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� Bounds for the fixation probabilities on superstars are derived.
� Bounds are consistent with previous numerical and simulation based work.
� Contradicting results in the prior literature are resolved.
� Results confirm that arbitrarily strong evolutionary amplification is possible.
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a b s t r a c t

Population structures can be crucial determinants of evolutionary processes. For the Moran process on
graphs certain structures suppress selective pressure, while others amplify it (Lieberman et al., 2005).
Evolutionary amplifiers suppress random drift and enhance selection. Recently, some results for the
most powerful known evolutionary amplifier, the superstar, have been invalidated by a counter example
(Díaz et al., 2013). Here we correct the original proof and derive improved upper and lower bounds,
which indicate that the fixation probability remains close to 1�1=ðr4HÞ for population size N-1 and
structural parameter H⪢1. This correction resolves the differences between the two aforementioned
papers. We also confirm that in the limit N;H-1 superstars remain capable of eliminating random drift
and hence of providing arbitrarily strong selective advantages to any beneficial mutation. In addition, we
investigate the robustness of amplification in superstars and find that it appears to be a fragile
phenomenon with respect to changes in the selection or mutation processes.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Populations evolve according to the principles of natural
selection and random drift. The balance between the two compet-
ing processes is determined by numerous factors, including both
population size and structure (Antal et al., 2006; Bürger and
Lande, 1994; Nowak and May, 1992; Fu and Nowak, 2013). The
most malignant tumour is unlikely to cause harm if it arises in the
outermost layer of skin and is easily brushed aside, and the most
imperative model for climate change has limited influence until it
has worked its way from a researchers desk, through the literature
into policy making and public awareness. Position matters.

One of the simplest and most influential models of stochastic
evolutionary processes in finite populations is the Moran process
(Moran, 1962; Nowak et al., 2004). It is based on an unstructured (or

well-mixed) population of constant size N, where each individual is
classified either as a resident (wild type) or a mutant. Each type is
assigned a constant fitness, which determines its propensity to
reproduce. The fitness of wild types is normalized to 1 and mutants
have fitness r. An advantageous mutant has r41, a disadvanta-
geous mutant has ro1 and a neutral mutant is indistinguishable in
terms of fitness, r¼1. In every time step, an individual is randomly
selected for reproduction with a probability proportional to its
fitness and produces a clonal offspring that replaces an individual,
selected uniformly at random, in the population. This process is
repeated until eventually the population has reached one of the
homogeneous states of all residents, if the mutant went extinct, or
all mutants, if the mutant successfully took over the entire popula-
tion (Moran, 1962; Nowak et al., 2004; Lieberman et al., 2005). In
both cases, the population has reached fixation. In the absence of
mutation, the two homogeneous states are absorbing.

The Moran process models evolutionary dynamics based on
selection and random drift in finite populations: an advantageous
mutant has a higher probability, but no guarantee, to reach fixation
and, similarly, an inferior mutant is more likely to be eliminated, but
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not with certainty. The fixation probability of either type is analyti-
cally accessible for any given initial configuration. Of particular
interest is the fixation probability of a single mutant, ρM, that arises
in an otherwise homogeneous population of wild types:

ρM ¼
1�1

r

1� 1
rN

: ð1Þ

In the neutral limit, r-1, all individuals in the population are equally
likely to end up as the single common ancestor, leading to a fixation
probability of 1=N.

The original Moran process ignores population structures – but
this is easily addressed by arranging individuals of a population on a
graph, such that each node refers to one individual and the links to
other nodes define its neighbourhood. Maruyama (1970) and Slatkin
(1981) conjectured that the fixation probability of a mutant in this
Moran process on graphs remains unaffected by population struc-
tures. Lieberman et al. (2005) proved that this is indeed true for a
broad class of structures and, in particular, holds for simple structures
such as lattices or regular networks. At the same time, this classifica-
tion indicated that fixation probabilities, ρ, may differ for some
structures by tilting the balance between selection and random drift.
Evolutionary suppressors enhance random drift and suppress selec-
tion (ρoρM for r41 and ρ4ρM for ro1), whereas evolutionary
amplifiers exhibit the intriguing property to enhance selection and
suppress random drift (ρ4ρM for r41 and ρoρM for ro1).

In recent years, various aspects of the Moran process on graphs
have been explored, including effects of population structures on
fixation probabilities (Antal et al., 2006; Broom and Rychtář, 2008;
Voorhees and Murray, 2013, or fixation times (Payne and Eppstein,
2009; Frean et al., 2013), as well as computational techniques
(Shakarian and Roos, 2011; Fu et al., 2009). However, the most
intriguing result remains that arbitrarily strong evolutionary
amplification appears to be possible: “The superstar… [has] the
amazing property that for large [population sizes] N, the fixation
probability of an advantageous mutant converges to one, while the
fixation probability of a disadvantageous mutant converges to
zero.” (Lieberman et al., 2005).

More recently Díaz et al. (2013) provided a sophisticated and
elaborate counter example that contradicted the fixation probabilities
reported in Lieberman et al. (2005). Here we identify the problem in
the original proof, correct it and report new upper and lower bounds
on the fixation probability for superstars. Moreover, for any r41, a
graph can be constructed such that ρ is arbitrarily close to 1, thus
confirming the possibility of arbitrarily strong amplification.

2. Model

2.1. Moran process on graphs

Population structure can be represented by assigning individuals
to nodes on a graph with links representing each individuals'
neighbourhood. The Moran process on graphs follows the same
procedure as the original Moran process except for the crucial
difference that the offspring does not replace a random member of
the entire population but rather replaces a neighbour of the reprodu-
cing individual, selected uniformly at random (Fig. 1). On directed
graphs, the offspring replaces a downstream neighbour by selecting
one outgoing link uniformly at random. As before, the population has
reached fixation once either one of the absorbing, homogeneous
states is reached. For any number of mutants, m; 0omoNð Þ, the
fixation probabilities of residents and mutants are both non-zero on
strongly connected graphs, i.e. graphs where every node can be
reached from any other node through a series of moves between

nodes that are connected by links (for directed graphs, only moves in
the direction of the link are permitted). If a graph is not strongly
connected, then the structure may prevent the spreading or elimina-
tion of a mutant type regardless of its fitness and hence the fixation
probability for either or both types can be zero.

For the Moran process on graphs, the fixation probabilities are
the same as in unstructured populations, cf. Eq. (1), provided that
the graph is a circulation (Lieberman et al., 2005). For circulations
the sum of weights of all outgoing links is equal to the sum of
weights of all incoming links for every node. This means that every
node has the same impact on the environment as the environment
has on the node.

A graph is an evolutionary suppressor if the fixation probability
of an advantageous mutant is less than for the original Moran
process, ρoρM . The simplest example is a linear chain: a graph
with a single root node, which connects to one end of a (directed)
chain of nodes (Nowak et al., 2003). Any mutation that does not
occur at the root has no chance of reaching fixation. However, if
the mutation occurs in the root node it eventually takes over with
certainty. Assuming that mutations arise spontaneously and are
equally likely in any location, the resulting fixation probability is
simply 1=N, regardless of the mutant's fitness r. The linear chain is
an example of a graph that is not strongly connected, because the
root node cannot be reached from any node in the chain. Evolu-
tionary suppressors are often found when high fidelity copying is
of paramount importance, such as in slowing down the somatic
evolution of cancer (Nowak et al., 2003; Michor et al., 2004).

In contrast, an evolutionary amplifier is a graph, which
increases the fixation probability of advantageous mutants as
compared to the original Moran process, ρ4ρM . The simplest
evolutionary amplifier is the star graph: a single root node is
connected to a reservoir of peripheral leaf nodes through bi-
directional links. The fixation probability of a single mutant for
N⪢1 is (Lieberman et al., 2005; Broom and Rychtář, 2008)

ρ0 �
1� 1

r2

1� 1
r2N

: ð2Þ

On the star, a mutant with fitness r has roughly the same fixation
probability as a mutant with fitness r2 in an unstructured popula-
tion. Thus, the fixation probability of beneficial mutations r41ð Þ is
enhanced, but for deleterious mutants ðro1Þ it is reduced. Note
that the fixation probability depends on where the single mutant
arises. If the mutant is located in the root node then, for N⪢1, it is
almost certainly replaced in the next time step because one of the
N�1 reservoir nodes is selected for reproduction. However, if
mutants arise at random, then for N⪢1 they almost surely arise in
the reservoir and the fixation probability is as specified in Eq. (2).

2.2. Superstars

The two most prominent features of the star graph are the large
reservoir where changes occur on a slow time scale, and the
bottleneck caused by the hub or root, where changes occur
quickly. In particular, the bottleneck introduces a second level for
selection to act upon- a mutant needs to reproduce in both the
leaves and the hub before it successfully increases its population in
the leaves. This basic insight can be exploited to increase evolu-
tionary amplification by elongating the bottleneck and providing
further levels where selection can act. Superstars act as a more
extreme version of the basic star and have been proposed as a way
to increase evolutionary amplification further (Lieberman et al.,
2005). The superstar consists of a single root node surrounded by
B branches (Fig. 2). Each branch consists of a large reservoir of L
nodes feeding into one end of a linear, directed chain of length H,
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the stem. The last stem node in each branch feeds into the root
node, which then connects to all reservoir nodes in every branch.
The population size is thus given by N¼ BðLþHÞþ1. Nodes are
classified based on their locations on the graph. This classification
is designed to simplify discussions but does not affect the rate of
reproduction of the individual occupying the node. Lieberman
et al. (2005) report the fixation probability for superstars with
L;B⪢H as

ρH �
1� 1

rk

1� 1
rkN

; ð3Þ

where k¼Hþ2 is a structural parameter and indicates the
number of moves needed to reach any reservoir node from any
other reservoir node. This is the number of levels selection can act
upon. Consequently it is argued that a single mutant that arises in
the reservoir of a superstar with fitness r has approximately the
same fixation probability as a mutant with fitness rk in an
unstructured population. This result would then imply that by
increasing the length of the stem, the fixation probability, ρH, of
any advantageous mutant, r41, could be brought arbitrarily close
to 1, indicating arbitrarily strong amplification or perfect selection.

Recently Díaz et al. (2013) provided a counter-example demonstrat-
ing that the fixation probability in Eq. (3) is too optimistic in the
particular case of H¼3 and thus invalidated the proof in Lieberman
et al. (2005). In addition, Díaz et al. (2013) provide substantial simula-
tion based evidence indicating that Eq. (3) also fails for higher values of
H. For the counter-example they show that in the limit N-1:

ρ3o1� 1þr
2r5þrþ1

: ð4Þ

This upper bound reflects the probability that a mutant in a reservoir
creates a second mutant in any reservoir before getting replaced by
resident offspring. Clearly, the fixation probability according to Eq. (3)
grows faster with increasing r than Eq. (4) and for r41:42, results in a
contradiction. It turns out that the original proof (Lieberman et al.,
2005) was based on an optimistic assumption concerning the amplifi-
cation along the stem. Taking correlations in the dynamics along the
stems into account we obtain new bounds on the fixation probability.
More specifically, for L¼B we find in the limit B-1

1� 1

r4ðH�1Þ 1�1
r

� �2rρHr1� 1
1þr4ðH�1Þ: ð5Þ

Fixation thus tends to certainty for H-1, as suggested by Lieberman
et al. (2005), while no longer violating the upper bound identified by
Díaz et al. (2013) for H¼3.

In the following we borrow a number of valuable concepts and
techniques from both articles, adding and extending where

necessary. Exact bounds on the error terms for finite populations
are provided in the appendices.

3. Derivation of fixation probabilities

For the proof of the fixation probability on superstars, we
follow the tradition of Lieberman et al. (2005), Díaz et al. (2013)
and consider superstars with many branches, B, and large reser-
voirs, L. More specifically, we study the dynamics of a single
branch in detail, and use this to determine the much slower
dynamics of changes in the reservoirs. For any given stem length,
H42, the following arguments become exact in the limit B; L-1.
In practice, we obtain good approximations for Hr2⪡B; L. In an
effort to reduce notation and increase clarity we assume in the
following that H⪡B¼ L�

ffiffiffiffi
N

p
. However, in the full proof (see

Appendices A–F) we only require that B and L scale with N but
not that they are of the same size.

If mutations arise spontaneously and with equal probability at
any node, then the initial mutant almost certainly arises in a
reservoir node, because reservoir nodes vastly outnumber nodes
of all other types. This marks the starting point for the remainder
of our proof (for details see Appendix A).

On occasion, we need to refer to the total fitness of our
superstar population at a given time, Ft, with NoFtorN. How-
ever, all instances of Ft cancel throughout the proof and hence we
do not need to keep track of its exact value. Moreover, various
necessary approximations introduce different error terms that are
accounted for in full detail in the appendices. All error terms tend
to zero as B; L-1. It is sufficient to assume that B¼L as we take
this limit, however other relations are also possible. The exact
restrictions on how we can take these limits can be found in
Appendix F, but for now let us simply assume that limits are taken
simultaneously, with some suitable relation binding B and L
together.

3.1. Timescales

Different nodes get updated at different rates. More precisely,
any given node is updated if one of its upstream neighbours
reproduces and the node of interest is chosen for replacement.

Assuming 1or⪡N, every node is selected for reproduction with
probability of the order 1=N. The root node has an in-degree of B and all
its upstream neighbours have out-degrees of 1, hence it updates with a
probability close to B=N� 1=

ffiffiffiffi
N

p
. Recall that we assume

H⪡B¼ L�
ffiffiffiffi
N

p
. Similarly, reservoir nodes are replaced with probability

of approximately 1=N2, the first stem node with probability on the
order of 1=

ffiffiffiffi
N

p
, and all other stem nodes with probability of approxi-

mately 1=N. For N⪢1, this results in three different timescales: the
slowest for reservoir nodes that get replaced, on average, only once in

Fig. 1. Moran process on a graph. (A) Graph structure and distribution of residents (blue) and mutants (yellow). (B) Selection: an individual (dashed outline) is selected to
reproduce with a probability proportional to its fitness. (C) Replacement: a downstream neighbour (dashed arrow) is randomly selected for replacement. (D) Reproduction:
the neighbour is replaced by the clonal offspring of the upstream reproducing individual. (For interpretation of the references to colour in this figure caption, the reader is
referred to the web version of this paper.)
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N2 time steps; an intermediate timescale for the stem nodes (with the
exception of the first node), which get replaced once in N time steps;
and a fast timescale for the root node as well as the first stem node in
each branch, which update once in

ffiffiffiffi
N

p
time steps, respectively.

For N⪢1, it is possible to separate the three timescales and
analyze the dynamics of the different types of nodes individually.
More specifically, this allows us to focus on the intermediate time-
scale associated with the dynamics in the stem, while treating the
slowly updating reservoir nodes as constant and the fast updating
nodes as random variables. In the following, we derive the evolu-
tionary dynamics for the top, middle and bottom of the stem in a
single branch. The results determine the slow dynamics of reservoir
nodes and describe the early stages of the invasion process, when
mutants are rare among the reservoir nodes. This allows us to derive
upper and lower bounds on the fixation probabilities.

3.2. Top of stem

The first node of the stem gets replaced on the fast time scale,
which allows us to treat it as an independently sampled random
variable, uncorrelated with the current state of the stem. Initially,
out of all L upstream neighbours in the reservoir of the corre-
sponding branch, only one is a mutant. Hence, at any given time
step, the top node is occupied by a mutant with probability close
to r=L. This mutant reproduces with a probability r=Ft and hence
the probability that a mutant is placed in the second stem node is
approximately r2=ðFtLÞ in each time step (for error terms, see
Appendix B).

3.3. Middle of stem

The structure of the stem causes the state of any given stem
node to be highly correlated with its neighbours, both upstream
and downstream. More specifically, if a mutant reproduces it is
highly likely to end up replacing its own offspring. This correlation
had been neglected in Lieberman et al. (2005). In the absence of
correlations, whenever a mutant in the stem reproduces, it almost
certainly replaces a resident since residents are more common.
Along a stem of length H this results in an overall amplification of
rH. However, due to correlations, if a mutant in the stem repro-
duces, it likely replaces its former offspring and hence diminishes
the resulting amplification.

Simulations nicely illustrate the characteristic features of the
dynamics along the body of the stem: clusters of mutants begin at
the top of the stem, then grow and move along the stem. In the
following, we refer to these clusters as trains. A train moves forward
and increases in length whenever the front mutant reproduces,
which happens at a rate r=Ft , but shrinks whenever a resident
reproduces and replaces the back end of the train, which occurs at a
rate 1=Ft , see Fig. 3. Thus, as the train moves along the stem, the
train length for beneficial mutants increases, on average.

Note that for small superstars with a single node in the stem
body, which corresponds to H¼2 (or k¼4), the two stem nodes
are indeed uncorrelated. However, for H42 this assumption
breaks down and results in an overestimation of the fixation
probabilities as pointed out by Díaz et al. (2013).

In order to link the stem dynamics to the slow timescale of
reservoir nodes, we need to know the expected train length, T, by
the time the train first reaches the root end of the stem. Trains that
do not reach the end of the stem are treated as having length zero.
Separation of time scales allows us to study the dynamics of an
individual train, treating the state of the reservoir and other
branches as fixed. The history of any given train can be represented
as a random sequence of increments and decrements with a bias
that increments are r times more likely. Essentially, we need to sum
over all possible sequences of increments and decrements given an
initial train length of 1 and weigh the resulting train length with the
probability of the respective sequence. All remaining probability
weight is associated with trains that fail to arrive, and thus have an
effective length 0. We can count the sequences that result in train
extinction using the reflection principle (see Appendix C, Eq. (C.1)).
This method yields the expected train length:

T ¼ r
1þr

� �H�2 XH�1

z ¼ 1

ðH�zÞ 1
1þr

� �z�1 H�4þz

z�1

� �
� H�4þz

z�2

� �� �
:

ð6Þ
For HZ2, r41 simple bounds for T exist:

ðH�1Þ 1�1
r

� �2

rTrH�1: ð7Þ

The upper bound assumes that all but the first stem nodes are
mutants. The lower bound follows from Eq. (6) (see Appendix C.1,
Eq. (C.2)). These bounds indicate that for r41 the train length T
grows approximately linearly with increasing stem length H.

Fig. 2. The superstar consists of three distinct types of nodes: the root node (pale blue), the reservoir nodes (green) and the stem nodes (dark red). The reservoir nodes
connect to the start of the stem, the end of the stem connects to the root node and the root node connects to all reservoir nodes in each branch. The depicted superstar has
B¼5 branches each with L¼5 reservoir nodes and a stem of length H¼4, which yields a total population size of N ¼ BðLþHÞþ1¼ 46. (For interpretation of the references to
colour in this figure caption, the reader is referred to the web version of this paper.)
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3.4. Bottom of stem

Whenever a train reaches the root end of the stem, its mutants
compete with the resident nodes from the other branches to occupy
the root node. Since the root node is updated on the fast timescale
we can again treat its state as an independently sampled random
variable. As long as a train occupies the root end of the stem, the
root node is a mutant with probability close to r=B. Thus, as long as
the train sits at the root end of the stem, the probability in any given
time step that the root node is a mutant, reproduces and creates a
second mutant in any reservoir is r2=ðFtBÞ. However, the train is
simultaneously eroded from behind, with train mutants being
replaced by residents with probability 1=Ft . Thus, the train remains
at the root end for TFt time steps, on average. Because the expected
number of time steps depends linearly on train length, it can be
calculated using only the expected train length. Putting the above
together, this means that any given train succeeds in producing a
second mutant in any reservoir with a probability close to r2T=B (for
detailed error bounds, and a proof of linearity, see Appendix D).

3.5. Slow dynamics in reservoirs

At any given time step, the probability of losing the initial
mutant in the reservoir is 1=ðFtBLÞ. Based on the dynamics in the
stem, we derive the per time step probability that a second mutant
is generated in the reservoir of any branch as the product of the
probability that a train is generated and the probability that the
train succeeds in producing a second mutant, which yields
approximately r4T=ðFtBLÞ. Thus, the probability to eventually go
from one to two mutants in the reservoirs, as opposed to losing
the initial mutant, is close to

r4T
1þr4T

: ð8Þ

Since T can be made arbitrarily large (by increasing the stem
length H, see Eq. (7)), the transition from one to two mutants
becomes almost certain and, conversely, the probability of losing
the initial mutant becomes vanishingly small.

3.6. Upper bound on fixation probability

To find an upper bound on the fixation probability, ρH, we note
that before a mutant can reach fixation, the superstar must first
transition from a state with one mutant in a reservoir to a state
with two mutants in the reservoirs. Thus, an upper bound on this
transition probability serves as an upper bound on the mutant

fixation probability. Moreover, the upper bound can be made
independent of T by assuming that all trains have the maximum
possible train length. Thus, in the limit of large B and L (see
Appendix E, Eq. (E.1)) we find

ρHr1� 1
1þr4T

r1� 1
1þr4ðH�1Þ: ð9Þ

For any given H; r we can find T explicitly using Eq. (6). In
particular, we note that for H¼3, we find T ¼ 2r=ðrþ1Þ, thus
recovering the upper bound identified in Díaz et al. (2013).

3.7. Lower bound on fixation probability

We find a lower bound on the fixation probability by approx-
imating the dynamics of the system with a random walk. This
random walk has a forward bias given by Eq. (8) as long as
mutants are rare, and we assume no forward bias otherwise.
Because even for larger numbers of mutants the forward bias
persists (but there is no simple way to quantify the bias) we obtain
a lower bound of the fixation probability, ρH.

For any finite number of steps, a sufficiently strong initial bias
would suffice to ensure that the random walk eventually reaches
fixation with high probability. However, the limit N-1 also
requires an arbitrarily large number of forward steps. In order to
resolve the interplay between these two limiting behaviours we
set up a martingale and apply the optional stopping theorem
(Klenke, 2006) (see Appendix E.2 for details, in particular Eq.
(E.8)). In the limit of large B and L we find:

ρH≥1�
1
r4T

≥1� 1

r4 H�1ð Þ 1�1
r

� �2: ð10Þ

Once again we note that for any given H; r we can find T explicitly,
Eq. (6). Combined with the upper bound, Eq. (9), this means that
ρH must exist in a narrow window, Eq. (5).

4. Robustness

Unfortunately, it turns out that evolutionary amplification on
superstars arises only under very specific conditions. Here we
discuss the most important requirements.

Fig. 3. Two possible histories of a train of mutants (white) proceeding along a stem filled with residents (black). (a) We begin with two mutants (t0). The top node is quickly
replaced by a resident (on the fast time scale) (t1). Some time later the remaining mutant reproduces (t2), and then the new top node reproduces again (t3). Finally we lose a
single mutant from the back of out train (t4). This general growing pattern applies whenever r41. (b) We begin with two mutants (t0), and immediately lose the back mutant
of our train (t1). The front of the train reproduces, creating a second mutant (t2), but both fall prey to bad fortune (or low fitness) and are removed (t3, t4). This behaviour is
likely when ro1, but even for beneficial mutations many trains do not reach the end of the stem.
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4.1. Selection and sequence

The original Moran process is formulated as a fecundity based
birth–death process, that is, fitness affects the rate of birth (reproduc-
tion) whereas death (replacement) occurs uniformly at random.
Alternatively, fitness could just as well affect survival such that birth
events occur uniformly at random but death events might, for
example, occur with probability inversely proportional to fitness.
Similarly, the sequence of events could be reversed such that first an
individual dies and then the remaining individuals compete to
repopulate the vacant site. This yields a total of four distinct scenarios:
Bd, bD, dB and Db, where capital letters refer to the fitness dependent
selection step. The original Moran process corresponds to Bd and the
fixation probability is given in Eq. (1). In unstructured populations the
four dynamical scenarios result in only marginal differences in fixation
probabilities. However, they can have crucial effects on the evolu-
tionary outcome in structured populations (Ohtsuki et al., 2006;
Ohtsuki and Nowak, 2006; Zukewich et al., 2013). Frean and Baxter
(2008) examine all four cases for both complete graphs and star
graphs, showing that stars act as evolutionary suppressors in both the
dB and Db cases, and are significantly less effective in the bD case
compared to the original Bd case. Similar results apply to superstars:

bD updates: For the birth–death process with selection on
survival, mutants only gain any advantage whenever the root node
reproduces. Whenever any other node reproduces, there is only a
single downstream node, and thus no opportunity for competition,
rendering any fitness advantage irrelevant. This lack of advantage in
the stem leads to an expected train length of 1, regardless of stem
length or mutant's fitness. The chance of launching a successful
train in a given time step is 1=ðNLBÞ and the chance of replacing the
original mutant is 1=ðNBLr�Nðr�1ÞÞ. This results in a bias of
approximately r=ð1þrÞ for the initial mutant to eventually create
a second reservoir mutant – the same bias as for the original Moran
process. Thus, we might expect fixation probabilities similar to the
original Moran process on BL nodes, and certainly nowhere close to
the amplification observed for Bd updates.

Db updates: For the death–birth process with selection on
survival, the prospects of mutants drop even further. The prob-
ability to successfully place even a single offspring in the top of the
stem is only r=ðLþrÞ. Note that for death–birth processes the top of
the stem no longer changes on the fast timescale and hence trains
start at the top instead of the second node. As the train propagates
along the stem it tends to grow because the mutant at the back of
the train is less likely to die than the resident in front of it, leading
to the same train dynamics observed for the Bd process. Upon
reaching the end of the stem the train competes with the other
branches for control over the root node and succeeds with
probability near rT=B (over the lifetime of the train). Once a
mutant occupies the root, it is predestined to have many offspring
– in each time step a reservoir node dies with high probability and
gets replaced by an offspring of the mutant in the root node,
whereas the probability is low that the root node is replaced. More
specifically, we expect rN=ð1þrÞ reservoir nodes to become
mutants before the root node is replaced. At that point it is
reasonable to assume that mutants reach fixation with high
probability. We conjecture that the probability of mutant fixation
on the superstar is close to the probability of a mutant eventually
being placed in the root node. Thus, we expect a fixation prob-
ability close to r2T=BL. This result is significantly less than the
fixation in the original Moran process (cf. Eq. (1)). The result does,
however, match well with the 1=N scaling found for the fixation
on stars (Frean and Baxter, 2008).

dB updates: The final case is the death–birth process with
selection on reproduction. Once again the probability of placing a
mutant offspring in the stem before losing the reservoir mutant is
near r=L, but now without further benefits along the stem.

Consequently, trains that do reach the root still have an expected
length of 1. Thus, each train has a probability of roughly r=B for
claiming the root node, which then produces N=2 mutants in the
reservoirs, on average – enough to suggest fixation with high
probability, but less than for Db. Thus, we conjecture fixation
probabilities near r2=N – the worst outcome of the four scenarios.
Once again, we note the significant penalty as compared to the
original Moran process as well as the similarities to the 1=N scaling
for stars (Frean and Baxter, 2008).

4.2. Mutations

Even though we did not explicitly model the process of
mutation, we implicitly assumed that mutations are rare and arise
spontaneously in any node selected uniformly at random. For the
superstar this means that most mutations arise in a reservoir node
– simply because the overwhelming majority of nodes are
reservoir nodes.

An alternative and equally natural assumption is that mutations
arise during reproduction events. Such a change does not affect the
fixation probabilities in the original Moran process. However, in
highly heterogeneous population structures crucial differences in
the fixation probabilities can arise because mutants preferentially
arise in certain locations (Maciejewski et al., 2014). For superstars,
when using the Bd or bD update rules, mutants most likely arise at
the top of a stem. This is an unfortunate position because the
mutant is highly likely replaced before reproducing even once –

extinction is almost certain. In contrast, for Db and dB, mutants
again most likely arise among the reservoir nodes – but for those
updates superstars do not act as evolutionary amplifiers.

Even though the dynamical properties of superstars are intri-
guing, the list of caveats demonstrates that the evolutionary
amplification is highly sensitive to the details of the model –

maybe this is the reason that superstar-like structures have not
been reported in nature.

5. Conclusion

Superstars represent the most prominent representatives of
evolutionary amplifiers – structures that are capable of increasing
selection and suppressing random drift. For r41 and in the limit
L;B-1 we have derived upper and lower bounds for the fixation
probability, ρH:

1� 1
r4T

rρHr1� 1
1þr4T

; ð11Þ

where ðH�1Þð1�1=rÞ2rTrH�1. The exact restrictions on how
L;B are taken to 1 as well as the finite size correction are given in
Appendix F.

Even though fixation probabilities can be made arbitrarily close
to 1 on large superstars and sufficiently large H, the fixation
probability remains bounded away from 1 for any finite graph. As a
concrete example, consider r¼2 and H¼50, which yields
T � 13:25 and 0:995283rρ50r0:995306 in the limit of large N.
Similarly, a sizeable, finite superstar with B¼ L¼ 5000 (N�
2:5 � 105) yields 0:985323rρN

50r0:995375, which includes all
error terms (see Appendix F). In contrast, the fixation probability
for a similarly sized isothermal graph (e.g. a lattice, complete or
random regular graph) is just short of 0.5.

The upper bound for ρH in Eq. (11) results in a contradiction
with the originally reported fixation probability, Eq. (3), for
sufficiently large r. For the specific case of H¼3 the discrepancy
was pointed out in Díaz et al. (2013). At the same time, the lower
bound for ρH in Eq. (11) confirms that superstars are indeed
capable of providing an arbitrarily strong evolutionary advantage
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to any beneficial mutation, as suggested in Lieberman et al. (2005).
Using symmetry arguments, it also follows that for ro1 the
fixation probability can be made arbitrarily small, as required for
a perfect evolutionary amplifier (see Appendix G).

In the case H¼2 (or k¼4 in Lieberman et al. (2005)) we obtain an
expected train length of T¼1 and recover the original bias, r4=ð1þr4Þ.
Discrepancies arise only for HZ3 (or kZ5) but those cases were not
included in the simulations in Lieberman et al. (2005). For H¼3, we
obtain T ¼ 2r=ð1þrÞ, which results in a bias of 2r5=ð1þrþ2r5Þ and
recovers the upper bound reported by Díaz et al. (2013). Extending the
technique in Díaz et al. (2013) to higher values of H numerically, we
find that the upper bounds found match Eq. (11).

An appropriately skeptical reader might ask why the theory
presented here should be trusted over those previously presented
in the literature – after all, both claim to offer rigorous proof. First,
we note the agreement between predictions made here, and both
Lieberman et al. (2005) and Díaz et al. (2013) for the appropriate
values of H. Second, we identify correlations between neighbour-
ing stem nodes as the cause for the discrepancies between the two
previous papers. Finally, we invite readers to scrutinize the proof
offered here most thoroughly. Superstars have already presented
unexpected subtleties, and as always, we need caution and
vigilance to discern between scientific selection and random drift.
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Appendix A. Initial conditions

If mutations arise spontaneously and with equal probability in
any node then the initial mutant arises in a reservoir node with
probability BL=ðBLþ1þHBÞ. This probability can be made arbitra-
rily close to one, for suitably large L or B. The mutant arises in a
stem or root node with probability

ϵ0 ¼
1þHB

BLþ1þHB
: ðA:1Þ

Given the overwhelming odds against fixation of mutants in stem
and root nodes, the fixation probability of a randomly placed
mutant will be close to that of a mutant in the reservoir multiplied
by 1�ϵ0.

Appendix B. The top of the stem

The first node of the stem gets replaced on the fast time scale,
which allows us to treat its state as an independently sampled
random variable, uncorrelated with the current state of the stem.
During early stages of invasion, only one of the L upstream
neighbours of this node will be a mutant. Hence, at any given
time step, the top node of the stem is occupied by a mutant with
probability r=ðL�1þrÞ. This mutant reproduces with a probability
r=Ft and hence the probability that a mutant is placed in the
second stem node, launching a new train, is r2=ðFtðLþr�1ÞÞ per
time step. In Section 3.2 we approximate this probability as
r2=ðFtLÞ, which is an overestimate by a factor ð1�ϵ1Þ with

ϵ1 ¼
r�1

Lþr�1
ðB:1Þ

It is possible that the initial mutant in the reservoir is replaced
before the first node in that stem (and thus before the stem node

can be considered as a random variable). On a given time step, the
chance that the reservoir mutant is replaced by a resident is less
than 1=ðFtBLÞ. Conversely, the probability of the first node in the
chain being replaced exceeds L=Ft . Thus the chance that the initial
mutant gets replaced before the first node in the chain is

ϵ2o1=ð1þBL2Þ: ðB:2Þ
The above error term accounts for the slight discrepancy caused by
our initial conditions.

Appendix C. Expected train length T

Mutants placed in the main body of the stem (excluding the
first node, which updates on a fast timescale) propagate down the
stem in trains. Trains grow at one end as mutants reproduce, and
shrink at the other end as mutants are replaced by residents (see
Fig. 3). In this section we determine the expected length of these
trains, and derive Eq. (6) of the main text.

At any time, t, the state of a train is given by two integers: At

and Zt. Here At refers to the position of the mutant at the front of
the train, and Zt refers to the position of the node directly behind
the train, which we will (for now) assume to contain a resident.
The current length of the train is thus given by At�Zt . Because in
most time steps no change occurs in this particular stem, we
consider a condensed process, which only accounts for events that
change the state of the train. This means that At increases with
probability r=ð1þrÞ while Zt increases with probability 1=ð1þrÞ.
Thus, for beneficial mutants the train length tends to increase as
the train progresses down the stem. If at any time ZtZAt the train
has vanished and the stem is cleared of mutants. In this case, we
say that the train, which “arrives” at the end of the stem, has
length zero.

In order to determine the expected train length, T, upon arrival in
the last stem node we consider the above process on a grid. The
horizontal axis is used to represent the position of the front of the
train, At, and the vertical axis the back of the train, Zt. Each point below
the diagonal, At¼Zt, represents a possible configuration of a train in
the stem, see Fig. C1. All other points represent invalid configurations,
which we refer to as ghost states. For each train, the initial configura-
tion is ðA0; Z0Þ ¼ ð2;1Þ, that is, the front of the train is in the second
stem node, while the first stem node marks the back of the train. Note
that the first stem node updates on different time scale, and is thus
never considered to be part of the train, regardless of its state.

Each train produces a trajectory or path on the grid that originates
in ðA0; Z0Þ and ends at time τ once the train has reached its
destination: the bottom of the stem, where Aτ ¼H for the first time.
If at any point in time AtrZt then this represents an invalid path
because the train has vanished. Every invalid path touches or crosses
the diagonal At¼Zt at least once. For a valid path At4Zt must hold at
all times. The expected train length, T, is the weighted average over
all paths, with invalid paths being considered as having length zero.
Formally this can be written as T ¼ EððAτ�ZτÞ1validÞ, where 1valid is
the indicator function of the event At4Zt 8 trτ. The number of valid
paths can be calculated using the reflection principle (Koralov and
Sinai, 2007), which states that for every invalid path a ghost path
exists, starting from ðZ0;A0Þ. The trajectory of a ghost path is the
reflection of the corresponding invalid path along the diagonal At¼Zt,
up to the point where the invalid path touches or crosses At¼Zt for
the first time. From then on the ghost path and the remainder of the
invalid path coincide, see Fig. C1. In order to calculate the expected
train length, T, we consider the train lengths based on all paths and
subtract all invalid paths, to obtain the train length based on valid
paths only. The number of ghost paths corresponds to all paths
starting from ðZ0;A0Þ, the reflection of ðA0; Z0Þ and hence the name of
the method. Having counted the number of paths we then weigh the
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corresponding train length by the probability of each possible path
and obtain:

T ¼ ð1�αÞH�2
XH�1

z ¼ 1

ðH�zÞαz�1 H�3þz�1
z�1

� �
� H�3þz�1

z�2

� �� �

ðC:1Þ
with α¼ 1=ð1þrÞ. We assume beneficial mutations, r41, such that
0oαo1=2. All paths require H�2 steps that increase At from the
starting point at 2 to the end point at H, which occurs with
probability 1�α for each step. The combinatorial sum then
accounts for all possibilities and probabilities that Zt is increased
along valid paths. In particular, the index variable z indicates the
position of the tail of the train and hence H�z specifies the train
length. The tail starts at 1 and, for any valid path, reaches at most
H�1. Because we are interested in the length of the train at the
moment of arrival, the final step must be an increment of At. In
particular, it follows that z¼H�1 has zero valid paths – a
reassuring result as we know that no train could possibly have
length one at the moment of its arrival. Note that we have used the
convention that n

k

� �¼ 0 for ko0, which applies only if the tail
remains at Zt¼1 and admits only a single valid path.

C.1. Simplifying T

We now resort to algebraic manipulation. Various binomial
coefficient identities are used throughout:

T ¼ ð1�αÞH�2
XH�1

z ¼ 1

ðH�zÞαz�1 Hþz�4
z�1

� �
� Hþz�4

z�2

� �� �

using Pascal's rule

¼ ð1�αÞH�2
XH�1

z ¼ 1

ðH�zÞαz�1 Hþz�3
z�1

� �
�2

Hþz�4
z�2

� �� �

splitting sum

¼ ð1�αÞH�2
XH�1

z ¼ 1

ðH�zÞαz�1 Hþz�3
z�1

� �

�2αð1�αÞH�2
XH�1

z ¼ 1

ðH�zÞαz�2 Hþz�4
z�2

� �

changing second summation to obtain lower bound

Z ð1�αÞH�2
XH�1

z ¼ 1

ðH�zÞαz�1 Hþz�3
z�1

� �

�2αð1�αÞH�2
XH
z ¼ 2

ðHþ1�zÞαz�2 Hþz�4
z�2

� �

merging sums and relabelling indices

¼ ð1�2αÞð1�αÞH�2
XH�2

z ¼ 0

ðH�1�zÞαz Hþz�2
z

� �

expanding factor

¼ ð1�2αÞð1�αÞH�2
XH�2

z ¼ 0

ð2ðH�1Þ�ðH�1Þ�zÞαz Hþz�2
z

� �

using the combinatorial identity ðnþkÞ nþk�1
k

� �¼ ðnþkÞ nþk�1
n�1

� �¼
n nþk

n

� �¼ n nþk
k

� �
¼ ðH�1Þð1�2αÞð1�αÞH�2

XH�2

z ¼ 0

αz 2
Hþz�2

z

� �
� Hþz�1

z

� �� �

extending the sum to 1 can only decrease the lower bound
because 2 nþk

k

� �� nþkþ1
k

� �¼ nþk
k

� �� nþk
k�1

� �
r0 for k4n and

ð1�2αÞ40

Z ðH�1Þð1�2αÞð1�αÞH�2
X1
z ¼ 0

αz 2
Hþz�2

z

� �
� Hþz�1

z

� �� �

using ð1�αÞ�n�1 ¼ P1
k ¼ 0 α

k nþk
k

� �
since jαjo1

¼ ðH�1Þð1�2αÞð1�αÞH�2 2ð1�αÞ1�H�ð1�αÞ�H
h i

¼ ðH�1Þ 1�2α
1�α

� �2

:

And so we have

TZ ðH�1Þ 1�1
r

� �2

: ðC:2Þ

which gives the lower bound for Eq. (7) in the main text. Hence,
for r41, the expected train length, T, can be made arbitrarily long
by choosing a suitably long chain, H.

C.2. Train collisions

The above derivation of the expected train length assumes that at
all times the node directly behind the current train contains a resident.
This assumption does not always hold, in particular, it is violated when
trains collide, which occurs rarely as long as mutants are rare. While
the new “combined” train may be longer than either train would have
been individually, it will still end up being less than the sum of its
parts, as the first train finds itself being erased at greater than the
expected rate. Hence T overestimates the expected train length.

A lower bound on the expected train length is obtained by
assuming that the second train completely eradicates the first
train whenever two trains co-occupy the stem. Thus, we derive the
probability that a second train is launched while the first is still
occupying the stem. This can be formulated in terms of a negative
binomial distribution where the generation of a new train counts
as a “success” while a decrease in length of the existing train in the
stem counts as a “failure”. In each time step a new train is
generated with probability r2=ðFtðLþr�1ÞÞ whereas the probabil-
ity that the existing train length decreases, i.e. the resident directly
behind the train reproduces, is 1=Ft . After H failure events we
know that the stem must be cleared and contain only residents.
Therefore, train collisions occur at most with the probability that a

Fig. C1. Grid showing collection of possible train states. Permitted states (black
outline), ghost states (grey outline) and extinction states (black fill) as well as a
number of possible paths from our initial state (black outline, green fill) to a sample
end state (black outline orange fill). Depicted are a permitted path (continuous), an
invalid path (leading to extinction, long dash) and the associated “ghost path” from
the reflection of our initial state to the sample end state (fine dash). (For
interpretation of the references to colour in this figure caption, the reader is
referred to the web version of this paper.)
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new train is generated prior to H failure events:

Pðno 2nd trainÞZ 1� r2

Lþr�1þr2

� �H

41�H
r2

Lþr�1þr2
: ðC:3Þ

Thus, the chance that a second train is launched while another one
still occupies the stem is at most

ϵ3 ¼
Hr2

Lþr�1þr2
ðC:4Þ

and becomes small for L⪢Hr2. Thus, the true expected train length
lies somewhere between T and Tð1�ϵ3Þ, and becomes arbitrarily
close to T as L-1.

Appendix D. Interaction of trains with root node

Here we calculate the probability that a train of mutants, which
arrives at the base of the stem with an initial length l, succeeds in
taking over the root node and placing a new mutant in one of the
reservoirs. We adapt the technique used in Díaz et al. (2013),
considering a finite state Markov process representing a single
train at the base of a single branch, which we will refer to as the
focal branch. This Markov process has two absorbing states: either
a new mutant is placed in one reservoir, or the mutant train has
disappeared. All other states represent a particular train length
with the root node occupied by either a resident or mutant.

For each state, the probability of eventually succeeding is pi↕,
where ir l indicates the current train length and ↕ indicates
whether the root node has been most recently replaced by the
focal branch, ↑, or some other branch, ↓. While mutants are rare
this corresponds with being in either the mutant or resident state
(respectively). Clearly p0↓ ¼ 0 because the train has disappeared,
leaving no offspring in the root and hence an absorbing state has
been reached. Similarly, p0↑ ¼ r=ðBþrÞ, denotes the probability that
the mutant in the root node reproduces before being replaced by
the offspring of residents in any of the B branches. By examining
all possible transitions we obtain:

ðBþrÞpi↑ ¼ ðB�1Þpi↓þrþpi�1↑ ðD:1Þ

ðrþ1Þpi↓ ¼ rpi↑þpi�1↓ ðD:2Þ

If the train is i mutants long, and the root is a mutant, a “success”
occurs with relative weight r, whereas the root mutant is lost, with
relative weight B�1 (because there are B�1 other branches), or
our train may erode, with relative weight 1, leaving the root node
unchanged. If the root node is a resident, then the only possible
actions are the replacement of the root node, or eroding the train
from behind, with relatively probabilities r and 1 respectively.
Finally, we have coefficients on the left hand side to normalize
over all possible courses of action. Written as a matrix equation
this gives

Bþr 1�B

�r rþ1

" #
pi↑
pi↓

" #
¼ r

0

� �
þ

pi�1↑

pi�1↓

" # !

which yields

pi↑
pi↓

" #
¼ 1
Bþ2rþr2

rþ1 B�1
r rþB

" #
r

0

� �
þ

pi�1↑

pi�1↓

" # !
: ðD:3Þ

We now calculate both upper and lower bounds on the expected
success probability upon arrival, Eðpl↓Þ. Let us start with the
upper bound.

Using Eq. (D.3), and pi�1↑; pi�1↓Z0, we assert

pi↑
pi↓

" #
o 1

Bþ2rþ1
rþ1 Bþr

rþ1 rþB

" #
r

0

� �
þ

pi�1↑

pi�1↓

" # !

where the inequality applies element-wise. Substituting p0↑ ¼
r=ðBþrÞ; p0↓ ¼ 0 into the above gives

p1↕o
r2þr

Bþ2rþ1
1þ 1

Bþr

� �

Using the fact that the upper bounds for pi↑ and pi↓ are equal, along
with the fact that the denominator of the fraction is equal to the
row sum of the transition matrix gives

pi↕o
r2þr

Bþ2rþ1
þBþ2rþ1
Bþ2rþ1

pi�1↕:

By induction we find

pi↕o
r2þr

Bþ2rþ1
iþ 1

Bþr

� �
:

This yields an upper bound for pi↑, which we then use to calculate
a tighter bound for pi↓. From the last line of Eq. (D.3) we derive

pi↓o
r
B
ðrþpi�1↑Þþpi�1↓

which leads to

pi↓o
Xn ¼ i

n ¼ 1

r
B
ðrþpn�1↑Þr

ir2

B
1þ rþ1

ðBþ2rþ1ÞðBþrÞþ
H�1
2

rþ1
Bþ2rþ1

� �
:

Thus we end up with pi↓o ir2ð1þϵ4þ Þ=B, where

ϵ4þ ¼ 1þr
ðBþ2rþ1ÞðBþrÞþ

ðH�1Þðrþ1Þ
2Bþ4rþ2

ðD:4Þ

is our error term. This error term can be made arbitrarily small for
sufficiently large B.

For the lower bound, we must deal with the possibility that a
small number of other branches, δ, also contain mutants. Because
the above train collision argument Appendix C.2 is based on at
most a single mutant existing in the reservoir of each branch, we
wish to only consider reproductive events, which place new
mutants into branches that currently contain no mutants and
neglect the rest (which we can do, as this calculation desires a
lower bound). Further, we must contend with the fact that trains
from other mutants may compete for control of the root node.
Although generically we do not expect to encounter other trains,
we calculate our lower bound as if all other mutant occupied
branches have mutants at the base of their stems at all times. This
arrangement, while unrealistic, describes the situation which
minimizes the success probability of a given train, and is thus
useful for finding lower bounds. The following equations are
written under the assumption of this worst case scenario (worst
from the perspective of the train we are focussing on):

Bþrþδðr�1Þ 1�B�δðr�1Þ
�r rþ1

" #
pi↑
pi↓

" #
¼ rB�δ

B

0

" #
þ

pi�1↑

pi�1↓

" # !

which can be rewritten as

pi↑
pi↓

" #
¼ 1
Bþδðr�1Þþ2rþr2

rþ1 Bþδðr�1Þ�1
r rþBþδðr�1Þ

" #
rB�δ

B

0

" #
þ

pi�1↑

pi�1↓

" # !
:

By ignoring the positive effects of pi�1↑ on pi↓ we form the
inequality

pi↓4
1

Bþδðr�1Þþ2rþr2
r2
B�δ
B

þðrþBþδðr�1ÞÞpi�1↓

� �

for iZ1. By induction this leads to

pi↓4
B�δ
B

r2

Bþδðr�1Þþ2rþr2
Xi�1

n ¼ 0

Bþrþδðr�1Þ
Bþδðr�1Þþr2þ2r

� �n
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¼ B�δ
B

r2

Bþδðr�1Þþ2rþr2

1� Bþδðr�1Þþr
Bþδðr�1Þþr2þ2r

� �i

1� Bþδðr�1Þþr
Bþδðr�1Þþr2þ2r

and finally to

pi↓4
B�δ
B

r2

rþr2
1� 1� r2þr

Bþδðr�1Þþr2þ2r

� �i
 !

:

As long as iðr2þrÞ=ðBþδðr�1Þþr2þ2rÞo1, the series expansion of
the inner bracket gives an alternating sequence with monotone
decreasing absolute terms. Therefore, we can truncate the series after
three terms while still preserving the inequality because the sum of
the first three terms is greater than any subsequent sum. This leads to:

pi↓4
B�δ
B

ir2

Bþδðr�1Þþr2þ2r
1� i�1

2
r2þr

Bþδðr�1Þþr2þ2r

� �
:

If we rearrange the above, remembering that 1=ð1þxÞo1�x when-
ever x4�1, we find

pi↓4
ir2

B
1�δ

B
�δðr�1Þþr2þ2r

B
�H�1

2
r2þr
B

þOðB�2Þ
� �

:

We are free to drop the very small positive terms at the end, and find
the result pi↓4 ð1�ϵ4� Þir2=B, where the error term

ϵ4� ¼ 2δrþr2þ3rþHðr2þrÞ
2B

ðD:5Þ

can be made small whenever δ;H⪡B. Thus Eðpl↓Þ4Tr2B�1ð1�ϵ4� Þ.
Armed with the constraints

ð1�ϵ4� Þlr2=Bopl↓o ð1þϵ4þ Þlr2=B ðD:6Þ
we note that Eðpl↓Þ � Eðlr2=BÞ ¼ Tr2=B, as argued in Section 3.4.

Appendix E. Bounds on fixation probabilities

At this point, everything is in place to determine upper and
lower bounds on the fixation probability, ρH.

E.1. Upper bound

Starting with a single mutant in one reservoir initially, we must
first reach a state where we have two such reservoir mutants,
before we can reach BL reservoir mutants, and then fixation. Thus,
the probability of transitioning from 1 to 2 mutants in the
reservoir serves as a straight forward upper bound for the
mutant's fixation probability (as pointed out by Díaz et al., 2013).
To further simplify the upper bound, we make several optimistic
(from the mutant's point of view) assumptions: (i) the original
mutant appears in a reservoir node (ignoring ϵ0, see Eq. (A.1)); (ii)
we slightly increase the train launch probability, dividing by L
rather than Lþr�1 (ignoring ϵ1, see Eq. (B.1)) (iii) no detrimental
effects based on our initial conditions (ignoring ϵ2, see Eq. (B.2));
(iv) no train collisions (ignoring ϵ3, see Appendix C.2); and finally
(v) we use Eq. (D.4), the upper bound for the train success
probability.

Combining assumptions (ii), (iv) and (v), we find the probability
of the initial mutant launching a successful train is
ð1þϵ4þ ÞTr4=ðFtBLÞ per time step. At the same time, the root node
has a probability of at least

B�1
Bþr�1

1
FtBL

to remove the mutant node from the reservoir each time step.
Thus, the chance of the mutant producing a successful train before

being erased by the root node is at most ρHþ , with

ρHrρHþ ¼ Tr4ð1þϵ4þ Þ
Tr4ð1þϵ4þ Þþ

B�1
Bþr�1

ðE:1Þ

lim
B-1

ρHr lim
B-1

ρHþ ¼ 1� 1

Tr4þ1
ðE:2Þ

This yields Eq. (9) and by substituting in TrH�1 results in a
simpler and more generous upper bound.

E.2. Lower bound

On the slow timescale the dynamics of the reservoir can be
approximated by a random walk Xt representing the number of
mutants in reservoirs. Consider the random walk on the integers
from 0 to BLþ1 with forward bias γ for Xtoδ⪡B and no bias for
XtZδ. Because the chance of any particular reservoir mutant
replacing any particular reservoir resident is always higher than
the converse, we can be sure that some forward bias persists for
all Xt. Unfortunately, because the analytic arguments in the
previous sections fail when reservoir mutants are common, we
must make the conservative assumption that no bias applies in
this region. The fixation probability of this random walk acts as a
lower bound on the fixation probability of the true process. The
walk is bounded at BLþ1 rather than BL because we require not
only that all reservoir nodes are mutants, but also that the root
and all stem nodes are replaced by these mutants. By over-
shooting we demand that the system remains in the state BL long
enough for the random walk to take one additional (fictitious)
step, ensuring that enough time has passed (due to the different
time scales) to clear all stems of any remaining residents. Note
that the actual superstar never enters a state with BLþ1 reservoir
mutants, and this is merely a useful tool for ensuring that the end
of our walk truly corresponds to fixation, as opposed to a state
where reservoir nodes contain mutants, but resident individuals
remain in the root or stems, potentially capable of reclaiming
control.

In the following, we assume that H and r are fixed and that
B; L⪢H; δ.

In order to determine the fixation probability of the random
walk Xt, we construct a martingale, Q ðXtÞ. A martingale is a
function of a random variable such that the expected value of
the martingale in the next time step is equal to the current value:

EðQ ðXtþ1ÞjX1;X2…XtÞ ¼Q ðXtÞ: ðE:3Þ

Because our system is Markovian, it is sufficient to condition only
on Xt. For Q ðXtÞ to be a martingale, we thus require

Q ðkÞ ¼
γ

1þ γ Q ðkþ1Þþ 1
1þγ

Q ðk�1Þ 0okoδ ðforward biasÞ
1
2
Q ðkþ1Þþ1

2
Q ðk�1Þ δrkoBL ðno biasÞ:

8>><
>>:

ðE:4Þ

These constraints admit as a solution Q ðkÞ ¼ γ�k for koδ, and
Q ðkÞ ¼ AkþD for kZδ. For Q(k) to satisfy the martingale conditions
as needed, we demand δAN. The constants A;D are determined by
connecting the solutions for the two regions. In particular,

γ�δ ¼ Q ðδÞ ¼ AδþD

must hold such that Q ðδÞ is well defined and

2ðAδþDÞ ¼ γ�δþ1þAδþAþD
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to satisfy the martingale property at δ. Thus,

A¼ γ�δð1�γÞ
D¼ γ�δð1�δð1�γÞÞ

which yields

Q ð0Þ ¼ 1

Q ð1Þ ¼ γ�1

Q ðBLþ1Þ ¼ γ�δþγ�δð1�γÞðBLþ1�δÞ:

Let τ be the first time we reach one end of our random walk.
Because Q(k) is bounded for all relevant values of k we are able to
invoke the optional stopping theorem (Klenke, 2006, p. 210),
which renders

Q ð1Þ ¼Q ðX0Þ ¼ EðQ ðXτÞÞ ¼Q ð0ÞPð0ÞþQ ðBLþ1ÞPðBLþ1Þ;
where Pð0Þ and PðBLþ1Þ represent the probabilities of reaching
either end of our random walk. Using Pð0Þ ¼ 1�PðBLþ1Þ we find

PðBLþ1Þ ¼ Q ð0Þ�Q ð1Þ
Q ð0Þ�Q ðBLþ1Þ ¼

1�γ�1

1�γ�δ�γ�δð1�γÞðBLþ1�δÞ: ðE:5Þ

In order to keep error terms small, we must select δ such that
γδ⪢BL and δ⪡B; L. As long as B and L are large and sufficiently
similar, this is possible provided γ41 (see below). Thus, for any
choice of H, and for any r41 we can select B and L such that

PðBLþ1Þ ¼ Q ð0Þ�Q ð1Þ
Q ð0Þ�Q ðBLþ1Þ ¼

1�γ�1

1þϵ5
ðE:6Þ

with

ϵ5 ¼ γ�δ ðγ�1ÞðBLþ1�δÞ�1
� �

⪡1:

In order to find an upper bound on ϵ5, we require a lower bound
on the forward bias γ. In particular, we would like to show that
γ41 and hence that ϵ5 can be made small. This can be seen by
taking the lower bound on the production rate of successful trains,
ð1�ϵ1Þð1�ϵ3Þð1�ϵ4� ÞTr4=ðBLFtÞ), and comparing to our upper
bound on the removal probability for reservoir mutants, 1=ðBLFtÞ.
This represents the eventual forward bias after the top of the stem
has been replaced at least once. To account for the possibility of
mutant loss before the top of the stem has been replaced we must
consider ϵ2, which acts as an additive penalty (because it only
applies once per reservoir mutant). This yields

γZr4Tð1�ϵ1Þð1�ϵ3Þð1�ϵ4� Þ�ϵ2: ðE:7Þ
It is assumed that ϵ1; ϵ3; ϵ4�⪡1, and indeed the above becomes
utterly meaningless whenever any error terms exceeds 1. In
general, error terms are made small by ensuring that Hr2⪡L and
Hr2⪡B.

In the limit of large B and L all error terms tend to zero. Thus, to
show γ41, it is sufficient to show that r4T41. Recalling that
At�Zt represents the length of a train at time t (see Appendix
Appendix C), and noting that it is submartingale (the expected
future value is greater than the current value) whenever r41, we
can easily show that T ¼ EðAτ�ZτÞZA0�Z0 ¼ 1, and thus, in the
limit, γZr441. Thus ϵ5 can indeed be made arbitrarily small.

Substituting Eq. (E.7), the lower bound of γ into Eq. (E.6) yields
a lower bound on PðBLþ1Þ, which in turn provides a lower bound
on the fixation probability. In the limit of large B; L, taken such that
all error terms tend to zero, this yields

ρH≥ρH� ¼ 1� γ�1

1� ϵ5
≈1� 1

r4T
≥1� 1

r4 H � 1ð Þ 1� 1
r

� �2: ðE:8Þ

which is inequality Eq. (10).

Appendix F. Bringing it all together

Combining Eqs. (E.6) and (E.1), we find

1�ϵ0
1þϵ5

1� 1
r4Tð1�ϵ1Þð1�ϵ3Þð1�ϵ4� Þ�ϵ2

� �
rρH

r1� B�1

ðBþr�1ÞTr4ð1þϵ4þ ÞþB�1
ðF:1Þ

with the train length, Eq. (C.1)

T ¼ ð1�αÞH�2
XH�1

z ¼ 1

ðH�zÞαz�1 H�3þz�1
z�1

� �
� H�3þz�1

z�2

� �� �
;

ðH�1Þð1�r�1Þ2rTrH�1;

the chance that the initial mutant is not in the reservoir, Eq. (A.1)

ϵ0 ¼
1þHB

BLþ1þHB
;

Simplifying approximation in train launch probability, Eq. (B.1)

ϵ1 ¼
r�1

Lþr�1

the chance that the initial mutant is removed before it reproduces,
Eq. (B.2)

ϵ2 ¼
1

1þBL2
;

the chance of train collisions, Eq. (C.4)

ϵ3 ¼H
r2

Lþr�1þr2
;

the lower bound for train success, Eq. (D.5)

ϵ4� ¼ 2δrþr2þ3rþHðr2þrÞ
2B

;

the upper bound for train success, Eq. (D.4)

ϵ4þ ¼ ðrþ1Þ
Bþ2rþ1

1
Bþ1

þH�1
2

� �
;

and finally the Martingale error term, Eq. (E.6)

ϵ5 ¼ γ�δ½ðγ�1ÞðBLþ1�δÞ�1�:
Because many of the error terms are dependent on both B and L

it makes sense to take the limit of both simultaneously. This will
force all error terms to zero as long as B; L⪢H; δ and ϵ5-0. In
particular, in the limit B-1, with

ffiffiffi
B

p
�1oδr

ffiffiffi
B

p
and L¼B all

error terms tend to zero thus giving the expressions Eq. (10) and
(9). Other variations, such as L¼ Bβ , β40 are possible, although it
is suspected that relations of the form L¼ βB would prove proble-
matic, as we would then need to reconcile the bounds δ⪡B and
γδ⪢BβB, a problem we do not run into for L¼ Bβ .

Simpler and looser upper and lower bounds independent of T
are obtained by substituting upper and lower bounds for T
(respectively) into Eq. (F.1). However, note that the above bounds
hold only for sufficiently large B; L. In particular, for any fixed B; L, it
is possible to select r such that ϵ1; ϵ0; ϵ3 or ϵ4� 41 (and no longer
meaningful), or such that r4Tð1�ϵ1Þð1�ϵ3Þð1�ϵ4� Þ�ϵ2o1. In all
such cases, the lower bound reduces to the trivial bound ρH40. A
closer look reveals that ϵ3 and ϵ4� increase the fastest with
respect to r, and remain small as long as Hr2⪡L;B and rδ⪡B. For
example H¼4 and r¼5 require L;B⪢100 which implies a superstar
with on the order of a million nodes.

Appendix G. Deleterious mutations, ro1

In addition to promoting beneficial mutations, an evolutionary
amplifier must also suppress the fixation of deleterious mutations,

A. Jamieson-Lane, C. Hauert / Journal of Theoretical Biology 382 (2015) 44–5654



i.e. ro1. Here we argue that the probability of mutant fixation can
be made arbitrarily small for deleterious mutants.

Consider a single mutant with fitness 1, in a population of
residents with fitness 1=r. Note that, because only relative fitness
matters, rescaling fitness will have no effect on the dynamics of
the system. All arguments that previously applied to rare mutants
with a fitness advantage would now apply to a resident, if it were
to become rare – that is, if residents were rare, trains of residents
would propagate down the stem, incrementing with probability
1=ðrþ1Þ41=2 and shrinking with probability α̂ ¼ r=ð1þrÞo1=2.
This implies that T̂ , the expected train length of residents, can be
calculated using Eq. (C.1) by simply replacing α with α̂ , and results
in T̂ZðH�1Þð1�rÞ2.

When residents are rare the probability of the number of
reservoir residents increasing rather than decreasing is close to
r�4T̂=ð1þr�4T̂ Þ, along with some number of error terms which
tend to zero in the limit of large B; L. Written in terms of bias as
described in Appendix E.2 this is equivalent to γ̂ ¼ r�4T̂Z
r�4ðH�1Þð1�rÞ2. Because 1=r41 and T̂ can be made large for
sufficiently large H, γ̂ can be made arbitrarily large.

The same martingale argument used previously to find a lower
bound on mutant fixation probability can now be used to obtain a
lower bound on resident fixation probability. Let X̂ t be the number
of residents in reservoir nodes at a particular time, with
X̂0 ¼ BL�1. X̂ t can be modelled as a random walk such that there
is a bias of γ̂ for X̂ toδ and no bias for X̂ tZδ. As previously, δ is
allowed to take the value of any integer from 1 to B, and error
terms will be small as long as δ⪡B. By considering the system as a
random walk in this manner, we will underestimate the fixation
probability of residents. This arrangement is largely equivalent to
that proposed in Appendix E.2, and more detailed explanations
and arguments can be found there.

Reusing Q(k), the martingale used in Appendix E.2, leads to a
formula for the fixation probability of residents

ρ̂HZPðBLþ1Þ ¼Q ð0Þ�Q ðBL�1Þ
Q ð0Þ�Q ðBLþ1Þ

¼ 1� γ̂ �δ� γ̂ �δð1� γ̂ ÞðBL�1�δÞ
1� γ̂ �δ

� γ̂ �δð1� γ̂ ÞðBLþ1�δÞ

¼ 1�2γ̂ �δðγ̂�1Þ
1� γ̂ �δ

� γ̂ �δð1� γ̂ ÞðBLþ1�δÞ:

Assuming γ̂42, and hence � γ̂ �δ� γ̂ �δð1� γ̂ ÞðBLþ1�δÞ40, we
have

ρ̂HZ1�2γ̂1�δ

and because

ρ̂H ¼ 1�ρH ;

where ρH is the fixation probability of mutants, we have

ρHr2γ̂1�δ: ðG:1Þ
Because γ̂41 and δ can be made arbitrarily large in the limit

(as long as it remains much smaller than B) the above can be seen
to tend to zero for large B. In practice, it is sufficient to assume
δ¼ ⌊

ffiffiffi
B

p
c, although other scalings of δ are possible.

As might be expected, this bound is looser than the rðN�1Þk

bound implied by Lieberman et al. (2005), which can be derived
from Eq. (3). Unfortunately, because δ⪡B⪡N, our bound shrinks
slower than the calculated fixation probability of a deleterious
mutant on a fully connected graph, where in the limit of large N
the fixation probability tends to rN�1 (see Eq. (1)). This we do not
take as an indication that superstars have a lower extinction
probability for deleterious mutants than the fully connected graph,

but merely as an indication that the upper bound found here is very
loose, and further study would be required to find a tighter one.

Appendix H. Comparison to simulation data

As a final check, we compare the analytical bounds to fixation
probabilities reported for the extensive simulations by Díaz et al.
(2013), see Table H1. Note that with B; L¼ 200 comparisons for
r¼10 and r¼50 are not possible because the condition r2H⪡B; L no
longer holds and hence error terms become large (see Appendix
E). Similarly, for H¼10 and r¼5 we are also left with the trivial
lower bound of zero.

The detailed bounds based on Eq. (F.1) straddle the simulation
results in all but one case (r¼5, H¼2), with the bounds over-
lapping the 99.5% confidence interval in this one remaining case.

Table H1
Comparison of analytic bounds and simulation based fixation probabilities for
different combinations of H and r. The simulation results (and 99.5% confidence
intervals) are taken from Díaz et al., 2013 with B; L¼ 200. Analytic bounds are found
for the finite size graph using Eq. (E.1). We vary over all applicable δ in order to find
the tightest possible bounds. These bounds agree in all cases bar one (H¼ 2, r ¼ 5,
marked with n), where the bounds intersect the 99.5% confidence interval of the
simulations, but do not include the fixation probability calculated from simulations.
The simplified ideal bounds (Eq. (11)), are based on the limit B; L-1, which has
only marginal effects on the upper bound but show that the lower bound is rather
sensitive to finite B, L. As a consequence, the idealized lower bound is not always in
agreement with the simulations.

H r Simulation Finite bounds Ideal bounds
[confidence interval] based on Eq. (F.1) based on Eq. (11)

2 1.1 0.292 0.0027–0.5968 0.3170–0.5942
½0:267; 0:318�

2 2 0.923 0.9148–0.9421 0.9375–0.9412
½0:906; 0:937�

2 3 0.979 0.9733–0.9881 0.9877–0.9878
½0:969; 0:986�

2 5 0.986n 0.9868–0.9985 0.9984–0.9984
½0:977; 0:991�

3 1.1 0.333 0.0066–0.6091 0.3480–0.6053
½0:307; 0:360�

3 2 0.938 0.9271–0.9563 0.9531–0.9552
½0:923; 0:950�

3 3 0.978 0.9731–0.9921 0.9918–0.9918
½0:969; 0:985�

3 5 0.989 0.9826–0.9991 0.9990–0.9990
½0:981; 0:994�

4 1.1 0.362 0.0118–0.6185 0.3702–0.6136
½0:362; 0:389�

4 2 0.934 0.9313–0.9642 0.9616–0.9631
½0:918; 0:946�

4 3 0.970 0.9703–0.9940 0.9937–0.9938
½0:959; 0:978�

4 5 0.983 0.9778–0.9994 0.9993–0.9993
½0:974; 0:989�

5 1.1 0.374 0.0181–0.6264 0.3879–0.6203
½0:347; 0:402�

5 2 0.948 0.9325–0.9695 0.9673–0.9683
½0:934; 0:960�

5 3 0.972 0.9667–0.9952 0.9949–0.9949
½0:962; 0:980�

5 5 0.978 0.9726–0.9995 0.9995–0.9995
½0:969; 0:985�

10 1.1 0.419 0.0452–0.6560 0.4482–0.6444
½0:391; 0:447�

10 2 0.928 0.9218–0.9823 0.9806–0.9810
½0:913; 0:942�

10 3 0.953 0.9445–0.9976 0.9974–0.9974
½0:939; 0:963�

10 5 0.962 N/A–0.9998 0.9997–0.9997
½0:950; 0:972�
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This can be put down to simple statistical fluctuation, and upon
running 10,000 simulations of our own (using the original code
from Díaz et al. (2013)) a fixation probability of 0.9875 was found,
well within both the analytic bounds given here, and Díaz et al.'s
original confidence interval.

In the idealized limit B; L-1, see Eq. (11), the lower bound is
consistently too high. Quite surprisingly, this indicates that even for
B; L¼ 200, which translates to a population size of N� 40;000, finite
size effects remain significant. In particular, it is noted that for B,
L¼ 200, H¼10 and r¼3 we find the chance of our initial mutant
being placed in the stem to be ϵ0 � 0:05. This accounts for most of the
extinction probability, which is bounded above by 0.0555, cf. Table H1.
From this we see that the most common cause of mutant extinction is
simply failure to start in the reservoir, an effect only exacerbated by
increasing H (as ϵ0 �H=L). This explains Díaz et al. (2013)'s observa-
tion that for rZ3 the fixation probabilities “tail off” for increasing H.

It is noted, that Eq. (F.1), the equation used to find the finite
bounds in the above, depends on (among other things) δ. δ
represents the number of reservoir mutants allowed while still
assuming a bias in the random walk. It is important to realise that
each possible choice of δ value will result in a different lower
bound on ρ. If δ is very small, then ϵ5 (which is of order γ�δBL will
become large, causing our lower bound to become loose. Con-
versely, if δ is very large, then ϵ4� will exceed one, resulting in
only the trivial lower bound. Thus, for a tight lower bound,
intermediate values of δ must be selected.

In practice, one can simply consider all possible δ (integers
between 1 and B) and then select the maximal lower bound. For
most of the examples in Table H1. this turned out to be δ¼ 4 or 5.
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