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a b s t r a c t

Repeated games have a long tradition in the behavioral sciences and evolutionary biology. Recently,
strategies were discovered that permit an unprecedented level of control over repeated interactions by
enabling a player to unilaterally enforce linear constraints on payoffs. Here, we extend this theory of
‘‘zero-determinant’’ (or, more generally, ‘‘autocratic’’) strategies to alternating games, which are often
biologically more relevant than traditional synchronous games. Alternating games naturally result in
asymmetries between players because the first move matters or because players might not move with
equal probabilities. In a strictly-alternating game with two players, X and Y , we give conditions for the
existence of autocratic strategies for playerX when (i)X moves first and (ii)Y moves first. Furthermore,we
show that autocratic strategies exist even for (iii) games with randomly-alternating moves. Particularly
important categories of autocratic strategies are extortionate and generous strategies, which enforce
unfavorable and favorable outcomes for the opponent, respectively. We illustrate these strategies using
the continuous Donation Game, in which a player pays a cost to provide a benefit to the opponent
according to a continuous cooperative investment level. Asymmetries due to alternating moves could
easily arise from dominance hierarchies, and we show that they can endow subordinate players with
more autocratic strategies than dominant players.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Repeated games, and, in particular, the repeated Prisoner’s
Dilemma, have been used extensively to study the reciprocation
of cooperative behaviors in social dilemmas (Trivers, 1971;
Axelrod and Hamilton, 1981; Axelrod, 1984; Nowak, 2006).
These games traditionally involve a sequence of interactions
in which two players act simultaneously (or, at least without
knowing the opponent’s move) and condition their decisions
on the history of their previous encounters. Even though such
synchronized decisions seem often contrived in realistic social
interactions, the biologically more realistic and relevant scenario
with asynchronous interactions has received surprisingly little
attention. In asynchronous games, players take turns and alternate
moves in either a strict or random fashion (Nowak and Sigmund,
1994; Wedekind and Milinski, 1996).

A classic example of an asynchronous game with alternating
moves is blood donation in vampire bats (Wilkinson, 1984). When
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a well-fed bat donates blood to a hungry fellow, the recipient
has the opportunity to return the favor at a later time. Similarly,
social grooming between two primates is not always performed
simultaneously; instead, one animal grooms another, who then
has the opportunity to reciprocate in the future (Muroyama,
1991). On a smaller scale, the biosynthesis of iron-scavenging
compounds bymicroorganisms throughquorumsensing can result
in asynchronous responses to fellow ‘‘players’’ in the population
(Stintzi et al., 1998; Miller and Bassler, 2001; Iliopoulos et al.,
2010). Even for interactions that appear to involve simultaneous
decisions, such as in acts of predator inspection by fish (Milinski,
1987), it remains difficult to rule out that these interactions are not
instead based on rapid, non-synchronous decisions (Frean, 1994).

The iterated Prisoner’s Dilemma game, which involves a
choice to either cooperate, C , or defect, D, in each round,
has played a central role in the study of reciprocal altruism
(Axelrod andHamilton, 1981; Axelrod, 1984;Nowak, 2006). Rather
unexpectedly, after decades of intense study of iterated games,
Press and Dyson (2012) showed that a player can unilaterally
enforce linear payoff relationships in synchronous games. For
example, if ⇡X and ⇡Y are the expected payoffs to players X and
Y , respectively, and � > 1 is an extortion factor, then player X
can ensure that ⇡X = �⇡Y , regardless of the strategy of player Y .
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Fig. 1. Three types of interactions in the alternating Donation Game: (A) strictly-
alternating game in which player X moves first; (B) strictly-alternating game in
which player Y moves first; and (C) randomly-alternating game in which, in each
round, player X moveswith probability!X and player Y with probability 1�!X . For
each type of alternating game, a player moves either C or D (cooperate or defect) in
each round and both players receive a payoff from this move. Unlike in strictly-
alternating games, (A) and (B), a player might move several times in a row in a
randomly-alternating game, (C).

Moreover, such linear relationships may be enforced using merely
memory-one strategies, which condition the next move on the
outcome of just the previous round.

The discovery of these so-called ‘‘zero-determinant’’ strategies
triggered a flurry of follow-up studies. Most notably, from an evo-
lutionary perspective, extortionate strategies fare poorly (Hilbe
et al., 2013) but can be stable provided that extortioners recog-
nize one another (Adami and Hintze, 2013). However, generous
counterparts of extortionate strategies perform much better in
evolving populations (Stewart and Plotkin, 2012, 2013) and con-
stitute Nash equilibria for the repeated Prisoner’s Dilemma (Hilbe
et al., 2015) (but generally only if there are just two discrete lev-
els of cooperation (McAvoy and Hauert, 2016)). Against humans,
extortionate strategies typically underperform generous strategies
when the extortioner is also a human (Hilbe et al., 2014) but can
outperform generous strategies when the extortioner is a com-
puter (Wang et al., 2016). Thus, for the settings in which zero-
determinant strategies are known to exist, their performance is
sensitive to the context in which they arise. Our focus here is on
extending these strategies further into the domain of alternating
interactions from a classical, non-evolutionary viewpoint. In par-
ticular, we establish the existence of zero-determinant strategies
for several types of alternating interactions between two players.

Recently, autocratic strategies were introduced as a generaliza-
tion of zero-determinant strategies to simultaneous games with
arbitrary action spaces (McAvoy and Hauert, 2016). An autocratic
strategy for player X is any strategy that, for some constants ↵, � ,
and � (not all zero), enforces the linear relationship

↵⇡X + �⇡Y + � = 0 (1)

on expected payoffs every strategy of player Y . Here, we consider
autocratic strategies in alternating games. In a strictly-alternating
game, one player moves first (either X or Y ) and waits for
the opponent’s response before moving again. This process then
repeats, with each player moving only after the opponent moved
(see Fig. 1(A), (B)). In contrast, in a randomly-alternating game,
the player who moves in each round is chosen stochastically: at
each time step, X moves with probability !X and Y moves with
probability 1 � !X for some 0 6 !X 6 1 (see Fig. 1(C)). Note that
only for!X = 1/2 is it the case that both playersmove, on average,
equally often.

Previous studies of zero-determinant strategies have focused
on enforcing linear payoff relationships using conditional re-
sponses with short memories. A player using a memory-one strat-
egy determines his or her response (stochastically) based on the

outcome of just the previous round. Although strategies with
longer memory length have been shown to help establish cooper-
ation (Hauert and Schuster, 1997; Stewart and Plotkin, 2016), they
are not always reliably implemented in players with limitedmem-
ory capacity (including humans) (Milinski and Wedekind, 1998;
Stevens et al., 2011; Baek et al., 2016). Here, we follow the tradi-
tion of concentrating on shorter-memory strategies. In particular,
we establish the existence of memory-one autocratic strategies for
alternating games and give several simple examples that enforce
linear payoff relationships for every strategy of the opponent (even
those with unlimited memory).

In the classical Donation Game (Sigmund, 2010), a player either
(i) cooperates and donates b to the opponent at a cost of c or
(ii) defects and donates nothing and pays no cost, which yields the
payoff matrix

✓ C D

C b � c �c
D b 0

◆
(2)

and represents an instance of the Prisoner’s Dilemma provided
that benefits exceed the costs, b > c > 0. The continuous
Donation Game extends this binary action space and allows for a
continuous range of cooperation levels (Killingback et al., 1999;
Wahl and Nowak, 1999a,b; Killingback and Doebeli, 2002). An
action in this game is an investment level, s, taken from an interval,
[0, K ], where K indicates an upper bound on investments. Based
on its investment level, s, a player then pays a cost of c (s) to
donate b (s) to the opponent where b(s) and c(s) are continuous
non-decreasing functions with b(s) > c(s) > 0 for s > 0 and
b(0) = c(0) = 0; an investment of zero corresponds to defection,
which neither generates benefits nor incurs costs (Killingback and
Doebeli, 2002). Biologically-relevant interpretations of continuous
investment levels (as well as alternating moves) include (i) the
effort expended in social grooming and ectoparasite removal by
primates (Dunbar, 1991); (ii) the quantity of blood donated by
one vampire bat to another (Wilkinson, 1984); (iii) the amount of
iron-binding agents (siderophores) produced by bacterial parasites
(West and Buckling, 2003); and (iv) the honesty level of a (human)
party involved in a trade agreement (Verhoeff, 1998).

In alternating games, the assignment of payoffs to players
deserves closer inspection (Hauert and Schuster, 1998). Here, we
focus on alternating games in which both players obtain payoffs
after every move (like in the continuous Donation Game) (see
Fig. 1; Nowak and Sigmund, 1994). Alternatively, payoffs could
result from every pair of moves rather than every individual
move (Frean, 1994). While it is possible to construct a theory of
autocratic strategies for strictly-alternating games in either setting,
it becomes difficult to even define payoffs in the latter setup
for randomly-alternating games because either player can move
several times in a row (see Fig. 1(C)). Therefore, we follow Nowak
and Sigmund (1994) in order to include the particularly relevant
and intriguing case of randomly-alternating games.

Randomly-alternating games seemmore relevant for modeling
biological interactions because often strict alternation cannot be
maintained or enforced, or the players find themselves in different
roles, which translate into different propensities to move. To
accommodate these situations, we consider, a class of randomly-
alternating games in which the probability that player X moves
in a given round, !X , is not necessarily 1/2. Any other value
of !X results in asymmetric interactions – even if the payoffs
in each encounter are symmetric – simply because one player
moves more often than the other. For example, dominance
hierarchies in primates naturally result in asymmetric behavioral
patterns (Mehlman and Chapais, 1988; Lazaro-Perea et al., 2004;
Newton-Fisher and Lee, 2011). In male chimpanzees, dominance
hierarchies require smaller, subordinate chimpanzees to groom
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larger, dominant chimpanzees more often than vice versa (Foster
et al., 2009). Therefore, including such asymmetries significantly
expands the scope of interactions to which the theory of autocratic
strategies applies.

2. Existence of autocratic strategies

In every round of an alternating game, either player X or player
Y moves. On player X ’s turn, she chooses an action, x, from an
action space, SX , and gets a payoff fX (x) while her opponent gets
fY (x). Similarly,whenplayer Y moves, he chooses an action, y, from
SY and gets a payoff gY (y) while his opponent gets gX (y). Future
payoffs are discounted by a factor � (with 0 < � < 1), which
can represent a time preference (Fudenberg and Tirole, 1991) that
is derived, for example, from interest rates for monetary payoffs.
Alternatively,� can be interpreted as the probability that therewill
be another round, which results in a finitely-repeated game with
an average length of 1/(1 � �) rounds (Nowak, 2006).

2.1. Strictly-alternating games

In a pair of rounds inwhich player X moves before Y , the payoffs
are uX (x, y) := fX (x) + �gX (y) and uY (x, y) := fY (x) + �gY (y),
respectively. Note that the payoffs from Y ’s move are discounted
by a factor of � because Y moves one round after X . The payoff
functions, uX and uY , satisfy the ‘‘equal gains from switching’’
property (Nowak and Sigmund, 1990), whichmeans the difference
between uX (x, y) and uX

�
x0, y

�
is independent of the opponent’s

move, y. This property follows immediately from the fact that uX
(or uY ) is obtained by adding the separate contributions based on
the moves of X and Y .

Thus, if player X moves first and (x0, y1, x2, y3, . . .) is the
sequence of play, then her average payoff is

⇡X = (1 � �)

" 1X

t=0

�2t fX (x2t) +
1X

t=0

�2t+1gX (y2t+1)

#

= (1 � �)
1X

t=0

�2tuX (x2t , y2t+1) . (3)

The second expression resembles the average payoff for a
simultaneous-move game whose one-shot payoff function is uX
(Fudenberg and Tirole, 1991). Similarly, replacing uX with uY yields
player Y ’s average payoff, ⇡Y .

For strictly-alternating games, we borrow the term ‘‘memory-
one strategy’’ from synchronous games to mean a conditional
response based on thepreviousmoves of bothplayers. Even though
this memory now covers two rounds of interactions, it remains
meaningful because player Y always moves after player X (or vice
versa). For an arbitrary action space, SX , a memory-one strategy for
player X formally consists of an initial action, � 0

X , and a memory-
one action, �X [x, y], which are both probability distributions on
SX . Since player X moves first, she bases her initial action on � 0

X
and subsequently uses the two previous moves, x and y, to choose
an action in the next round using �X [x, y] (see Fig. 2 for graphical
depictions).

Theorem 1 (Autocratic Strategies for Strictly-Alternating Games in
which X Moves First). Suppose that
⇣
↵fX (x) + �fY (x) + �

⌘
+ �

⇣
↵gX (y) + �gY (y) + �

⌘

=  (x) � �2
Z

s2SX
 (s) d�X [x, y] (s)

�
�
1 � �2

� Z

s2SX
 (s) d� 0

X (s) (4)

holds for some bounded  and for each x 2 SX and y 2 SY . Then, if
player X moves first, the pair

�
� 0
X , �X [x, y]

�
allows X to enforce the

equation ↵⇡X + �⇡Y + � = 0 for every strategy of player Y .

A proof of this result may be found in Supporting Information
(see Appendix A).

Note that the average payoff, ⇡X , of Eq. (3) is the same as in
a simultaneous-move game whose payoff function is 1

1+�uX and
whose discounting factor is �2 (McAvoy and Hauert, 2016). Hence,
it is not so surprising that autocratic strategies exist in this case too
(and under similar conditions). However, the situation changes if
Y moves first and (y0, x1, y2, x3, . . .) is the sequence of play. In this
case, X ’s average payoff is

⇡X = (1 � �)

"

gX (y0) + �
1X

t=0

�2tuX (x2t+1, y2t+2)

#

. (5)

When Y moves first, player X ’s initial move, � 0
X [y0], is now a

function of Y ’s first move, y0. However, X ’s lack of control over
the first round does not (in general) preclude the existence of
autocratic strategies:

Theorem 2 (Autocratic Strategies for Strictly-Alternating Games in
which Y Moves First). Suppose that
⇣
↵fX (x) + �fY (x) + �

⌘
+ �

⇣
↵gX (y) + �gY (y) + �

⌘

+
✓
1 � �2

�

◆ ⇣
↵gX (y0) + �gY (y0) + �

⌘

=  (x) � �2
Z

s2SX
 (s) d�X [x, y] (s)

�
�
1 � �2

� Z

s2SX
 (s) d� 0

X [y0] (s) (6)

holds for some bounded  and for each x 2 SX and y0, y 2 SY .
Then, if player X moves second, the pair

�
� 0
X [y0] , �X [x, y]

�
allows

X to enforce the equation ↵⇡X + �⇡Y + � = 0 for every strategy of
player Y .

For a proof of this statement, see Supporting Information (see
Appendix A).

Note that Eq. (6) is slightly more restrictive than Eq. (4) because
player X has no control over the outcome of the initial round.
Evidently, for undiscounted (infinite) games (� = 1), it is irrelevant
who moves first and hence the conditions for the existence of
autocratic strategies coincide (cf. Eqs. (4) and (6)).

2.2. Randomly-alternating games

In a randomly-alternating game, the player who moves in any
given round is determined probabilistically: player X moves with
probability !X and player Y with probability 1 �!X . Suppose that
X and Y each make plans to play xt and yt at time t , respectively,
assuming they move at time t . Then, in the repeated game, these
strategies give player X an average payoff of

⇡X = (1 � �)
1X

t=0

�t
⇣
!X fX (xt) + (1 � !X ) gX (yt)

⌘
. (7)

Y ’s average payoff, ⇡Y , is obtained from Eq. (7) by replacing fX and
gX by fY and gY , respectively.

For randomly-alternating games, we need to reconsider the
concept of memory-one strategies. If moves alternate randomly,
then a logical extension is provided by a conditional response
based on the previous move as well as on which player moved.
In particular, � Y

X [y] denotes a mixed action for player X after
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Fig. 2. Three examples of memory-one strategies for player X in a strictly-alternating gamewhose action spaces are SX = SY = [0, K ] for some K > 0. (A) depicts a reactive
stochastic strategy in which solely Y ’s last move is used to determine the probability distribution with which X chooses her next action. The mean of this distribution is an
increasing function of y, which means that X is more likely to invest more (play closer to K ) as y increases. (B) illustrates a reactive two-point strategy, i.e. a strategy that
plays only two actions, 0 (defect) or K (fully cooperate). Player Y ’s last move is used to determine the probability with which X plays K in the next round; if X does not use
K , then she uses 0. As Y ’s last action, y, increases, X is more likely to reciprocate and use K in response. (C) shows a strategy that gives X ’s next move deterministically as a
function of both of the players’ last moves. Unlike in (A) and (B), X ’s next move is uniquely determined by her own last move, x, and the last move of her opponent, y. If Y
used y = 0 in the previous round, then X responds by playing 0 as well. X ’s subsequent action is then an increasing function of y whose rate of change is largest when X ’s
last move, x, is smallest. In particular, if Y used y > 0 in the previous round, then X ’s next action is a decreasing function of her last move, x. Therefore, in (C), X exploits
players who are unconditional cooperators.

player Y uses y in the previous round, and � X
X [x] denotes a mixed

action after playing x herself. Note that the cognitive require-
ment in terms of memory capacity in strictly-alternating games
remains the same as for simultaneous games, whereas for
randomly-alternating games the requirements are significantly
less demanding as reflected in two univariate response functions
as compared to response functions involving two variables. For
two-action games (such as the classical Donation Game), however,
memory-one strategies for synchronous, strictly-alternating, and
randomly-alternating games all reduce to four-tuples of probabil-
ities (see Section 3).

Rather surprisingly, randomly-alternating games also admit
autocratic strategies:

Theorem 3 (Autocratic Strategies for Randomly-Alternating Games).
If, for some bounded  ,

↵fX (x) + �fY (x) + � =  (x) � �!X

Z

s2SX
 (s) d� X

X [x] (s)

� (1 � �)!X

Z

s2SX
 (s) d� 0

X (s) ; (8a)

↵gX (y) + �gY (y) + � = ��!X

Z

s2SX
 (s) � Y

X [y] (s)

� (1 � �)!X

Z

s2SX
 (s) d� 0

X (s) (8b)

for each x 2 SX and y 2 SY , then the strategy
�
� 0
X , � X

X [x] , � Y
X [y]

�

allows X to enforce the equation ↵⇡X + �⇡Y + � = 0 for every
strategy of player Y .

For a proof of this result, we refer the reader to Supporting
Information (see Appendix A).

However, through examples we demonstrate in Sections 3
and 4 that autocratic strategies do require that player X moves
sufficiently often, i.e. condition Eq. (8) implicitly puts a lower
bound on !X .

Remark. Theorems 1, 2, and 3 give conditions under which X can
enforce ↵⇡X + �⇡Y + � = 0 for every strategy of player Y .
Although X is using a memory-one strategy to enforce this linear
relationship, we make no assumptions on Y ’s strategy; it can be

any behavioral strategy with arbitrary (even infinite) memory. For
two-action (and undiscounted) games with simultaneous moves,
Press andDyson (2012) show that if X uses amemory-one strategy,
then the strategy of Y may also be assumed to be memory-one.
While this result is required for the use of their ‘‘determinant trick’’
to establish the existence of zero-determinant strategies, it is not
needed here due to a technique of Akin (2015). Further details are
in Supporting Information (see Appendix A).

3. Example: classical Donation Game

While our main results hold for alternating games with generic
action spaces, we first illustrate their implications for the classical,
two-action Donation Game. The classical Donation Game, whose
payoff matrix is given by Eq. (2), is based on the discrete actions
of cooperate, C , and defect, D. Without discounting, initial moves
do not matter and hence a memory-one strategy for player X is
defined by a four-tuple, p := (pCC , pCD, pDC , pDD), where pxy is
the probability that X cooperates after X plays x and Y plays y for
x, y 2 {C,D}. In the simultaneous-move Donation Game, Press and
Dyson (2012) show that for � > 1,

p = (1 � � (� � 1) (b � c) , 1 � � (�b + c) , � (b + �c) , 0)
(9)

unilaterally enforces the extortionate relationship ⇡X = �⇡Y
provided that a normalization factor, �, exists.

In undiscounted (infinite) and strictly-alternating games, we
know from Eqs. (4) and (6) that player X does not need to take
into account whomoves first when devising an autocratic strategy
and, moreover, the conditions become identical to those for
simultaneous games (McAvoy and Hauert, 2016; Press and Dyson,
2012). Therefore, player X can use a single strategy to enforce⇡X =
�⇡Y in both simultaneous and strictly-alternating games. For
discounted (finite) games, however, autocratic strategies depend
on whether the moves are simultaneous or strictly-alternating,
but the condition on the discounting factor guaranteeing their
existence, � > (b + �c) / (�b + c), does not.

In the undiscounted but randomly-alternating Donation Game,
player X moves with probability !X and player Y with probability
1�!X in each round. A memory-one strategy for player X is given
by p

X =
�
pXC , p

X
D

�
and p

Y =
�
pYC , p

Y
D

�
, where pXx (resp. pYy ) denotes

the probability that X plays C if X moved x (resp. Y moved y) in
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the preceding round. In this game, player X can enforce ⇡X = �⇡Y
with

p

X =
✓

1
!X

(1 � � (�b + c)) , 0
◆

,

p

Y =
✓

1
!X
� (b + �c) , 0

◆ (10)

provided that the normalization factor, �, falls within the range

1 � !X

�b + c
6 � 6 min

⇢
!X

b + �c
,

1
�b + c

�
. (11)

The existence of such a � in this range requires that X moves
sufficiently frequently, i.e.

!X >
b + �c

(� + 1) (b + c)
. (12)

Otherwise, playerX loses control over the outcomeof the gameand
can no longer enforce a linear payoff relationship. The autocratic
strategy defined by Eq. (10) is unforgiving and always responds
to defection with defection but more readily cooperates than
its counterpart for simultaneous or strictly-alternating Donation
Games, defined by Eq. (9), since pXC = 1

!X
pCD > pCD and pYC =

1
!X

pDC > pDC .

4. Example: continuous Donation Game

In the continuous Donation Game, the action space available to
players X and Y is an interval [0, K ], which indicates a continuous
range of cooperative investment levels with an upper bound K >
0. If X plays x 2 [0, K ], she donates b(x) to her opponent at a cost
c(x) to herself with b(x) > c(x) for x > 0 and b(0) = c(0) =
0 (Killingback and Doebeli, 2002). This game is symmetric with
fX (s) = gY (s) = �c (s) and fY (s) = gX (s) = b (s).

4.1. Extortionate, generous, and equalizer strategies

For each variant of alternating moves, we consider three
particularly important classes of autocratic strategies for the
continuous Donation Game: equalizer, extortionate, and generous.
An equalizer strategy is an autocratic strategy that allows X to
unilaterally set either ⇡X = � (self-equalizing) or ⇡Y = �
(opponent-equalizing) (Hilbe et al., 2013). In all scenarios,we show
that no self-equalizing strategies exist that allow player X to set
⇡X = � for � > 0. However, player X can typically set the score of
her opponent. Equalizer strategies are defined in the same way for
alternating and simultaneous-move games, whereas extortionate
and generous strategies require slightly different definitions. In the
simultaneous version of the continuous Donation Game, player X
can enforce the linear relationship ⇡X �  = � (⇡Y � ) for any
� > 1 and 0 6  6 b (K)� c (K), provided � is sufficiently close to
1 (McAvoy and Hauert, 2016). Note that the ‘‘baseline payoff’’,  ,
indicates the payoff of an autocratic strategy against itself (Hilbe
et al., 2014). If � > 1 and  = 0, then such an autocratic strategy
is called ‘‘extortionate’’ since it ensures that the expected payoff of
player X is at least that of player Y . Conversely, if  = b (K)�c (K),
then this strategy is called ‘‘generous’’ (or ‘‘compliant’’) since it
ensures that the expected payoff of player X is at most that of
player Y (Stewart and Plotkin, 2013; Hilbe et al., 2013).

The bounds on  arise from the payoffs for mutual coopera-
tion and mutual defection in repeated games. Of course, in the
simultaneous-move game, those bounds are the same as the pay-
offs for mutual cooperation and defection in one-shot interactions.
Discounted (finite), alternating games, on the other hand, result
in asymmetric payoffs even if the underlying one-shot interaction

is symmetric. For example, if player X moves first in the strictly-
alternating, continuous Donation Game, and if both players are un-
conditional cooperators, then ⇡X = (�b (K) � c (K)) / (1 + �) but
⇡Y = (b (K) � �c (K)) / (1 + �), which are not equal for discount-
ing factors � < 1. Thus, rather than comparing both ⇡X and ⇡Y to
the samepayoff,  , itmakesmore sense to compare⇡X to X and⇡Y
to Y for some X and Y . Therefore, we focus on conditions that al-
lowplayerX to enforce⇡X�X = � (⇡Y � Y ) for X and Y within
a suitable range. Note that if player X enforces this payoff relation
and, conversely, player Y enforces⇡Y �Y = � (⇡X � X ) for some
� > 1, then player X gets X and Y gets Y , which preserves the
original interpretation of  as the ‘‘baseline payoff’’ (Hilbe et al.,
2014). Also note that the two strategies enforcing the respective
payoff relation need not be the same due to the asymmetry in
payoffs, which arises from the asymmetry induced by alternating
moves.

For s, s0 2 {0, K}, let  ss0
X and  ss0

Y be the baseline payoffs to
players X and Y , respectively, when X uses s unconditionally and Y
uses s0 unconditionally in the repeated game. For sufficiently weak
discounting factors, �, player X can enforce⇡X �X = � (⇡Y � Y )
for any alternating game if and only if

X = X +
�
�00

Y � 00
X

�
6 �Y 6 X +

�
�KK

Y � KK
X

�
, (13)

where 00
X = 00

Y = 0. Eq. (13) implies that if player X
attempts to minimize player Y ’s baseline payoff, Y , for a fixed
X , then �Y = X . Hence player X enforces ⇡X � X =
� (⇡Y � Y ) = �⇡Y�X , or⇡X = �⇡Y . Such an autocratic strategy
is called ‘‘extortionate’’ since it minimizes the baseline payoff of
the opponent, or, equivalently, it minimizes the difference �Y �
X . Conversely, if player X tries to maximize Y ’s baseline payoff,
then �Y = X +

�
�KK

Y � KK
X

�
and X enforces the equation

⇡X � KK
X = �

�
⇡Y � KK

Y

�
. This type of autocratic strategy is

called ‘‘generous’’ since it maximizes the baseline payoff of the
opponent, or, equivalently, it maximizes the difference �Y � X .
Therefore, qualitatively speaking, in spite of the more detailed
considerations necessary for alternating games, the introduction
of distinct baseline payoffs for players X and Y does not affect the
spirit in which extortionate and generous strategies are defined.

Interestingly, and somewhat surprisingly, it is possible for
player X to devise an autocratic strategy based on merely two
distinct actions, s1 and s2, despite the fact that her opponent
may draw on a continuum of actions (McAvoy and Hauert, 2016).
In strictly-alternating games, such a ‘‘two-point’’ strategy adjusts
p (x, y) (resp. 1 � p (x, y)), the probability of playing s1 (resp. s2),
in response to the previous moves, x and y, while the actions
s1 and s2 themselves remain unchanged. These strategies are
particularly illustrative because they admit analytical solutions
and simpler intuitive interpretations. In the following we focus
first on two-point autocratic strategies for player X based on
the two actions of full cooperation, K , and defection, 0. For
each variant of alternating game, we derive stochastic two-
point strategies enforcing extortionate, generous, and equalizer
payoff relationships. For the more interesting case of randomly-
alternating moves, we also give deterministic analogues of these
strategies that use infinitely many points in the action space.

4.2. Strictly-alternating moves; player X moves first

The baseline payoffs for full, mutual cooperation if player X
moves first are

KK
X = �b (K) � c (K)

1 + �
; KK

Y = b (K) � �c (K)

1 + �
, (14)

while the baseline payoffs for mutual defection are always 00
X =

00
Y = 0. The function  (s) := ��b (s) � c (s) conveniently
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eliminates x from Eq. (4). For sufficiently long interactions or weak
discounting factors, i.e.

� >
b (K) + �c (K)

�b (K) + c (K)
, (15)

the two-point strategy defined by

p (y) = � (b (y) + �c (y)) + (1 + �) (�Y � X )

�2 (�b (K) + c (K))
� 1 � �2

�2
p0 (16)

allows player X to unilaterally enforce ⇡X � X = � (⇡Y � Y )
as long as p0 falls within a suitable range (see Eq. (SI.50)) and
X 6 �Y 6 X +

�
�KK

Y � KK
X

�
. Whether the autocratic strategy

defined by (p0, p (y)) is extortionate or generous depends on the
choice of � , X , and Y . Note that p (y) does not depend on player
X ’s own previous move, x, and hence represents an instance of a
reactive strategy (Nowak and Sigmund, 1990).

Similarly, choosing  (s) := b (s) again eliminates x from
Eq. (4) but now enables player X to adopt an equalizer strategy
and set her opponent’s score to ⇡Y = � with 0 6 � 6
(b (K) � �c (K)) / (1 + �) by using

p (y) = �c (y) + (1 + �) �

�2b (K)
� 1 � �2

�2
p0, (17)

provided the initial probability of cooperation, p0, falls within
a feasible range (see Eq. (SI.52)). However, just like in the
simultaneous-move game, player X can never set her own score
(see McAvoy and Hauert, 2016).

4.3. Strictly-alternating moves; player Y moves first

The baseline payoffs for full cooperation if player Y moves first
are

KK
X = b (K) � �c (K)

1 + �
; KK

Y = �b (K) � c (K)

1 + �
, (18)

and, again, the baseline payoffs formutual defection are both 0. The
scaling function  (s) := ��b (s) � c (s) + �Y � X eliminates
x from Eq. (6). For sufficiently weak discounting, i.e. if Eq. (15)
holds, the autocratic, reactive strategy, that cooperates (plays K )
with probability

p (y) = b (y) + �c (y) + (1 + �) (�Y � X )

� (�b (K) + c (K))
(19)

after player Y moved y, then enables player X to unilaterally
enforce ⇡X � X = � (⇡Y � Y ) whenever X 6 �Y 6 X +�
�KK

Y � KK
X

�
. Again, whether p (y) translates into an extortionate

or generous strategy depends on � , X , and Y . Note that the first
move of X depends on simply her opponent’s initial move and
hence does not need to be specified separately.

Similarly, setting  (s) := b (s) � � also eliminates x from
Eq. (6) but enables player X to enforce ⇡Y = � with 0 6
� 6 (�b (K) � c (K)) / (1 + �), which implicitly requires � >
c (K) /b (K). This equalizer strategy plays K with probability

p (y) = c (y) + (1 + �) �

�b (K)
(20)

after player Y played y. Although player X can set the score of
player Y , she cannot set her own score.

4.4. Randomly-alternating moves

In randomly-alternating games, the average payoffs, ⇡X and ⇡Y ,
for players X and Y , respectively, depend on the probability !X
with which player X moves in any given round; see Eq. (7). The
region spanned by feasible payoff pairs, (⇡Y ,⇡X ), not only depends
on !X but also on the class of strategies considered; see Fig. 3. In
particular, the two-point strategies based on the extreme actions,
0 and K , cover only a portion of the payoff region spanned by
strategies utilizing the full action space, [0, K ]. We use both two-
point and deterministic autocratic strategies for illustrations as
they are among themore straightforwardways inwhich to enforce
linear payoff relationships.

4.4.1. Two-point autocratic strategies
Here, we focus on these two-point autocratic strategies for

player X , which are concentrated on the two points 0 and K and are
defined by (i) the probability that X uses K in the first round, p0;
(ii) the probability that X uses K following her ownmove in which
she used x, pX (x); and (iii) the probability that X uses K following
her opponent’s move in which he used y, pY (y).

For randomly-alternating moves, the baseline payoffs for full
cooperation are

KK
X = (1 � !X ) b (K) � !X c (K) ;
KK
Y = !Xb (K) � (1 � !X ) c (K) ,

(21)

while those for mutual defection remain both 0. Suppose that
discounting is sufficiently weak, or interactions cover sufficiently
many rounds, i.e.

� >
1
!X

· b (K) + �c (K)

(� + 1) (b (K) + c (K))
, (22)

and that X 6 �Y 6 X +
�
�KK

Y � KK
X

�
. Then, the two-point

autocratic strategy defined by

pX (x) = b (x) + �c (x) + �Y � X

�!X (� + 1) (b (K) + c (K))
� 1 � �

�
p0; (23a)

pY (y) = pX (y) (23b)

enables player X to unilaterally enforce ⇡X � X = � (⇡Y � Y )
provided p0 falls within a suitable range (see Eq. (SI.67)). The
scaling function  (s) := � (� + 1) (b (s) + c (s)) was chosen
such that X ’s response depends on the previous action but not on
which player used it.

If player X is at least as likely to move in each round as is
player Y , i.e. !X > 1/2, then, for every � > 1, a sufficiently weak
discounting factor exists that satisfies Eq. (22) and � 6 1 and hence
enables player X to enforce ⇡X � X = � (⇡Y � Y ). In particular,
both extortionate and generous autocratic strategies exist for the
randomly-alternating, continuous Donation Game; see Fig. 4.

Similarly, an equalizing two-point strategy for player X can
ensure ⇡Y = � for any

0 6 � 6 !Xb (K) � (1 � !X ) c (K) . (24)

X can enforce such a relationship using the two-point strategy
defined by

pX (x) = c (x) + �

�!X (b (K) + c (K))
� 1 � �

�
p0; (25a)

pY (y) = pX (y) (25b)

provided p0 falls within a specified range (see Eq. (SI.69)). Note that
player X is unable to unilaterally set the payoff of player Y to any-
thing below unconditional defection, 0, and beyond unconditional
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Fig. 3. Feasible payoff pairs, (⇡Y ,⇡X ), when X uses a two-point strategy (hatched) and when X uses the entire action space (light blue). The benefit function is b (s) =
5

�
1 � e�2s

�
, the cost function is c (s) = 2s, and the action spaces are SX = SY = [0, 2] (see Killingback and Doebeli, 2002). The probability that player X moves in any given

round is (A) !X = 1/3, (B) !X = 1/2, and (C) !X = 2/3. In each figure, the payoffs for mutual defection (0) are indicated by a red point and for mutual full-cooperation
(K = 2) by a green point. The blue pointmarks the payoffs when X defects and Y fully cooperates, and themagenta point vice versa. From (A) and (C), we see that if!X 6= 1/2,
then the payoffs for the alternating game are typically asymmetric even though the one-shot game is symmetric. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 4. Two-point extortionate, generous, and equalizer strategies for the randomly-alternating, continuous Donation Game. In each panel, the red (resp. green) point
indicates the payoffs for mutual defection (resp. full cooperation). The blue point gives the payoffs when X defects and Y fully cooperates in every round, and the magenta
point vice versa. In the top row, both players move with equal probability in a given round (!X = 1/2), whereas in the bottom row player X moves twice as often as player
Y (!X = 2/3). The extortionate strategies in (A) and (D) enforce ⇡X = �⇡Y , while the generous strategies in (B) and (E) enforce ⇡X � KK

X = �
�
⇡Y � KK

Y

�
with � = 2

(black) and � = 3 (blue). The equalizer strategies in (C) and (F) enforce ⇡Y = � with � = 00
Y = 0 (black) and � = KK

Y (blue). The simulation data in each panel show the
average payoffs, (⇡Y ,⇡X ), for player X ’s two-point strategy against 1000 random memory-one strategies for player Y . The benefit function is b (s) = 5

�
1 � e�2s

�
and the

cost function is c (s) = 2s for action spaces SX = SY = [0, 2]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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cooperation, !Xb (K) � (1 � !X ) c (K); see Supporting Informa-
tion (Appendix A) for further details. Moreover, it must be true
that �!Xb (K) > (1 � �!X ) c (K). For !X = 1/2, the discount-
ing factor, �, must therefore satisfy � > 2c (K) / (b (K) + c (K)),
which enables player X to set Y ’s score to anything between 0 and
(b (K) � c (K)) /2. In the limit where player X moves exclusively,
!X ! 1, player Y ’s score can be set to at most b (K), which, itself,
is clear from the definition of the continuous Donation Game.

Although player X can unilaterally set Y ’s score, she cannot
set her own score to anything above 0, and, for !X 6 1/2, she
cannot set her own score to anything at all. For sufficiently large
�!X , player X can guarantee herself non-positive payoffs using
an autocratic strategy; see Supporting Information, Appendix A.
However, strategies enforcing a return that is at most 0 may
be of limited use since a player can always do at least as well
through unconditional defection. In contrast, in the simultaneous
version of the continuous Donation Game, player X can never
set her own score (McAvoy and Hauert, 2016). This difference
is not that surprising: even though player X can exert control
over randomly-alternating games for large !X , the structure of the
continuous Donation Game precludes her from providing herself
positive payoffs through actions of her own.

4.4.2. Deterministic autocratic strategies
Deterministic strategies, for which X reacts to the previous

move by playing an action with certainty (rather than probabilisti-
cally), cover a broader range of feasible payoffs (see Fig. 3) than do
two-point strategies (see also McAvoy and Hauert, 2016). A simple
example of a deterministic strategy is tit-for-tat, which cooperates
in the first round and subsequently copies the opponent’s previous
move (Axelrod, 1984).

A deterministic strategy for a randomly-alternating game
consists of (i) an initial action, x0; (ii) a reaction function to one’s
own move, rX : SX ! SX ; and (iii) a reaction function to the
opponent’s move, rY : SY ! SX . Here, we give examples of
deterministic extortionate, generous, and equalizer strategies for
the continuous Donation Game. For example, player X can enforce
⇡X � X = � (⇡Y � Y ) by using

rX (x) = (b + c)�1

0

@
b (x) + �c (x) + �Y � X � (1 � �)!X (� + 1)

⇣
b (x0) + c (x0)

⌘

�!X (� + 1)

1

A ; (26a)

rY (y) = rX (y) , (26b)

where (b + c)�1 (· · · ) denotes the inverse of the function b (s) +
c (s), provided the initial action, x0, is chosen appropriately. For
instance, ifX = 00

X = 0 andY = 00
Y = 0, thenX mayuse x0 = 0

to enforce the extortionate relationship ⇡X = �⇡Y . If X = KK
X

and Y = KK
Y , then X may use x0 = K to enforce the generous

relationship ⇡X � KK
X = �

�
⇡Y � KK

Y

�
. In both cases, � must

satisfy Eq. (22) for rX and rY to be well-defined reaction functions.
Similarly, X can unilaterally equalize Y ’s payoff to⇡Y = � by using

rX (x) = (b + c)�1
✓
c (x) + � � (1 � �)!X (b (x0) + c (x0))

�!X

◆
; (27a)

rY (y) = rX (y) . (27b)

If � = 00
Y = 0, then player X may use x0 = 0; if � = KK

Y , then
X may use x0 = K . The feasible payoff regions and simulation data
for each of these classes of autocratic strategies are given in Fig. 5.

What is noteworthy about these strategies is that they require
only the last move and not who played it. In other words, a player
using one of these strategies responds to a move by herself in
exactly the same way as she responds to a move by her opponent.
Although a player never knows in advance when she will move in

a randomly-alternating game, she can still enforce extortionate,
generous, and equalizer relationships on payoffs by playing an
action that is uniquely determined by themost recent action of the
game.

5. Discussion

Repeated games likely rank among the best-studied topics in
game theory, and the resulting insights have been instrumental
for our understanding of strategic behavioral patterns. For this
reason, it came as all the more of a surprise when Press
and Dyson (2012) reported a new class of ‘‘zero-determinant’’
strategies, which enable players to exert unprecedented control
in repeated interactions. However, notwithstanding decades of
extensive literature on repeated games, alternating interactions
have received very little attention when compared to their
simultaneous counterparts. This emphasis is particularly puzzling
because many, if not most, social encounters among plants or
animals (including humans) that unfold over several rounds seem
better captured by alternating actions of the interacting agents.
Moreover, even within the realm of alternating games, it is
often assumed that individual turns alternate strictly rather than
randomly (Frean, 1994; Hauert and Schuster, 1998; Neill, 2001;
Zagorsky et al., 2013).

Here, we introduce autocratic strategies, a generalization of
zero-determinant strategies, for alternating games. Due to simi-
larities with simultaneous-move games, it is perhaps unsurprising
that autocratic strategies also exist for strictly-alternating games.
However, even so, the continuous Donation Game demonstrates
that the autocratic strategies themselves depend on the timing of
the players’ moves.What is more surprising, and even unexpected,
is the fact that autocratic strategies exist for randomly-alternating
games as well. This extension exemplifies the surprising robust-
ness of autocratic strategies by relaxing the original assumptions
in three important ways: (i) to allow for discounted payoffs, i.e. to
consider finite numbers of rounds in each interaction (Hilbe et al.,
2015); (ii) to extend the action set from two distinct actions to
infinite action spaces (McAvoy and Hauert, 2016); and now (iii)
to admit asynchronous decisions and, in particular, randomly-
alternating ones. The latter even includes asymmetric scenarios
where one player moves, on average, more frequently than the
other. Under this far more generic setup we demonstrate that
autocratic strategies still exist and enable players to enforce extor-
tionate, generous, and equalizer relationshipswith their opponent.

In the strictly-alternating, continuous Donation Game, auto-
cratic strategies exist for player X provided that the discounting
factor, �, is sufficiently weak, or, equivalently, that interactions
span sufficiently many rounds; see Eq. (15). Interestingly, the con-
dition on � does not depend on whether player X moves first or
second and is even identical to the corresponding condition in the
synchronous game (McAvoy and Hauert, 2016). In the absence of
discounting, � = 1, the same strategy enforces, for instance, an
extortionate payoff relationship in simultaneous games as well as
alternating games and regardless ofwhether or not playerX moved
first. We demonstrate this phenomenon for the classical and con-
tinuous Donation Games in Sections 3 and 4, respectively.

The condition for the existence of autocratic strategies in
the randomly-alternating game, Eq. (22), is similar to that
of the strictly-alternating (and simultaneous) games, although
slightly stronger. Not surprisingly, this condition depends on the
probability that player X moves in a given round, !X . For each
type of alternating game, we give examples of simple two-point
autocratic strategies in which player X ’s actions are restricted
to 0 (defect) and K (fully cooperate). Although X can enforce
any extortionate, generous, or equalizer payoff relationship in the
continuous Donation Game using a two-point strategy, a larger
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Fig. 5. Deterministic extortionate, generous, and equalizer strategies for the randomly-alternating, continuous Donation Game. In each round, both players have the same
probability of moving (!X = 1/2). In (A), extortionate strategies enforce ⇡X = �⇡Y and in (B), generous strategies enforce ⇡X �KK

X = �
�
⇡Y � KK

Y

�
with � = 2 (black) and

� = 3 (blue). In (C), equalizer strategies enforce ⇡Y = � with � = 00
Y = 0 (black) and � = KK

Y (blue). Since deterministic strategies utilize a larger portion of the action
space than two-point strategies, the players can attain a broader range of payoff pairs, (⇡Y ,⇡X ) (cf. Fig. 4). The simulation data in each panel shows the average payoffs,
(⇡Y ,⇡X ), for X ’s deterministic strategy against 1000 randomly-chosen, memory-one strategies of the opponent. The benefit function is b (s) = 5

�
1 � e�2s

�
and the cost

function is c (s) = 2s for s 2 [0, 2]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

region of feasible payoffs is attainable if X uses a deterministic
autocratic strategy (see Fig. 3).

While autocratic strategies undoubtedly mark important be-
havioral patterns, their importance in an evolutionary context is
still debated: extortionate strategies perform poorly (Adami and
Hintze, 2013), whereas generous strategies perform much better
(Stewart and Plotkin, 2013). In fact, a generous strategy against it-
self represents a Nash equilibrium in the simultaneous, two-action
Prisoner’s Dilemma (Hilbe et al., 2015). However, for extensions to
continuous action spaces, such as the continuous Donation Game,
even a generous strategy with full mutual cooperation is not nec-
essarily a Nash equilibrium (McAvoy and Hauert, 2016). Similar
considerations for alternating games are further nuanced because
they naturally introduce asymmetries in payoffs for the two play-
ers, even if the underlying interaction is symmetric and both play-
ers follow the same strategy. In fact, this asymmetry holds for any
strictly-alternating game with discounting factor � < 1 because
then it matters which player moved first. Similarly, in randomly-
alternating games, the payoffs typically depend on the probabil-
ity !X with which player X moves and hence differ if !X 6= 1/2.
Consequently, even if player X and Y adopt the same autocratic
strategy, then playerX does not necessarily enforce the same linear
relationship on payoffs as player Y , which complicates the notion
of equilibria both in the sense of Nash as well as rest points of the
evolutionary dynamics.

Among alternating games, the randomly-alternating ones
represent perhaps the most promising and relevant setup from
a biological perspective (see Nowak and Sigmund, 1994). In the
continuous Donation Game, autocratic strategies exist even if the
probability that player X moves in a given round differs from
that of player Y (i.e. !X 6= 1/2). Of course, !X must be large
enough to ensure that player X is capable of exerting sufficient
control over the game to pursue an autocratic strategy. For !X >
1/2, this condition always holds in the continuous Donation
Game butmight also apply under weaker conditions. Interestingly,
such asymmetries easily arise from dominance hierarchies. For
example, in bouts of social grooming between primates (Foster
et al., 2009), subordinate individuals, X , typically groom dominant
individuals, Y , more frequently than vice versa and hence !X >
1/2. As a consequence, the subordinate player has more autocratic
strategies available to impact social grooming than does the

dominant player. Thus, autocratic strategies can be particularly
useful for exerting control over asymmetric interactions. This
observation marks not only an important distinction between
autocratic strategies for synchronous and alternating games but
also promises interesting applications to biologically-relevant
interactions.
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SUPPORTING INFORMATION

AUTOCRATIC STRATEGIES FOR ALTERNATING GAMES

Here, we prove our main results for each type of alternating game (strictly- and randomly-alternating

moves). By a measurable space, we mean a set, X, equipped with a �-algebra of subsets, F pXq, although we

usually suppress F pXq. The notation � pXq indicates the space of all probability measures on X, i.e. the set

of all measures, µ : F pXq Ñ r0,8q, with µ pXq “ 1. All functions are bounded and measurable.

SI.1. Strictly-alternating games

Let S

X

and S

Y

be the action spaces available to players X and Y , respectively. We assume that these

spaces are measurable, but otherwise we impose no restrictions on them. Let f
X

pxq and f

Y

pxq be the payo↵s
to players X and Y , respectively, when X moves x P S

X

. Similarly, let g
X

pyq and g

Y

pyq be the payo↵s to

players X and Y , respectively, when Y moves y P S

Y

. If � is the discounting factor, then one may compress

a pair of rounds in which X moves first and Y moves second in order to form two-round payo↵ functions,

u

X

px, yq :“ f

X

pxq ` �g

X

pyq ; (SI.1a)

u

Y

px, yq :“ f

Y

pxq ` �g

Y

pyq . (SI.1b)

In each of these two-round payo↵ functions, the payo↵ from player Y ’s move is discounted by a factor of �

to account for the time di↵erence or, equivalently, for the probability that the interaction ends before player

Y ’s turn.

Due to the di↵erences in the expressions for the average payo↵s when X moves first and when Y moves

first, respectively, we treat each of these cases separately in our study of autocratic strategies.

SI.1.1. X moves first. If player X moves first, then the entire sequence of play can be grouped into two-

round pairs in which X moves first and Y moves second. More specifically, if px0, y1, x2, y3, . . . q is the

sequence of play, then this sequence may be rewritten as ppx0, y1q , px2, y3q , . . . q. When written in this
1



manner, one may use u

X

to express the average payo↵ to player X for this sequence as

⇡

X

“ p1 ´ �q
« 8ÿ

t“0

�

2t
f

X

px2tq `
8ÿ

t“0

�

2t`1
g

X

py2t`1q
�

“ p1 ´ �q
8ÿ

t“0

�

2t
´
f

X

px2tq ` �g

X

py2t`1q
¯

“ p1 ´ �q
8ÿ

t“0

�

2t
u

X

px2t, y2t`1q . (SI.2)

Similarly, the average payo↵ to player Y is ⇡
Y

“ p1 ´ �q ∞8
t“0 �

2t
u

Y

px2t, y2t`1q.
A time-T history indicates the sequence of play from time t “ 0 until (but not including) time t “ T and

is an element of HT :“ ±
T´1
t“0 HT

t

, where

HT

t

:“

$
’’&

’’%

S

X

t is even,

S

Y

t is odd,

(SI.3)

for 0 § t § T ´ 1. For T “ 0, we let H0 :“ t?u, where ? is the “empty history,” which indicates that the

game has not yet begun. A behavioral strategy defines a player’s actions (probabilistically) for any history of

play leading up to the current move [see 2]. That is, behavioral strategies for players X and Y , respectively,

may be written in terms of the space of histories as maps,

�

X

:
ß

T•0

H2T ›Ñ � pS
X

q ; (SI.4a)

�

Y

:
ß

T•0

H2T`1 ›Ñ � pS
Y

q , (SI.4b)

where \ denotes the disjoint union operator, and� pS
X

q and� pS
Y

q denote the space of probability measures

on S

X

and S

Y

, respectively. These strategies may be written together more compactly as a map

� : H :“
ß

T•0

HT ›Ñ � pS
X

q \ � pS
Y

q

: hT fi›Ñ

$
’’&

’’%

�

X

“
h

T

‰
T is even,

�

Y

“
h

T

‰
T is odd.

(SI.5)

Using �, we define a sequence of measures, tµ
t

u
t•0, on Ht`1 as follows: For hT “

`
h

T

0 , h
T

1 , . . . , h
T

T´1

˘
P HT

and 0 § t § T ´ 1, let hT

§t

“
`
h

T

0 , h
T

1 , . . . , h
T

t

˘
P Ht`1. For E1 P F pHtq and E P F

`
Ht`1

t

˘
, let

µ

t

`
E

1 ˆ E

˘
:“

ª

h

tPE1

�

`
h

t

, E

˘
d�

`
h

t

§t´2, h
t

t´1

˘
¨ ¨ ¨ d�

`
h

t

§0, h
t

1

˘
d�

`
?, h

t

0

˘
. (SI.6)
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For 0 § k § t, let ⌫k
t

be the measure on
±

t

i“t´k

Hi`1
i

, which, for E P F
´±

t

i“t´k

Hi`1
i

¯
, is defined as

⌫

k

t

pEq :“ µ

t

`
Ht´k ˆ E

˘
. (SI.7)

In a p2T ` 2q-round game (rounds 0 through 2T ` 1), the expected payo↵ to player X is

⇡

2T`2
X

:“
ª

h

2T`2PH2T`2

«ˆ
1 ´ �

1 ´ �

2T`1

˙
Tÿ

t“0

�

2t
u

X

`
h

2T`2
2t , h

2T`2
2t`1

˘
�

d�

`
h

2T`2
§2T , h

2T`2
2T`1

˘
¨ ¨ ¨ d�

`
h

2T`2
§0 , h

2T`2
1

˘
d�

`
?, h

2T`2
0

˘

“
ˆ

1 ´ �

1 ´ �

2T`1

˙
Tÿ

t“0

�

2t

ª

h

2T`2PH2T`2

u

X

`
h

2T`2
2t , h

2T`2
2t`1

˘

d�

`
h

2T`2
§2T , h

2T`2
2T`1

˘
¨ ¨ ¨ d�

`
h

2T`2
§0 , h

2T`2
1

˘
d�

`
?, h

2T`2
0

˘

“
ˆ

1 ´ �

1 ´ �

2T`1

˙
Tÿ

t“0

�

2t

ª

h

2t`2PH2t`2

u

X

`
h

2t`2
2t , h

2t`2
2t`1

˘

d�

`
h

2t`2
§2t , h

2t`2
2t`1

˘
¨ ¨ ¨ d�

`
h

2t`2
§0 , h

2t`2
1

˘
d�

`
?, h

2t`2
0

˘

“
ˆ

1 ´ �

1 ´ �

2T`1

˙
Tÿ

t“0

�

2t

ª

ph2t`2
2t ,h

2t`2
2t`1qPH2t`2

2t ˆH
2t`2
2t`1

u

X

`
h

2t`2
2t , h

2t`2
2t`1

˘
d⌫

1
2t`1

`
h

2t`2
2t , h

2t`2
2t`1

˘

“
ˆ

1 ´ �

1 ´ �

2T`1

˙
Tÿ

t“0

�

2t

ª

px,yqPSXˆSY

u

X

px, yq d⌫

1
2t`1 px, yq . (SI.8)

In particular, the limit

⇡

X

:“ lim
TÑ8

⇡

2T`2
X

“ p1 ´ �q
8ÿ

t“0

�

2t

ª

px,yqPSXˆSY

u

X

px, yq d⌫

1
2t`1 px, yq (SI.9)

exists since f

X

and g

X

(and hence u

X

) are bounded. Similarly, we define

⇡

Y

:“ p1 ´ �q
8ÿ

t“0

�

2t

ª

px,yqPSXˆSY

u

Y

px, yq d⌫

1
2t`1 px, yq . (SI.10)

Our main technical lemma is an analogue of Lemma 3.1 of Akin [1]:

Lemma 1. For any memory-one strategy, �
X

rx, ys, and any E P F pS
X

q,
8ÿ

t“0

�

2t

ª

px,yqPSXˆSY

”
�

EˆSY px, yq ´ �

2
�

X

rx, ys pEq
ı
d⌫

1
2t`1 px, yq “ �

0
X

pEq , (SI.11)

where �

0
X

:“ �

X

r?s is the initial action of player X.
3



Proof. By the definition of the measures
 
⌫

k

t

(0§k§t

t•0
, we have

ª

px,yqPSXˆSY

�

EˆSY px, yq d⌫

1
2t`1 px, yq “ ⌫

0
2t pEq ; (SI.12a)

ª

px,yqPSXˆSY

�

X

rx, ys pEq d⌫

1
2t`1 px, yq “ ⌫

0
2t`2 pEq . (SI.12b)

Therefore, it follows that

8ÿ

t“0

�

2t

ª

px,yqPSXˆSY

”
�

EˆSY px, yq ´ �

2
�

X

rx, ys pEq
ı
d⌫

1
2t`1 px, yq

“
8ÿ

t“0

�

2t
´
⌫

0
2t pEq ´ �

2
⌫

0
2t`2 pEq

¯

“ ⌫

0
0 pEq ´ lim

tÑ8
�

2t`2
⌫

0
2t`2 pEq

“ ⌫

0
0 pEq

“ �

0
X

pEq , (SI.13)

which completes the proof. ⇤

Proposition 1. For any bounded, measurable function,  : S
X

Ñ R,

8ÿ

t“0

�

2t

ª

px,yqPSXˆSY

»

–
 pxq ´ �

2

ª

sPSX

 psq d�

X

rx, ys psq
fi

fl
d⌫

1
2t`1 px, yq “

ª

sPSX

 psq d�

0
X

psq . (SI.14)

Proof. The result follows from Lemma 1 and the dominated convergence theorem. We do not include the

details here; the argument is the same as the proof of Proposition 1 of [5]. ⇤

Using Proposition 1, we now prove the first of our main results for strictly-alternating games:

Theorem 1 (Autocratic strategies for strictly-alternating games in which X moves first). Suppose that

´
↵f

X

pxq ` �f

Y

pxq ` �

¯
` �

´
↵g

X

pyq ` �g

Y

pyq ` �

¯

“  pxq ´ �

2

ª

sPSX

 psq d�

X

rx, ys psq ´
`
1 ´ �

2
˘ ª

sPSX

 psq d�

0
X

psq (SI.15)

holds for some bounded  and for each x P S

X

and y P S

Y

. Then, if player X moves first, the pair
`
�

0
X

,�

X

rx, ys
˘
allows X to enforce the equation ↵⇡

X

` �⇡

Y

` � “ 0 for every strategy of player Y .
4



Proof. If Eq. (SI.15) holds, then, by Proposition 1 and Eqs. (SI.9) and (SI.10),

↵⇡

X

`�⇡
Y

` � ` p1 ´ �q
ª

sPSX

 psq d�

0
X

psq

“ p1 ´ �q
8ÿ

t“0

�

2t

ª

px,yqPSXˆSY

»

–
 pxq ´ �

2

ª

sPSX

 psq d�

X

rx, ys psq
fi

fl
d⌫

1
2t`1 px, yq

“ p1 ´ �q
ª

sPSX

 psq d�

0
X

psq , (SI.16)

and it follows that ↵⇡
X

` �⇡

Y

` � “ 0. ⇤

SI.1.2. Y moves first. If Y moves first, then a sequence of moves, py0, x1, y2, x3, y4, . . . q, may be rewritten

as py0, px1, y2q , px3, y4q , . . . q, consisting of an initial move by Y followed by a sequence of two-round pairs in

which X moves first and Y moves second. The average payo↵ to player X for this sequence of play is then

⇡

X

“ p1 ´ �q
« 8ÿ

t“0

�

2t`1
f

X

px2t`1q `
8ÿ

t“0

�

2t
g

X

py2tq
�

“ p1 ´ �q
«
g

X

py0q `
8ÿ

t“0

�

2t`1
f

X

px2t`1q `
8ÿ

t“0

�

2t`2
g

X

py2t`2q
�

“ p1 ´ �q
«
g

X

py0q `
8ÿ

t“0

�

2t`1
´
f

X

px2t`1q ` �g

X

py2t`2q
¯�

“ p1 ´ �q
«
g

X

py0q `
8ÿ

t“0

�

2t`1
u

X

px2t`1, y2t`2q
�
. (SI.17)

Similarly, player Y has an average payo↵ of ⇡
Y

“ p1 ´ �q
“
g

Y

py0q ` ∞8
t“0 �

2t`1
u

Y

px2t`1, y2t`2q
‰
.

The set of time-T histories is then given by HT :“ ±
T´1
t“0 HT

t

, where

HT

t

:“

$
’’&

’’%

S

X

t is odd,

S

Y

t is even

(SI.18)

for 0 § t § T ´ 1, i.e. obtained from Eq. (SI.3) by swapping S

X

and S

Y

. Similarly, behavioral strategies

for players X and Y , respectively, are defined as maps,

�

X

:
ß

T•0

H2T`1 ›Ñ � pS
X

q ; (SI.19a)

�

Y

:
ß

T•0

H2T ›Ñ � pS
Y

q , (SI.19b)
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where, again, H0 :“ t?u denotes the “empty” history. In this case, we define

� : H :“
ß

T•0

HT ›Ñ � pS
X

q \ � pS
Y

q

: hT fi›Ñ

$
’’&

’’%

�

X

“
h

T

‰
T is odd,

�

Y

“
h

T

‰
T is even.

(SI.20)

In terms of �, the measures tµ
t

u
t•0 and

 
⌫

k

t

(0§k§t

t•0
are defined in the same way as they were in §SI.1.1.

In a p2T ` 1q-round game (rounds 0 through 2T ), the expected payo↵ to player X is

⇡

2T`1
X

:“
ª

h

2T`1PH2T`1

«ˆ
1 ´ �

1 ´ �

2T

˙ ˜
g

X

`
h

2T`1
0

˘
`

T´1ÿ

t“0

�

2t`1
u

X

`
h

2T`1
2t`1 , h

2T`1
2t`2

˘
¸�

d�

`
h

2T`1
§2T´1, h

2T`1
2T

˘
¨ ¨ ¨ d�

`
h

2T`1
§0 , h

2T`1
1

˘
d�

`
?, h

2T`1
0

˘

“
ˆ

1 ´ �

1 ´ �

2T

˙ ª

h

2T`1PH2T`1

g

X

`
h

2T`1
0

˘
d�

`
h

2T`1
§2T´1, h

2T`1
2T

˘
¨ ¨ ¨ d�

`
h

2T`1
§0 , h

2T`1
1

˘
d�

`
?, h

2T`1
0

˘

`
ˆ

1 ´ �

1 ´ �

2T

˙
T´1ÿ

t“0

�

2t`1

ª

h

2T`1PH2T`1

u

X

`
h

2T`1
2t`1 , h

2T`1
2t`2

˘

d�

`
h

2T`1
§2T´1, h

2T`1
2T

˘
¨ ¨ ¨ d�

`
h

2T`1
§0 , h

2T`1
1

˘
d�

`
?, h

2T`1
0

˘

“
ˆ

1 ´ �

1 ´ �

2T

˙ ª

h

1PH1

g

X

`
h

1
0

˘
d�

`
?, h

1
0

˘

`
ˆ

1 ´ �

1 ´ �

2T

˙
T´1ÿ

t“0

�

2t`1

ª

ph2t`3
2t`1,h

2t`3
2t`2qPH2t`3

2t`1ˆH
2t`3
2t`2

u

X

`
h

2t`3
2t`1, h

2t`3
2t`2

˘
d⌫

1
2t`2

`
h

2t`3
2t`1, h

2t`3
2t`2

˘

“
ˆ

1 ´ �

1 ´ �

2T

˙ ª

y0PSY

g

X

py0q d�

0
Y

py0q

`
ˆ

1 ´ �

1 ´ �

2T

˙
T´1ÿ

t“0

�

2t`1

ª

px,yqPSXˆSY

u

X

px, yq d⌫

1
2t`2 px, yq , (SI.21)

where �

0
Y

:“ �

Y

r?s is the initial action of player Y . Thus, we define player X’s average payo↵ as

⇡

X

:“ lim
TÑ8

⇡

2T`1
X

“ p1 ´ �q

»

—–
ª

y0PSY

g

X

py0q d�

0
Y

py0q `
8ÿ

t“0

�

2t`1

ª

px,yqPSXˆSY

u

X

px, yq d⌫

1
2t`2 px, yq

fi

�fl . (SI.22)

6



Similarly, the expected payo↵ to player Y is

⇡

Y

:“ p1 ´ �q

»

—–
ª

y0PSY

g

Y

py0q d�

0
Y

py0q `
8ÿ

t“0

�

2t`1

ª

px,yqPSXˆSY

u

Y

px, yq d⌫

1
2t`2 px, yq

fi

�fl . (SI.23)

Once again, our main technical lemma is an analogue of Lemma 3.1 of Akin [1]:

Lemma 2. For any memory-one strategy, �
X

rx, ys, and any E P F pS
X

q,
8ÿ

t“0

�

2t`1

ª

px,yqPSXˆSY

”
�

EˆSY px, yq ´ �

2
�

X

rx, ys pEq
ı
d⌫

1
2t`2 px, yq “ �

ª

y0PSY

�

X

ry0s pEq d�

0
Y

py0q , (SI.24)

where �0
X

ry0s is the initial action of player X.

Proof. By the definition of
 
⌫

k

t

(0§k§t

t•0
, we see that

ª

px,yqPSXˆSY

�

EˆSY px, yq d⌫

1
2t`2 px, yq “ ⌫

0
2t`1 pEq ; (SI.25a)

ª

px,yqPSXˆSY

�

X

rx, ys pEq d⌫

1
2t`2 px, yq “ ⌫

0
2t`3 pEq . (SI.25b)

Therefore, it follows that

8ÿ

t“0

�

2t`1

ª

px,yqPSXˆSY

”
�

EˆSY px, yq ´ �

2
�

X

rx, ys pEq
ı
d⌫

1
2t`2 px, yq

“
8ÿ

t“0

�

2t`1
´
⌫

0
2t`1 pEq ´ �

2
⌫

0
2t`3 pEq

¯

“ �⌫

0
1 pEq ´ lim

tÑ8
�

2t`3
⌫

0
2t`3 pEq

“ �⌫

0
1 pEq

“ �

ª

y0PSY

�

X

ry0s pEq d�

0
Y

py0q , (SI.26)

which completes the proof. ⇤

Proposition 2. For any bounded, measurable function,  : S
X

Ñ R,

8ÿ

t“0

�

2t`1

ª

px,yqPSXˆSY

»

–
 pxq ´ �

2

ª

sPSX

 psq d�

X

rx, ys psq
fi

fl
d⌫

1
2t`2 px, yq

“ �

ª

y0PSY

ª

sPSX

 psq d�

0
X

ry0s psq d�

0
Y

py0q . (SI.27)
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Proof. The result follows from Lemma 2 and the dominated convergence theorem. We do not include the

details here; the argument is the same as the proof of Proposition 1 of [5]. ⇤

We are now in a position to prove the second of our main results for strictly-alternating games:

Theorem 2 (Autocratic strategies for strictly-alternating games in which Y moves first). Suppose that

´
↵f

X

pxq ` �f

Y

pxq ` �

¯
` �

´
↵g

X

pyq ` �g

Y

pyq ` �

¯
`

ˆ
1 ´ �

2

�

˙ ´
↵g

X

py0q ` �g

Y

py0q ` �

¯

“  pxq ´ �

2

ª

sPSX

 psq d�

X

rx, ys psq ´
`
1 ´ �

2
˘ ª

sPSX

 psq d�

0
X

ry0s psq (SI.28)

holds for some bounded  and for each x P S

X

and y0, y P S

Y

. Then, if player X moves second, the pair
`
�

0
X

ry0s ,�
X

rx, ys
˘
allows X to enforce the equation ↵⇡

X

` �⇡

Y

` � “ 0 for every strategy of player Y .

Proof. If Eq. (SI.28) holds, then, for any initial action of player Y , �0
Y

, we have

´
↵f

X

pxq ` �f

Y

pxq ` �

¯
` �

´
↵g

X

pyq ` �g

Y

pyq ` �

¯

`
ˆ
1 ´ �

2

�

˙ ª

y0PSY

”
↵g

X

py0q ` �g

Y

py0q ` �

ı
d�

0
Y

py0q

“  pxq ´ �

2

ª

sPSX

 psq d�

X

rx, ys psq ´
`
1 ´ �

2
˘ ª

y0PSY

ª

sPSX

 psq d�

0
X

ry0s psq d�

0
Y

py0q . (SI.29)

Therefore, by Proposition 2 and Eqs. (SI.22) and (SI.23), we see that, for each �0
Y

,

↵⇡

X

`�⇡
Y

` � ` p1 ´ �q�
ª

y0PSY

ª

sPSX

 psq d�

0
X

ry0s psq d�

0
Y

py0q

´ p1 ´ �q
ª

y0PSY

”
↵g

X

py0q ` �g

Y

py0q ` �

ı
d�

0
Y

py0q

“ p1 ´ �q
8ÿ

t“0

�

2t`1

ª

px,yqPSXˆSY

»

–
 pxq ´ �

2

ª

sPSX

 psq d�

X

rx, ys psq
fi

fl
d⌫

1
2t`2 px, yq

´ p1 ´ �q
8ÿ

t“0

�

2t`1

¨

˝
ˆ
1 ´ �

2

�

˙ ª

y0PSY

”
↵g

X

py0q ` �g

Y

py0q ` �

ı
d�

0
Y

py0q
˛

‚

“ p1 ´ �q�
ª

y0PSY

ª

sPSX

 psq d�

0
X

ry0s psq d�

0
Y

py0q

´ p1 ´ �q
ª

y0PSY

”
↵g

X

py0q ` �g

Y

py0q ` �

ı
d�

0
Y

py0q , (SI.30)

and it follows immediately that ↵⇡
X

` �⇡

Y

` � “ 0. ⇤
8



SI.2. Randomly-alternating games

In each round of a randomly-alternating game, player X moves with probability !

X

and player Y moves

with probability 1 ´ !

X

for some 0 § !

X

§ 1. For T • 1, a time-T history is an element of the space

HT :“ pS
X

\ S

Y

qT , (SI.31)

where S

X

\ S

Y

denotes the disjoint union of the action spaces of the players, S
X

and S

Y

. As in §SI.1,

we let H0 :“ t?u, where ? indicates the “empty history.” In terms of the space of all possible histories,

H :“ t?u \ ó
T•1 H

T , behavioral strategies for players X and Y , respectively, are maps,

�

X

: H ›Ñ � pS
X

q ; (SI.32a)

�

Y

: H ›Ñ � pS
Y

q . (SI.32b)

These strategies may be written more compactly as a single map, � : H Ñ � pS
X

\ S

Y

q, defined for hT P HT

and E P F pS
X

\ S

Y

q via �

“
h

T

‰
pEq :“ !

X

�

X

“
h

T

‰
pE X S

X

q ` p1 ´ !

X

q�
Y

“
h

T

‰
pE X S

Y

q. Furthermore, if

HT

t

:“ S

X

\ S

Y

for 0 § t § T ´ 1, then these two strategies, �
X

and �

Y

, together generate a sequence of

probability measures,
 
⌫

0
t

(
t•0

, on Ht`1
t

“ S

X

\ S

Y

for each t, defined via Eqs. (SI.6) and (SI.7).

Consider the single-round payo↵ function for player X, u
X

: S
X

\ S

Y

Ñ R, defined by

u

X

psq :“

$
’’&

’’%

f

X

psq s P S

X

,

g

X

psq s P S

Y

.

(SI.33)
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The single-round payo↵ function for player Y , u
Y

, is defined by replacing f

X

by f

Y

and g

X

by g

Y

in Eq.

(SI.33). In a pT ` 1q-round game (rounds 0 through T ), the expected payo↵ to player X is then

⇡

T`1
X

:“
ª

h

T`1PHT`1

«ˆ
1 ´ �

1 ´ �

T`1

˙
Tÿ

t“0

�

t

u

X

`
h

T`1
t

˘
�
d�

`
h

T`1
§T´1, h

T`1
T

˘
¨ ¨ ¨ d�

`
h

T`1
§0 , h

T`1
1

˘
d�

`
?, h

T`1
0

˘

“
ˆ

1 ´ �

1 ´ �

T`1

˙
Tÿ

t“0

�

t

ª

h

T`1PHT`1

u

X

`
h

T`1
t

˘
d�

`
h

T`1
§T´1, h

T`1
T

˘
¨ ¨ ¨ d�

`
h

T`1
§0 , h

T`1
1

˘
d�

`
?, h

T`1
0

˘

“
ˆ

1 ´ �

1 ´ �

T`1

˙
Tÿ

t“0

�

t

ª

h

t`1PHt`1

u

X

`
h

t`1
t

˘
d�

`
h

t`1
§t´1, h

t`1
t

˘
¨ ¨ ¨ d�

`
h

t`1
§0 , h

t`1
1

˘
d�

`
?, h

t`1
0

˘

“
ˆ

1 ´ �

1 ´ �

T`1

˙
Tÿ

t“0

�

t

ª

h

t`1
t PHt`1

t

u

X

`
h

t`1
t

˘
d⌫

0
t

`
h

t`1
t

˘

“
ˆ

1 ´ �

1 ´ �

T`1

˙
Tÿ

t“0

�

t

ª

sPSX\SY

u

X

psq d⌫

0
t

psq . (SI.34)

Therefore, we define the average payo↵ of player X to be

⇡

X

:“ lim
TÑ8

⇡

T`1
X

“ p1 ´ �q
8ÿ

t“0

�

t

ª

sPSX\SY

u

X

psq d⌫

0
t

psq . (SI.35)

Similarly, the expected payo↵ of player Y is

⇡

Y

:“ p1 ´ �q
8ÿ

t“0

�

t

ª

sPSX\SY

u

Y

psq d⌫

0
t

psq . (SI.36)

A memory-one strategy in the context of randomly-alternating games looks slightly di↵erent from that of

strictly-alternating games. Instead of simply reacting to the previous moves of the players, one also needs

to know which player moved last since, in any given round, either X or Y could move (provided !

X

‰ 0, 1).

Therefore, a memory-one strategy for player X consists of an action policy, �X

X

rxs, when X moves x in the

previous round, and a policy, �Y

X

rys, when Y moves y in the previous round. More succinctly, we let

�

X

rss :“

$
’’&

’’%

�

X

X

rss s P S

X

,

�

Y

X

rss s P S

Y

.

(SI.37)

One final time, our main technical lemma is an analogue of Lemma 3.1 of Akin [1]:
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Lemma 3. For memory-one strategies, �X

X

rxs and �Y

X

rys, and E P F pS
X

q, we have

8ÿ

t“0

�

t

ª

sPSX\SY

”
�

E

psq ´ �!

X

�

X

rss pEq
ı
d⌫

0
t

psq “ !

X

�

0
X

pEq , (SI.38)

where �
X

rss is defined via Eq. (SI.37).

Proof. By the definition of the sequence of measures,
 
⌫

0
t

(
t•0

,

ª

sPSX\SY

�

E

psq d⌫

0
t

psq “ ⌫

0
t

pEq ; (SI.39a)

ª

sPSX\SY

!

X

�

X

rss pEq d⌫

0
t

psq “ ⌫

0
t`1 pEq . (SI.39b)

Therefore, we see that

8ÿ

t“0

�

t

ª

sPSX\SY

”
�

E

psq ´ �!

X

�

X

rss pEq
ı
d⌫

0
t

psq

“
8ÿ

t“0

�

t

´
⌫

0
t

pEq ´ �⌫

0
t`1 pEq

¯

“ ⌫

0
0 pEq ´ lim

tÑ8
�

t`1
⌫

0
t`1 pEq

“ ⌫

0
0 pEq

“ !

X

�

0
X

pEq , (SI.40)

which completes the proof. ⇤

Proposition 3. For any bounded, measurable function,  : S
X

\ S

Y

Ñ R, with supp Ñ S

X

,

8ÿ

t“0

�

t

ª

sPSX\SY

»

–
 psq ´ �!

X

ª

s

1PSX

 

`
s

1˘
�

X

rss
`
s

1˘
fi

fl
d⌫

0
t

psq “ !

X

ª

sPSX

 psq d�

0
X

psq . (SI.41)

Proof. The result follows from Lemma 3 and the dominated convergence theorem. We do not include the

details here; the argument is the same as the proof of Proposition 1 of [5]. ⇤

Proposition 3 allows us to prove our main result for randomly-alternating games:
11



Theorem 3 (Autocratic strategies for randomly-alternating games). If, for some bounded  ,

↵f

X

pxq ` �f

Y

pxq ` � “  pxq ´ �!

X

ª

sPSX

 psq d�

X

X

rxs psq ´ p1 ´ �q!
X

ª

sPSX

 psq d�

0
X

psq ; (SI.42a)

↵g

X

pyq ` �g

Y

pyq ` � “ ´�!
X

ª

sPSX

 psq �Y

X

rys psq ´ p1 ´ �q!
X

ª

sPSX

 psq d�

0
X

psq (SI.42b)

for each x P S

X

and y P S

Y

, then the strategy
`
�

0
X

,�

X

X

rxs ,�Y

X

rys
˘
allows X to enforce the equation

↵⇡

X

` �⇡

Y

` � “ 0 for every strategy of player Y .

Proof. If Eq. (SI.42) holds, then, by Proposition 3 and Eqs. (SI.35) and (SI.36),

↵⇡

X

`�⇡
Y

` � ` p1 ´ �q!
X

ª

sPSX

 psq d�

0
X

psq

“ p1 ´ �q
8ÿ

t“0

�

t

ª

sPSX\SY

»

–
 psq ´ �!

X

ª

s

1PSX

 

`
s

1˘
�

X

rss
`
s

1˘
fi

fl
d⌫

0
t

psq

“ p1 ´ �q!
X

ª

sPSX

 psq d�

0
X

psq , (SI.43)

from which it follows that ↵⇡
X

` �⇡

Y

` � “ 0, as desired. ⇤

SI.2.1. Two-point autocratic strategies. Suppose that X wishes to enforce ↵⇡
X

` �⇡

Y

` � “ 0 with

�

0
X

“ p0�s1 ` p1 ´ p0q �
s2 ; (SI.44a)

�

X

X

rxs “ p

X pxq �
s1 `

´
1 ´ p

X pxq
¯
�

s2 ; (SI.44b)

�

Y

X

rys “ p

Y pyq �
s1 `

´
1 ´ p

Y pyq
¯
�

s2 (SI.44c)

for some s1 and s2 in S

X

. Consider the function, ' : S
X

\ S

Y

Ñ R, defined by

' psq :“

$
’’&

’’%

↵f

X

psq ` �f

Y

psq ` � s P S

X

;

↵g

X

psq ` �g

Y

psq ` � s P S

Y

.

(SI.45)

Then, in terms of ', it must be the case that

p

X pxq “
1

�!X

´
 pxq ´ ' pxq ´ p1 ´ �q!

X

´
 ps1q p0 `  ps2q p1 ´ p0q

¯¯
´  ps2q

 ps1q ´  ps2q ; (SI.46a)

p

Y pyq “
1

�!X

´
´' pyq ´ p1 ´ �q!

X

´
 ps1q p0 `  ps2q p1 ´ p0q

¯¯
´  ps2q

 ps1q ´  ps2q . (SI.46b)
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Therefore, provided 0 § p

X pxq § 1 and 0 § p

Y pyq § 1 for each x P S

X

and y P S

Y

, the two-point strategy

defined by Eq. (SI.44) allows player X to unilaterally enforce the relationship ↵⇡
X

` �⇡

Y

` � “ 0.

SI.2.2. Deterministic autocratic strategies. Suppose that X wishes to enforce ↵⇡
X

` �⇡

Y

` � “ 0 by

using a deterministic strategy, which is defined in terms of a reaction function to the previous move of the

game. That is, a deterministic memory-one strategy for player X consists of an initial action, x0 P S

X

, and

two reaction functions, rX : S
X

Ñ S

X

and r

Y : S
Y

Ñ S

X

. Player X begins by using x0 with certainty. If

X uses x in the previous round and X moves again, then X plays rX pxq in the subsequent round. On the

other hand, if Y moves y in the previous round and X follows this move, then X plays rY pyq in response to

Y ’s action. For a deterministic strategy with these reaction functions, Eq. (SI.42) takes the form

↵f

X

pxq ` �f

Y

pxq ` � “  pxq ´ �!

X

 

`
r

X pxq
˘

´ p1 ´ �q!
X

 px0q ; (SI.47a)

↵g

X

pyq ` �g

Y

pyq ` � “ ´�!
X

 

`
r

Y pyq
˘

´ p1 ´ �q!
X

 px0q . (SI.47b)

SI.3. Continuous Donation Game

The results we give for the continuous Donation Game hold for any benefit and cost functions, b psq and

c psq, and any interval of cooperation levels, r0,Ks “ S

X

“ S

Y

. For the purposes of plotting feasible regions

(Figs. 3 and SI.1) and for performing simulations (Figs. 4 and 5), we use for benefit and cost functions

b psq :“ 5
`
1 ´ e

´2s
˘
; (SI.48a)

c psq :“ 2s, (SI.48b)

respectively, and these functions are defined on the interval r0, 2s “ S

X

“ S

Y

[see 3, 4].

SI.3.1. Strictly-alternating moves. Fig. SI.1 shows the feasible payo↵ regions for three values of � in

the strictly-alternating game when X or Y moves first. Note that these regions depend on the discounting

factor, �, due to the payo↵ asymmetries introduced by the sequential moves even for symmetric interactions.

In contrast, in the randomly-alternating, continuous Donation Game, these regions do not depend on �.

SI.3.1.1. Initial actions. In the main text, we presented two-point autocratic strategies that are concentrated

on just 0 and K. Here, we give the technical requirements of the probability of initially cooperating, p0.

Player X can unilaterally enforce ⇡
X

´ 

X

“ � p⇡
Y

´ 

Y

q using the reaction probability

p pyq “ � pb pyq ` �c pyqq ` p1 ` �q p�
Y

´ 

X

q
�

2 p�b pKq ` c pKqq ´ 1 ´ �

2

�

2
p0, (SI.49)
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(A): 6=0.9,  X moves first
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(B): 6=0.7,  X moves first
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(C): 6=0.5,  X moves first
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(D): 6=0.9,  Y moves first
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(E): 6=0.7,  Y moves first
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(F): 6=0.5,  Y moves first

:Y
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Figure SI.1. Feasible payo↵ regions for three values of � in the strictly-alternating, con-
tinuous Donation Game when player X moves first (top) and player Y moves first (bottom).
The shaded region represents the feasible payo↵s when X plays a two-point strategy (only
0 and K). As the discounting factor, �, gets smaller (i.e. discounting stronger), the first
move has more of a pronounced e↵ect on the expected payo↵s.

provided her probability of cooperating in the first round, p0, satisfies

max

"
� pb pKq`�c pKqq ` p1 ` �qp�

Y

´

X

q
p1 ´ �

2qp� b pKq ` c pKqq ´ �

2

1 ´ �

2
, 0

*
§ p0 § min

"
�

Y

´ 

X

p1 ´ �qp� b pKq` c pKqq , 1
*
.

(SI.50)

Similarly, player X can enforce ⇡

Y

“ � using the reaction probability

p pyq “ �c pyq ` p1 ` �q �
�

2
b pKq ´ 1 ´ �

2

�

2
p0, (SI.51)

provided p0 satisfies

max

"
�c pKq ` p1 ` �q �

p1 ´ �

2q b pKq ´ �

2

1 ´ �

2
, 0

*
§ p0 § min

"
�

p1 ´ �q b pKq , 1
*
. (SI.52)
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SI.3.2. Randomly-alternating moves.

SI.3.2.1. Extortionate and generous strategies. Suppose that, via Eq. (SI.42), X can enforce ⇡
X

“ �⇡

Y

´ �

for some � • 1 and � P R. Then, for some bounded function,  : r0,Ks Ñ R,

´c pxq ´ �b pxq ` � “  pxq ´ �!

X

ª

sPSX

 psq d�

X

X

rxs psq ´ p1 ´ �q!
X

ª

sPSX

 psq d�

0
X

psq ; (SI.53a)

b pyq ` �c pyq ` � “ ´�!
X

ª

sPSX

 psq �Y

X

rys psq ´ p1 ´ �q!
X

ª

sPSX

 psq d�

0
X

psq (SI.53b)

for each x, y P r0,Ks “ S

X

“ S

Y

. Eq. (SI.53a) implies that

p1 ´ !

X

q sup § � § �b pKq ` c pKq ` p1 ´ !

X

q inf  , (SI.54)

and Eq. (SI.53b) implies that

´!
X

sup § � § ´b pKq ´ �c pKq ´ !

X

inf  . (SI.55)

It follows at once from these inequalities that

0 § � § �

´
!

X

b pKq ´ p1 ´ !

X

q c pKq
¯

´
´

p1 ´ !

X

q b pKq ´ !

X

c pKq
¯
. (SI.56)

In particular, if � “ �

Y

´ 

X

, then it must be true that



X

“ 

X

`
`
�

00
Y

´ 

00
X

˘
§ �

Y

§ 

X

`
`
�

KK

Y

´ 

KK

X

˘
, (SI.57)

which is simply Eq. (13) in the main text.

SI.3.2.2. Equalizer strategies – own score. Player X can ensure that ⇡
X

“ � if �
X

satisfies

´c pxq ´ � “  pxq ´ �!

X

ª

sPSX

 psq d�

X

X

rxs psq ´ p1 ´ �q!
X

ª

sPSX

 psq d�

0
X

psq ; (SI.58a)

b pyq ´ � “ ´�!
X

ª

sPSX

 psq �Y

X

rys psq ´ p1 ´ �q!
X

ª

sPSX

 psq d�

0
X

psq (SI.58b)

for some bounded function,  , and each x, y P r0,Ks. Eq. (SI.58a) implies that

� § ´ p1 ´ !

X

q sup (SI.59)
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and Eq. (SI.58b) implies that

� § !

X

sup , (SI.60)

thus � § 0. Therefore, player X can unilaterally set her own score to at most 0. However, it should be noted

that, in contrast to the continuous Donation Game with simultaneous moves, it is possible for a player to set

her own score (to at most 0) when moves alternate randomly. For example, if � “ 0 and  psq “ ´ 1
�!X

b psq,
then player X can unilaterally set ⇡

X

“ 0 using

�

0
X

“ �0; (SI.61a)

�

X

X

rxs “
´
1 ´ p

X pxq
¯
�0 ` p

X pxq �
K

; (SI.61b)

�

Y

X

rys “ �

y

, (SI.61c)

where p

X pxq “ 1
bpKq

´
1

�!X
b pxq ´ c pxq

¯
, provided �!

X

is su�ciently close to 1. Interestingly, however, if

players move with equal probability, !
X

“ 1{2, then player X can never set her own score: Eq. (SI.58)

implies that �!
X

• bpKq
bpKq`cpKq ° 1{2, which can never hold for !

X

“ 1{2 and 0 § � § 1. Even when a player

can set her own score in the continuous Donation Game, this score can be at most 0; thus, since a player

can achieve at least 0 by defecting in every round, such an equalizer strategy would never be attractive.

SI.3.2.3. Equalizer strategies – opponent’s score. We saw in §4.4 that player X can set ⇡
Y

“ � for any

0 § � § !

X

b pKq ´ p1 ´ !

X

q c pKq. Here, we show that, using Eq. (8), there are no other payo↵s for player

Y that X can set unilaterally. Indeed, suppose

b pxq ´ � “  pxq ´ �!

X

ª

sPSX

 psq d�

X

X

rxs psq ´ p1 ´ �q!
X

ª

sPSX

 psq d�

0
X

psq ; (SI.62a)

´c pyq ´ � “ ´�!
X

ª

sPSX

 psq �Y

X

rys psq ´ p1 ´ �q!
X

ª

sPSX

 psq d�

0
X

psq (SI.62b)

for some bounded function,  , and each x, y P r0,Ks. From Eq. (SI.62a), we see that

´ p1 ´ !

X

q inf  § � § b pKq ´ p1 ´ !

X

q sup . (SI.63)

Similarly, Eq. (SI.62b) implies that

!

X

inf  § � § ´c pKq ` !

X

sup . (SI.64)
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These inequalities immediately give 0 § � § min
!
b pKq ´ p1 ´ !

X

q sup ,´c pKq ` !

X

sup 
)
. Since

b pKq ´ p1 ´ !

X

q sup § ´c pKq ` !

X

sup ñ b pKq ` c pKq § sup , (SI.65)

it follows that 0 § � § !

X

b pKq ´ p1 ´ !

X

q c pKq “ 

KK

Y

.

SI.3.2.4. Initial actions. Here, we give the technical conditions on p0, the probability that X cooperates

in the first round, that must be satisfied for her to be able to enforce various linear payo↵ relationships

(extortionate, generous, and equalizer) using a two-point autocratic strategy.

Using the reaction probabilities defined by

p

X pxq “ b pxq ` �c pxq ` �

Y

´ 

X

�!

X

p�` 1qpb pKq ` c pKqq ´ 1 ´ �

�

p0; (SI.66a)

p

Y pyq “ p

X pyq , (SI.66b)

player X can enforce ⇡
X

´ 

X

“ � p⇡
Y

´ 

Y

q provided p0 satisfies

max

"
b pKq ` �c pKq ` �

Y

´ 

X

p1 ´ �q!
X

p�` 1q pb pKq ` c pKqq ´ �

1 ´ �

, 0

*
§ p0 § min

"
�

Y

´ 

X

p1 ´ �q!
X

p�` 1q pb pKq ` c pKqq , 1

*
.

(SI.67)

Similarly, player X can ensure ⇡
Y

“ � by using the reaction probabilities

p

X pxq “ c pxq ` �

�!

X

pb pKq ` c pKqq ´ 1 ´ �

�

p0; (SI.68a)

p

Y pyq “ p

X pyq (SI.68b)

as long as p0 falls within the range

max

"
c pKq ` �

p1 ´ �q!
X

pb pKq ` c pKqq ´ �

1 ´ �

, 0

*
§ p0 § min

"
�

p1 ´ �q!
X

pb pKq ` c pKqq , 1
*
. (SI.69)
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