck, where k denotes the (average) number
of interaction partners of each individual, i.e., the degree of
the graph [13]. Intuitively, the reasons for this difference lie in
the fact that for birth-death updates interaction partners tend
to also compete with each other whereas they tend not to for
death-birth updates. In the first case this clearly puts cooper-
ators at a disadvantage because they directly assist their com-
petitors. For birth-death updating competition for reproduc-
tion is global and hence includes the interaction partners
of a focal cooperator. In contrast, for death-birth updating
competition is local because only the neighbors of a vacant
site compete and they tend not to be neighbors themselves.
The complementary conclusion is obtained if selection acts on
death rather than birth, i.e., if individuals with a higher fitness
live longer. Now the birth-death process supports cooperation
because competition is local and the individuals competing for
survival tend not to be interaction partners as well [39]. More
generally, what matters is the scale of competition or, more
precisely, the overlap between competitors and interaction
partners: The more disjoint the two sets are, the better for
cooperators.

In the spatial snowdrift game, the interplay between birth-
death or death-birth updating and effects of population struc-
ture is more subtle (see Fig. 4). Note that in the Moran process
fluctuations are significantly larger than for pairwise compar-
ison processes and hence absorption times are shorter. As a
consequence, the equilibrium frequencies in simulations are
averaged over multiple runs to reduce the effects of absorption
in either homogeneous state of all cooperators or all defectors.
Systematic deviations between analytical predictions in the
weak selection limit and the simulations result from the finite
selection strength as well as from the lattice structure. De-
viations decrease for simulations on random regular graphs,
which better reflect the assumptions of pair approximation.

For death-birth updating competitors tend not to interact,
but the details depend on the population structure. Two ex-
tremes are random regular graphs where neighbors do not
interact in the limit N → ∞, whereas on a lattice with a
Moore neighborhood (k = 8) some neighbors interact with
up to half of the neighborhood of the vacant site. For lat-
tices with a von Neumann neighborhood (k = 4) neighbors
do not interact but remain close because they share half of

(a)

(b)

FIG. 4. Equilibrium fraction of cooperators in the spatial Moran
process for the snowdrift game as a function of the cost-to-benefit
ratio r from individual-based simulations (•, standard deviation as
error bars) for (a) death-birth updating and (b) birth-death updating
with selection strength ω = 0.01 on an N = 100 × 100 lattice with
four nearest neighbors (k = 4). The simulation results are averaged
over 100 runs each, relaxed over 5000 generations, and then taking
the mean and standard deviations over the next 5000 generations.
The equilibria for the Moran process in well-mixed populations in
the limit N → ∞ are the same as for the replicator dynamics for
standard sampling (gray dashed line). Accounting for the fact that
competitors also interact for birth-death updating recovers modified
sampling (gray dash-dotted line). For the spatial Moran process the
equilibria are derived from pair approximation in the limit of weak
selection ω � 1 for birth-death updating (black dashed line) and
death-birth updating (black dash-dotted line).

their interaction partners. The case where competitors do not
interact corresponds to the standard sampling in well-mixed
populations (8). Pair approximation and simulation results
both confirm that spatial structure consistently increases the
equilibrium frequency of cooperation [see Fig. 4(a)].

Conversely, for birth-death updating competitors do in-
teract and hence correspond to the modified sampling in
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well-mixed populations (9). Again, pair approximation and
simulations confirm that spatial structure invariably increases
cooperation [see Fig. 4(b)]. However, as in Fig. 3(b), compar-
isons to the standard sampling conclude that spatial structure
is beneficial only at small r and becomes detrimental at high
r . The essential difference between birth-death and death-
birth updating in structured populations can be captured in
well-mixed populations by adjusting the sampling scheme to
mimic the respective overlap between interaction partners and
competitors.

III. RANDOM-MATCHING MODELS

Random-matching models represent a well-mixed analog
to interactions on regular graphs with degree k [23,24]. In
every time step individuals are arranged on a random reg-
ular graph and interact with their neighbors and a focal
individual updates its strategy through a probabilistic payoff
comparison with a randomly selected neighbor. Thus, the
fitness is stochastic just as in structured populations but the
redistribution of players between updates prevents clustering
and destroys any spatial correlations while preserving all other
aspects of the dynamical updating. This scheme naturally
implements the modified sampling scheme, which includes
interactions between focal and model individuals and is there-
fore the default in random-matching models.

A. Infinite-population limit

The composition of the population changes only if two
individuals with different strategic types meet and probabilis-
tically compare their payoffs. As before, let us focus on the
simplest case of 2 × 2 games with two strategic types A and B

[Eq. (6)]. In infinite populations, the probability that two indi-
viduals of different type meet and compete is x(1 − x), where
x denotes the frequency of the A type. For each individual
this leaves an additional k − 1 randomly chosen interaction
partners to determine their respective fitness. The number of
A types among those follows a binomial distribution such that

p(m) =
(

k − 1

m

)
xm(1 − x)k−1−m (17)

denotes the probability that m of the k − 1 co-players are of
type A. Thus, the probability that a type-B individual imitates
and switches to type A, or equivalently gets displaced by
offspring of the A type, is given by

pB→A = 1

2
+ ω

2

k−1∑
a=0

k−1∑
b=0

p(a)p(b)

× [aα + (k − a)β − bγ + (k − b)δ] (18)

= 1

2
+ ω

2
{β − γ + (k − 1)

× [β − δ + x(α − β − γ + δ)]}, (19)

where the summations over a and b indicate the number of
A types among the k − 1 interaction partners of the focal
A and B types, respectively. The converse probability pA→B

reduces to

pA→B = 1

2
− ω

2
{β − γ + (k − 1)

× [β − δ + x(α − β − γ + δ)]} (20)

such that pA→B + pB→A = 1 holds [25].
An interior stationary state of the random-matching dy-

namics is, if it exists, given by pA→B = pB→A such that the
probability of an increase in A types equals that of an increase
in B types. Because of pA→B + pB→A = 1, both have to be
1/2. The resulting equilibrium turns out to be the same as for
the modified sampling x∗

k [Eq. (9)]. Decoupling interaction
and competition of individuals through standard sampling
shifts the interior stationary state to x∗ [Eq. (8)], provided
it exists, and random matching recovers the equilibria of the
standard replicator dynamics. If the interior stationary state is
unstable, as in coordination games, or in the absence of an
interior stationary state, the dynamics drives the population
to either one of the absorbing homogeneous states with all
A or all B types. Thus, in the infinite-population limit, both
replicator dynamics and random-matching models give rise to
the same long-run behavior [24].

B. Stochastic stability in finite populations

In finite well-mixed populations of constant size N , the
state of the population is fully determined by the number
of each strategic type and more specifically in the present
case of 2 × 2 games by the number of A types. A state is
called stochastically stable if it has a nonzero probability
in the zero-noise limit of the stationary probability distribu-
tion [40]. More precisely, this limit considers update rules
where the strategy of individuals with higher fitness is always
adopted (or, equivalently, the offspring of the fitter individual
always succeeds in replacing the less fit) regardless of the
magnitude of the fitness difference. Occasionally, with a small
probability ε, an error happens and an inferior strategy is
nevertheless adopted or a superior one is not. Note that we
assume ε � 1/N to disentangle errors and probabilities for
rare comparisons between different strategic types. For the
pairwise comparison update (5) these assumptions correspond
to the limit ω → ∞ while adding a noise term

pj→i = ε + (1 − 2ε)�(fi − fj ), (21)

where �(x) denotes the Heaviside step function. With this
updating the population eventually ends up in one of the
absorbing homogeneous states with all individuals of either
type A or B. In order to prevent absorption, a small prob-
ability μ is introduced with which mutations arise and an
individual spontaneously switches to the opposite strategy.
This turns the population dynamics into an ergodic process
with a unique stationary probability distribution, which can
be interpreted as the fraction of time that the population
spends in the corresponding state [41]. For simplicity, we set
μ = ε and determine stochastic stability in the limit ε → 0 for
different sampling schemes (see Appendix A). For dominance
games, such as the prisoner’s dilemma, stochastic stability
and stability in infinite populations always coincide and do
not depend on the sampling scheme. However, interesting
differences arise for the stag-hunt game (15) and the snowdrift
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game (13) because of the bistable and coexistence dynamics,
respectively.

1. Stag-hunt game

A crucial determinant of the evolutionary trajectory in the
stag-hunt game (15) is the basin of attraction of the two
absorbing states of homogeneous cooperation or defection.
The size of the two basins is determined by the location of
the unstable interior fixed point: x∗ = a for standard sampling
and x∗

k = ak/(k − 1) for the modified sampling (16). The
strategy with the larger basin of attraction is called risk
dominant. For Eq. (15) and standard sampling this means that
C is risk dominant for a < 1/2 while D is risk dominant for
a > 1/2. Similarly, C is risk dominant for a < (k − 1)/2k for
the modified sampling and D is risk dominant for the reverse
inequality.

In the replicator dynamics, the evolutionary end state is
simply determined by the chance with which the initial con-
figuration falls into one or the other basin of attraction. In
contrast, for the stochastic dynamics in finite populations,
the only stochastically stable state is a homogeneous popu-
lation with all individuals adopting the risk-dominant strategy
[33,42].

Intuitively, stochastic stability is determined by the number
of rare events, i.e., transitions with probability o(ε), that
are required to switch from one homogeneous state to the
other; stochastic stability requires ε � 1/N because oth-
erwise many more transitions become relevant. Naturally,
the one requiring fewer rare events to reach dominates and
is therefore stochastically stable (see Appendix A). More
specifically, for the stag-hunt game we obtain the following
theorem.

Theorem 1. In the stag-hunt game (15), the homogeneous
state with all cooperators C is stochastically stable under
random matching if

a < max
i=1,...,k

min

{
i − 1

k
, 1 − i

k

}
,

while the homogeneous state with all defectors D is stochas-
tically stable if

a > min
i=1,...,k

max

{
i − 1

k
, 1 − i

k

}
.

The proof is provided in Appendix B. Note that for even k,
the second inequality reduces to a > 1/2. From the theorem it
follows that C is stochastically stable, for example, for k = 4
if a < 1/4 and D is stochastically stable if a > 1/2, while for
1/4 � a � 1/2 the stationary probability mass is split among
the C and D states and hence both are stochastically stable
[see Fig. 5(b)].

In order to highlight the effects of sampling, let us now
consider a random-matching model without interactions be-
tween focal and model individuals by randomly choosing the
model from the entire population and not just from interaction
partners of the focal individual. Note that this change does not
affect the derivation of the stochastic payoffs. Interestingly,
changing the sampling leaves the conditions for stochastic sta-
bility unchanged, but this is not reflected in numerical results
[see Fig. 5(a)]. It turns out that the dynamics in the region

(a)

(b)

FIG. 5. Stochastic stability in the stag-hunt game for random
matching in finite populations (N = 100) for (a) standard sampling
and (b) modified sampling (focal and model individuals always
interact) with k = 4 interaction partners and ε = 0.001 as a function
of the payoff for a hare a [see Eq. (15)] (•, mean of the stationary
distribution with standard deviation as error bars). (a) For standard
sampling, the risk dominant strategy is stochastically stable: For a <

1/2 cooperation is risk dominant, whereas for a > 1/2 defection is
risk dominant. (b) In contrast, for the modified sampling, cooperation
is stochastically stable only for a < 1/4, whereas defection remains
the only stable state for a > 1/2. However, for 1/4 < a < 1/2 both
homogeneous states are stochastically stable and attract the same
probability mass, which results in a mean of 1/2.

1/4 < a < 1/2 for k = 4 is more subtle and is constrained
not only by rare events based on the error probability ε but
also by events of order 1/N2 and 1/N3.

In the stag-hunt game, the rare type is always at a dis-
advantage and hence the probability that the number of C

players increases from one to two, 1 → 2, is of o(ε) regardless
of a. Now consider the transition 2 → 3 with k = 4: In the
best scenario for C, a C player interacts with the other C

player (plus three D players) and receives a payoff of 1 while
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competing with a D player who gets a payoff of 4a regardless
of its interaction partners. Thus, for a > 1/4 the transition
remains of o(ε). More interesting is the transition 3 → 4:
Again, in the best scenario a C player interacts with both C

players (plus two D players) and receives a payoff of 2 such
that now the transition is viable for a < 1/2. However, this
best scenario occurs only with probability of order 1/N2 and
hence makes a significant contribution only if ε < 1/N2.

Analogous arguments apply if D players are rare and C

players common. The transition from a single D to two D’s,
or the number of C players N − 1 → N − 2, and from N −
2 → N − 3 are viable for a > 3/4 and a > 1/2, respectively,
in the best scenario for the D player. More interestingly, the
transition N − 3 → N − 4 is viable for a > 1/4 in the best
scenario, but this occurs only with probability of order 1/N3

based on the probability that the C competitor has interacted
with all D players in the population.

Comparing the transitions for the number of C players 3 →
4 and N − 3 → N − 4, we note that for 1/4 < a < 1/2, the
former transition is more likely by a factor of 1/N and hence
for small ε and large N (more precisely, ε > 1/N2), almost
all probability mass is concentrated at C even though D is
in principle stochastically stable too. For larger N , with ε <

1/N2, the result remains unchanged but all other transition
probabilities have to be taken into account too.

This is easily generalized to arbitrary k: For a low
but fixed ε and sufficiently large N , the stationary prob-
ability distribution assigns almost all mass to C for a <

mini=1,...,k max{ i−1
k

, 1 − i
k
} and to D otherwise.

2. Snowdrift game

The replicator dynamics admits a single stable equilibrium
where cooperators and defectors coexist in the snowdrift game
(13). The equilibrium fraction of cooperators depends on the
sampling scheme and is lower (or disappears) if competitors
also interact [cf. Eq. (14) and Fig. 2]. However, in finite
populations, stochastic fluctuations inevitably drive the pop-
ulation to either one of the homogeneous states, which are
absorbing in the absence of mutations. In the snowdrift game,
absorption times scale exponentially with population size N

[43]. Thus, for small mutation rates μ, the splitting of the
probability mass of the stationary distribution between the two
homogeneous states and the coexistence state is nontrivial but
remains accessible for stochastic stability.

Theorem 2. In snowdrift games (13) the homogeneous state
with all defectors D is stochastically stable under random
matching if

r > (k − 1)/(k + 1),

while for r < (k − 1)/(k + 1) the stationary distribution as-
signs nonzero probability to interior states.

The proof is provided in Appendix C. Interestingly, this
implies that C is never stochastically stable. For k = 4, it fol-
lows that D is stochastically stable for r > 3/5 [see Fig. 6(b)].
The discontinuous jumps in the frequency of cooperators can
be associated with thresholds of r that ensure that C players
outcompete D players in relevant configurations. Naturally,
which configurations are relevant depends on the frequency
of cooperators. For example, if cooperators are rare, most

(a)

(b)

FIG. 6. Stochastic stability in the snowdrift game for random
matching in finite populations (N = 100) for (a) standard sampling
and (b) modified sampling (focal and model individuals always
interact) with k = 4 interaction partners and ε = 0.001 as a function
of the cost-to-benefit-ratio r [see Eq. (13)] (•, mean of the stationary
distribution with standard deviation as error bars). (a) For standard
sampling the interior equilibrium x∗ is always stochastically stable.
Note that x∗ coincides with the homogeneous equilibria for r = 0
and r = 1. (b) In contrast, for the modified sampling, defection is
stochastically stable for r > 3/5, whereas the interior equilibrium
remains stable for r < 3/5.

likely neither C players nor D players interact with another
C and thus their respective payoffs are k(b − c) and b (recall
that by default competitors also interact in random-matching
models). The C players win if r < (k − 1)/(k + 1), which
corresponds to the stochastic stability threshold above which
the homogeneous D state is stable. At slightly higher frequen-
cies of cooperators both C players and their competing D

players are both likely to interact with one randomly chosen
C player, which yields b − c/2 + (k − 1)(b − c) for the C

player and 2b for the D player. Thus, the C player wins if r <

(k − 2)/(k + 1). For still higher frequencies of cooperators,
both competitors likely interact with two random C players,
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which translates into a threshold of r < (k − 3)/(k + 1) for
cooperators to win. Thus we expect k − 1 transition points
where the stochastic sampling of interaction partners favors
and reinforces particular frequencies of cooperators and re-
lates to the three jumps observed for k = 4 in Fig. 6(b)
at r ≈ 0.2, 0.4, 0.6. The above argument also suggests that
the plateaus should occur in increments of 1/k, which also
matches Fig. 6(b), but naturally the plateaus are less pro-
nounced for frequencies around 50% because many other
types of matchings are likely and introduce further and finer
grains of thresholds.

In a random-matching model with standard sampling, i.e.,
in the case where focal and model individuals do not neces-
sarily interact, the results are again quite different. In fact, for
0 < r < 1 neither the homogeneous C nor D state is stochas-
tically stable and effectively all probability mass is assigned
to interior states. The snowdrift game favors rare types, which
means that the transitions 1 → 2 and N − 1 → N − 2 of the
number of C players are highly likely regardless of r . More
precisely, a single C player in the population gets a payoff of
k(b − c) and, in the worst case, competes with a D player who
also happened to interact with the C and thus has a payoff of
b. Consequently, the C player loses if r > (k − 1)/(k + 1).
However, this scenario occurs only with a probability of order
1/N and for smaller r or other matchings the C player always
wins. Conversely, a single D player in the population wins
with certainty regardless of r: Even in the worst case the D

player gets a payoff of k b and outcompetes C players with
a payoff of k(b − c) from interactions with other C’s. As a
consequence, although D remains stochastically stable, for
fixed ε and large N , the stationary probability assigns almost
all probability mass to interior states [Fig. 6(a)].

The frequency of cooperators again exhibits discontinuous
jumps that relate to thresholds of r , which enables cooperators
to outcompete defectors in relevant configurations. Naturally,
both the thresholds and the levels of the plateaus are different
because competing C players and D players no longer neces-
sarily interact. If both interact with one C player they get b −
c/2 + (k − 1)(b − c) and b, respectively, such that C players
win if r < (k − 1)/k. Similarly, if both interact with two C

players, the C player wins if r < (k − 2)/k. Thus, we again
expect k − 1 transition points that favor certain frequencies
of cooperators and are observed for k = 4 in Fig. 6(a) at
r ≈ 0.25, 0.5, 0.75. In contrast to Fig. 6(b), the increment
between plateau levels seems closer to 1/(k + 1), but such
differences are not surprising because these levels are the
result of dynamical feedback between sampling probabilities
and transition probabilities.

IV. DISCUSSION

For modeling evolutionary trajectories, the sampling pro-
cess, which determines the interaction partners and hence the
fitness of competing individuals, has a decisive impact on the
evolutionary outcome. Naturally, the sampling is affected by
the structure of the population (or lack thereof) but another
crucial aspect is whether or not competing individuals also
interact.

In a microscopic interpretation of the canonical dy-
namics of evolutionary game theory, the replicator equa-

tion [19], interaction partners are randomly sampled and
competing individuals do not interact. More precisely, in
unstructured finite populations of size N the chance that
the focal individual and its competitor interact is of order
1/N and hence vanishes in the infinite-population limit of
the replicator dynamics. Modifying the sampling scheme
to always include interactions between competitors changes
the dynamics quantitatively and at times even qualitatively
in coexistence and coordination games. In social dilem-
mas, the modified sampling scheme invariably favors de-
fectors. While this merely speeds up the demise of co-
operators in the prisoner’s dilemma, it shifts the interior
equilibrium in the snowdrift game and reduces the equilibrium
fraction of cooperators and similarly increases the basin of
attraction of defectors in the stag-hunt game. In the latter two
cases the change in sampling may even eliminate the inte-
rior fixed point altogether, turning defection into a dominant
strategy, just as in the prisoner’s dilemma. In particular, if
individuals exclusively interact with their competitor, neither
coexistence nor bistability is possible and one type invariably
dominates the other.

In social dilemmas, assortment promotes cooperation by
reducing exploitation by defectors, for example, through clus-
ter formation in structured populations. However, this effect
is reduced if competitors also interact, which is the case in
traditional models with identical interaction and reproduc-
tion graphs [13,17,26] (some notable exceptions are those in
[39,44,45]). Even if interaction partners are randomly sam-
pled from an individual’s limited local neighborhood, chances
are high that this includes any neighbor who is challenging the
focal individual.

In the prisoner’s dilemma the benefits of cluster formation
tend to prevail and spatial structure is capable of supporting
cooperation [26]. This also applies to the spatial Moran pro-
cess except in the weak selection limit of birth-death updating
where the benefits of assortment are canceled by competing
with interaction partners [13,39]. In the stag-hunt game spatial
structure in general simply favors the risk-dominant strategy
[30], but adding noise can result in surprising qualitative
changes [46]. Interestingly, the situation is more subtle for the
spatial snowdrift game [17] and depends on the reference sce-
nario. When compared to the replicator dynamics, the effects
of space can inhibit or enhance cooperation depending on the
game parameters. However, when compared to the equilib-
rium fraction of cooperators for the replicator dynamics with
modified sampling, spatial structure again has an invariably
beneficial impact on cooperation also in the snowdrift game.

Random-matching models provide another interesting al-
ternative to identify and quantify effects of population struc-
ture because they assume an underlying population structure
but then randomly reshuffle individuals between updates to
prevent spatial correlations. Thus the default sampling of in-
teraction partners includes competitors for random matching
but of course the sampling scheme can easily be adjusted to
reflect the standard sampling of the replicator dynamics. In
the limit of infinite populations, random matching recovers
the long-term dynamics of the replicator equation for both
sampling types. In finite populations the evolutionary outcome
is determined by stochastic stability, which identifies all states
of the population with a nonzero allocation of probability
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mass in the zero-noise limit. The results agree well with
the expectations based on the replicator equation with mod-
ified or standard sampling. Interestingly, however, confirming
stochastic stability through simulations and numerical analy-
sis turns out to be surprisingly challenging, which highlights
that this zero-noise limit is fickle and may be of limited
relevance for modeling purposes.

The differences in the dynamics based on whether in-
teractions include competitors is mirrored in the differences
between birth-death and death-birth updating in the spatial
Moran process [13,39]. For example, in the weak-selection
limit, death-birth updating can sustain cooperation in the pris-
oner’s dilemma if b > c k, while birth-death updating cannot.
The reason for this difference is that for death-birth updating,
neighbors of a vacant site compete to repopulate the vacancy
but neighbors tend not to be neighbors themselves and hence
tend not to interact with each other. Conversely, for birth-death
updating, all individuals compete for reproduction and in
particular each individual also competes with its interaction
partners and consequently cooperators provide direct support
to competitors at a disadvantage to themselves. The upshot is
that for the success of cooperation it is crucial that individuals
carefully sample their interaction partners not only to reduce
exploitation by defectors but also to avoid interactions with
competitors.
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APPENDIX A: STATIONARY PROBABILITY
DISTRIBUTIONS OF ERGODIC MARKOV CHAINS

We assume that the system follows some deterministic
rule with the probability 1 − ε and with the probability ε; a
mistake is made that moves the system in the other direction.
Let (�, Pε ) be a discrete-time Markov chain with a finite state
space � and transition probabilities given by Pε : � × � →
[0, 1]. We assume that one can get with nonzero probability
from any state to any other state in a finite number of steps.
It follows that the Markov chain has the unique stationary
probability distribution με . We say that the state x ∈ � is
stochastically stable if it has a nonzero probability in the
stationary probability distribution, that is,

lim
ε→0

με (x) > 0. (A1)

This means that the state x is observed in the long run with
a nonzero frequency. We are usually interested in situations
where this frequency is equal to 1.

For x ∈ �, an x tree with the root at x is a directed graph on
� (connecting all vertices) such that from every y �= x there
is a unique path to x and there are no outgoing edges out of x.
Denote by T (x) the set of all x trees and let

qε (x) =
∑

d∈T (x)

∏
(y,y ′ )∈d

Pε (y, y ′), (A2)

where Pε (y, y ′) is the element of the transition matrix (that is,
a conditional probability that the system will be at the state
y ′ at time t provided it was at the state y at time t − 1) and
the above product is with respect to all edges of the x tree d.
In our finite-population models, Pε (y, y ′) is a polynomial in
1 − ε and ε or it is equal to 0.

Now one can show that (the tree lemma) [47,48]

με (x) = qε (x)∑
y∈� qε (y)

(A3)

for all x ∈ �. A state is absorbing if it attracts nearby states
in the zero-noise (no mistakes) dynamics (ε = 0). That is,
after a finite number of steps of the zero-noise dynamics, the
system arrives at one of the absorbing states and stays there
forever. It follows from Eq. (A3) that the stationary probability
distribution can be written as the ratio of two polynomials in
ε. Hence any nonabsorbing state has zero probability in the
stationary distribution in the zero-noise limit (ε → 0). More-
over, in order to study the zero-noise limit of the stationary
distribution, it is enough to consider paths between absorbing
states. Let us assume that the system has two absorbing states.
Let mxy be a minimal number of mistakes needed to make a
transition from the state x to y and myx the minimal number
of mistakes to make a transition from y to x. Then qε (x)
is of order εmyx and qε (y) is of order εmxy . If, for example,
myx < mxy , then it follows that limε→0 με (x) = 1 and hence
x is stochastically stable.

In the one-dimensional models considered here (biased
random walk on N + 1 integers with absorbing states at 0 and
N ), the situation is much simpler: All states have unique trees
and the only absorbing states are 0 and N . The unique tree
of an absorbing state is given by a direct path from the other
absorbing state, while for any interior state, its tree is made of
two directed paths from 0 and N .

APPENDIX B: STOCHASTIC STABILITY IN THE
STAG-HUNT GAME: PROOF OF THEOREM 1

First we find the threshold for the extinction for D that is
the biggest a such that C is stochastically stable. The best
scenario for C, for transitions i → i + 1, i = 1, . . . , k, is that
a model C player interacts with a number of C players i − 1
and one D player. Then, for a < (i − 1)/k, 1 < i � k, the
transition i → i + 1 takes place with the probability 1 − ε.
For i = N − 1, . . . , N − k, the best scenario for D is that a
model C player interacts with a number of D players N − i.
Then, for a < 1 − i/k and N − k � i < N , transitions i →
i + 1 take place with the probability 1 − ε. For both inequal-
ities for a to hold we take a minimum value of two bounds
min{ i−1

k
, 1 − i

k
}. To get a threshold for the extinction of D we

take a maximum value of the above expression with respect to
i = 1, . . . , k.

Now we find the threshold for the extinction for C that is
the smallest a such that D is stochastically stable. If a > (i −
1)/k and 1 < i � k, then even for the best scenario for C,
transitions i → i + 1 take place with the probability 1 − ε.
For a > 1 − i/k and N − k � i < N , for the best scenario
for D transitions i → i − 1 takes place with the probability
1 − ε. For both inequalities for a to hold we take a maximum
value of two bounds max{ i−1

k
, 1 − i

k
}. To get a threshold for
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the extinction of C we take a minimum value of the above
expression with respect to i = 1, . . . , k.

APPENDIX C: STOCHASTIC STABILITY IN THE
SNOWDRIFT GAME: PROOF OF THEOREM 2

For z = N − 1, the payoff of the only D player is bigger
than the payoff of any C player. Therefore, the population
moves from z = N − 1 to z = N − 2 with probability 1 − ε.
If k(b − c) < b, that is, r > (k − 1)/(k + 1), then the payoff

of a single C player is smaller than the payoff of any D

player and therefore the population moves from z = 1 to
z = 0 with probability 1 − ε. Hence the tree of z = 0 is
of order ε and both z = N and z = x∗ have trees of order
ε3. It follows from the tree lemma (see Appendix A) that
the homogeneous population with all defectors is stochas-
tically stable. Conversely, for r < (k − 1)/(k + 1), all three
states z = 0, z = N , and z = x∗ have trees of order ε2. It
follows that in the zero-noise limit, the stationary distribution
assigns nonzero probability to interior states with C and D

strategies coexisting.
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