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a b s t r a c t

Many mathematical frameworks of evolutionary game dynamics assume that the total population size is
constant and that selection affects only the relative frequency of strategies. Here,we consider evolutionary
game dynamics in an extendedWright–Fisher process with variable population size. In such a scenario, it
is possible that the entire population becomes extinct. Survival of the population may depend on which
strategy prevails in the game dynamics. Studying cooperative dilemmas, it is a natural feature of such a
model that cooperators enable survival, while defectors drive extinction. Although defectors are favored
for any mixed population, random drift could lead to their elimination and the resulting pure-cooperator
population could survive. On the other hand, if the defectors remain, then the population will quickly
go extinct because the frequency of cooperators steadily declines and defectors alone cannot survive.
In a mutation–selection model, we find that (i) a steady supply of cooperators can enable long-term
population survival, provided selection is sufficiently strong, and (ii) selection can increase the abundance
of cooperators but reduce their relative frequency. Thus, evolutionary game dynamics in populationswith
variable size generate a multifaceted notion of what constitutes a trait’s long-term success.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The emergence of cooperation is a prominent research topic in
evolutionary theory. The problem is usually formulated in such
a way that it pays to exploit cooperators, yet the payoff to one
cooperator against another is greater than the payoff to one de-
fector against another (Axelrod and Hamilton, 1981). In spite of
this conflict of interest, cooperation is broadly observed in nature,
and various mechanisms have been put forth to explain its evo-
lution (Nowak, 2006a). In fact, the question of how cooperators
may proliferate in social situations is one of the main concerns of
evolutionary game theory, a framework that models cooperation
and defection as strategies of a game.

Evolutionary game-theoretic models typically involve a num-
ber of assumptions. In this study, we are concerned with two
potentially restrictive ones: (i) the population size is infinite or
(ii) the population size is finite but fixed and unaffected by evo-
lution. While the classical replicator equation (Taylor and Jonker,
1978; Hofbauer et al., 1979; Hofbauer and Sigmund, 1998) can be
used tomodel large populations that fluctuate in size (Hauert et al.,
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2006), replicator dynamics capture only the relative frequencies of
the strategies. Even stochastic models that account for populations
of any finite size, such as the Moran model or the Wright–Fisher
model and their game-theoretic extensions, usually require the
number of players to remain fixed over time (Moran, 1958; Nowak
et al., 2004; Taylor et al., 2004; Lieberman et al., 2005; Ohtsuki et
al., 2006; Taylor et al., 2007; Szabó and Fáth, 2007; Tarnita et al.,
2009a; Nowak et al., 2009; Hauert and Imhof, 2012; Débarre et al.,
2014). Here, we explore the evolutionary dynamics of cooperation
in social dilemmas when the population can fluctuate in size and
even go extinct.

Branching processes have a rich history in theoretical biol-
ogy [see Kimmel and Axelrod, 2015] and are a natural way to
model populations that vary in size. A number of recent works
have considered non-constant population sizewithin evolutionary
game theory. Hauert et al. (2006) treat ecological dynamics in evo-
lutionary games by modifying the replicator equation to account
for population density and show that fluctuating density can lead
to coexistence between cooperators and defectors. Melbinger et
al. (2010) illustrate how the decoupling of stochastic birth and
death events can lead to transient increases in cooperation. By
allowing a game to influence carrying capacities, Novak et al.
(2013) demonstrate that variable density regulations can change
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the stability of equilibria relative to the replicator equation. Fur-
thermore, demographic fluctuations can act as a mechanism to
promote cooperation in public goods games (Constable et al., 2016)
and indefinite coexistence (as opposed to fixation) in coexistence
games (Ashcroft et al., 2017). Fluctuating size in a Lotka–Volterra
model also leads to different growth rates for isolated popula-
tions of cooperators and defectors (Huang et al., 2015), and even
when the two competing types are neutral at the equilibrium
size, fluctuations can still give one type a selective advantage
over the other (Chotibut and Nelson, 2017). When traits have the
same growth rate, these fluctuations also affect a mutant’s fixation
probability (Czuppon and Traulsen).

Here, we develop a branching-process model based on the
Wright–Fisher process (Fisher, 1930; Wright, 1931) for a popu-
lation with non-overlapping generations in which trait values of
offspring are sampled from the previous generation depending
on the success of individuals (parents) in a sequence of interac-
tions (Ewens, 2004; Imhof and Nowak, 2006). Success is quanti-
fied in terms of payoffs, which come from a game and represent
competition between the different types, or strategies. Usually,
the Wright–Fisher process is defined such that every subsequent
generation has exactly the same size as the first generation. We
consider a variant of this model for populations that fluctuate in
size, in which each individual has a Poisson-distributed number of
surviving offspring, with an expected value determined by payoffs
from interactions in a game.

Recently, Houchmandzadeh (2015) considered a model similar
to the one we study here, but under the assumption that the
population size in the next generation, N(x), is a deterministic
function of the fraction of cooperators in the present generation,
x. The update rule then has essentially two stages: (i) determine
the population size of the next generation, N(x), and (ii) sample
N(x) offspring from the previous generation using the standard
Wright–Fisher rule. In contrast, themodel we treat has a stochastic
population size that does not need to be prespecified. Moreover,
it depends on the numbers of both cooperators and defectors in
the current generation, not just on the fraction of cooperators. As
mentioned above, we also allow for the possibility that the entire
population goes extinct.

We use the public goods game to study the evolution of co-
operation in an unstructured population. Cooperators maintain a
shared resource or public good, with a cost, w, to their fecundity.
Defectors neither help maintain the public good nor incur a cost.
The resource is distributed evenly among all individuals in the
population, but its per-capita effect on fecundity can be greater
than the per-capita cost of its production (Sigmund, 2010). A mul-
tiplication factor, R > 1, quantifies this return on the investment
made by cooperators toward production of the good. In thismodel,
everyone is better off when the whole population consists of coop-
erators, but defectors can benefit from cooperationwithout paying
the cost.

We show that when the population size can fluctuate, selection
can be essential for the survival of the population as awhole. In our
model, population growth and decline are influenced by the public
goods game but also by a baseline reproductive capacity, fN , which
is the same for all individuals andwhich primarily acts to constrain
runaway growth. Even when cooperators are less frequent than
defectors in the mutation–selection equilibrium, there can be an
optimal cost of cooperation, w∗, depending on fN , at which (i) the
population does not immediately go extinct, with the numbers
of cooperators and defectors each fluctuating around equilibrium
values, and (ii) the frequency of cooperators is maximized subject
to (i). In other words, cooperation can be favored by selection at a
positive cost of cooperation when there is demographic stochas-
ticity, which marks a departure from the behavior of models with
fixed size.

Furthermore, even when the population would survive due to
the baseline reproductive capacity alone, selection can increase
the number of cooperators while at the same time decreasing
their frequency. In models where the population size is assumed
to be fixed, cooperators are less frequent than defectors if and
only if cooperators are less abundant than defectors. However, this
equivalence breaks down when the population size can fluctuate
because the frequency of a strategy is determined by both its
abundance and the population size. Thus, the evolutionary success
of a strategic type depends on more than just the strategy.

2. Description of the model

We use the term ‘‘reproductive capacity’’ rather than ‘‘fit-
ness’’ [see Doebeli et al., 2017] to refer to the expected number of
offspring of an individual. In a growing population, the average re-
productive capacity is greater than one. In a shrinking population,
it is less than one. In a population of fixed size or a population at
its carrying capacity, the average reproductive capacity is equal to
one. If different individuals in the same population have different
reproductive capacities, some individuals have a selective advan-
tage over others.

2.1. Update rule

We assume that individuals reproduce asexually, so our model
corresponds to a model of haploid genetic transmission. In the
standard Wright–Fisher process, the population has fixed size,
N . Thus, in a game with two strategies, C (‘‘cooperate’’) and D
(‘‘defect’’), the state of the population is determined by number of
cooperators, xC , or by their relative frequency, xC/N . If FC = FC (xC )
and FD = FD(xC ) give the reproductive capacities of cooperators
and defectors, respectively, in the state with xC cooperators, then
the probability of transitioning to the state with yC cooperators
(provided 0 ⩽ yC ⩽ N) is

P(yC | xC ) =

(
N
yC

)(
xCFC

xCFC + (N − xC ) FD

)yC

×

(
(N − xC ) FD

xCFC + (N − xC ) FD

)N−yC
. (1)

In other words, the cooperators in one generation are sampled
from the previous generation according to a binomial distribution
with mean NxCFC/(xCFC + (N − xC )FD). One biological interpre-
tation for this transition rule is the following: Each player in one
generation produces a large number of gametes from which the
surviving offspring in the next generation are selected. These off-
spring are sampled at random, weighted by the success of the par-
ents in competitive interactions, subject to a constant population
size.

In treating populations that fluctuate in size, we drop the as-
sumed dependence that yD = N − yC which is implied above, but
continue to hold that generations are non-overlapping. Let FC =

FC (xC , xD) and FD = FD(xC , xD) give the reproductive capacities of
cooperators and defectors, respectively, when the current genera-
tion is in state (xC , xD). We assume that the number of offspring
per individual follows a Poisson distribution, with parameter FC
for cooperators and parameter FD for defectors. The probability of
transitioning from state (xC , xD) to state (yC , yD) in one generation
is then

P(yC , yD | xC , xD) =

(
(xCFC )yC e−xC FC

yC !

)(
(xDFD)yDe−xDFD

yD!

)
. (2)

Eq. (2) reduces to Eq. (1) when the population size is fixed and
equal to N (see Haccou et al., 2005 and also Appendix A.)

The transition probabilities of Eqs. (1)–(2) do not take into
account errors in strategy transmission, i.e. mutations. In what
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follows, we assume that when an individual reproduces, the off-
spring acquires a random strategy with probability u ⩾ 0. Thus,
with probability 1 − u, the offspring acquires the strategy of the
parent and with probability u, becomes either a cooperator or a
defector (uniformly at random). For simplicity (and by conven-
tion [e.g. see Tarnita et al., 2009b]), we assume symmetric muta-
tion, with C → D as likely as D → C .

Using the binomial distribution with parameter q and den-
sity function bq(n, k) :=

(n
k

)
qk(1 − q)n−k, the mutation rate, u,

is incorporated into the transition rule defined by Eq. (2) as
follows:

Pu(yC , yD | xC , xD) =

yC+yD∑
zC=0

P(zC , yC + yD − zC | xC , xD)

×

min{zC ,yD}∑
k=max{0,zC−yC }

bu/2(zC , k)bu/2 (yC + yD − zC , k + yC − zC ) . (3)

In words, we sum over all transitions defined by Eq. (2) such that,
after mutations are accounted for, there are yC cooperators and
yD defectors. Note that mutations themselves do not affect the
population size.

We refer to the processwith transitions governed by Eqs. (2)–(3)
as a ‘‘Wright–Fisher branching process’’. Branching processes of
this sort have been treated elsewhere [see (Haccou et al., 2005)],
notably with Poisson-distributed offspring counts but frequency-
independent reproductive capacities (Haccou and Iwasa, 1996).
Branching processes have also been considered in models
with both density-dependent (Lambert, 2005) and frequency-
dependent (Wild, 2011; Bao and Wild, 2012) reproductive capaci-
ties. We consider a Wright–Fisher branching process in which the
reproductive capacities of cooperators and defectors in Eqs. (2)–(3)
are equal to a baseline reproductive capacity times a factor which
depends on the outcome of a public goods game.

2.2. Baseline reproductive capacity

The standard Wright–Fisher model, and variants like that in
Houchmandzadeh (2015), assume that population regulation is
very strong or deterministic. This may be a good approximation
for large populations and those close to carrying capacity [but see
(Chotibut andNelson, 2017)]. However, fully stochastic treatments
are warranted for populations that fluctuate in size andmay go ex-
tinct. In theWright–Fisher branching process we consider, popula-
tion regulation is achieved through a balance of players’ payoffs in
an evolutionary game and a baseline reproductive capacity which
represents all other ecological factors. The dynamics depend on the
numbers of cooperators and defectors, not just on their relative
frequencies. The baseline reproductive capacity is a function of
the total population size and is the same for every individual. It
captures the ecological constraints which keep populations from
growing without limit.

Let fN be the per-capita reproductive capacity (again, the ex-
pected number of offspring) applicable to all individuals when the
population size isN .We assume that fN is a non-increasing function
of the population size, N , so that larger populations lead (in gen-
eral) to lower per-capita reproductive capacities due to ecological
constraints. This baseline reproductive capacity is the fluctuating-
size analogue of the ‘‘background fitness’’ that is typically used in
models with fixed population size (Nowak et al., 2009).

While the baseline reproductive capacity does not vary from
player to player, it can depend on the number of players in the
population, N . If there are limited resources and reproduction
slows as the population grows, then fN is a decreasing function of
N . An example we consider is fN = cK + r

(
1 −

N
K

)
for some cK , r ,

andK . In this case, r reflects the growth ratewhen the population is

small, and cK gives the reproductive capacity when the population
has size N = K . To ensure fN is non-negative, we set fN = 0
whenever cK + r

(
1 −

N
K

)
⩽ 0. A second example we consider is

one in which the baseline reproductive capacity is constant up to
a threshold value of N and decreasing thereafter, specifically with
fN = 1 + r if N ⩽ K and fN = (1 + r) K/N if N > K for some r
and K . For both of these functions, fN decays to 0 as N → ∞ (see
Fig. 1).

2.3. Public goods game

Consider a game with two strategies, C (‘‘cooperate’’) and D
(‘‘defect’’), and suppose that a defector does nothing and a cooper-
ator incurs a cost, w, representing a fraction of his or her baseline
reproductive capacity, fN , in order to contribute to the provision
of a public good. The public good is distributed evenly among all N
players in the population (Sigmund, 2010). Finally, amultiplication
factor, R > 1, quantifies the return on investment in this shared
resource (Chen et al., 2012).

The reproductive capacities of cooperators and defectors in
state (xC , xD) are given by

FC (xC , xD) =

(
1 − w + wR

xC
xC + xD

)
fxC+xD; (4a)

FD(xC , xD) =

(
1 + wR

xC
xC + xD

)
fxC+xD . (4b)

When w ≪ 1, the contribution of this game to reproductive
capacity is small. On the other hand, when w = 1, cooperators
expend their entire baseline reproductive capacity contributing to
the public good. Unlike inmany evolutionary games in populations
of fixed size, where w represents selection strength and quantifies
relative differences between traits, here the cost of cooperation
admits an intuitive biological interpretation: cooperators sacrifice
a fraction w of their expected number of offspring in hopes of
seeing a return.

For a neutral population whose dynamics are governed only by
the non-increasing baseline reproductive capacity, fN , if f1 < 1
then the time to extinction will be relatively short. In contrast,
if f1 > 1 the population will have a positive growth rate until
N becomes large enough that fN < 1. Then the population will
reach a stochastic carrying capacity and fluctuate around this size,
possibly for considerable time. (For the two classes of baseline
reproductive capacities we consider here, this carrying capacity
need not be exactly K ; see Appendix A). We will refer to situations
of this sort as ‘‘metastable’’ because all the populationswe consider
would eventually go extinct. According to Eq. (4), payoffs from the
public goods game can increase reproductive capacities, with the
possibility of positive population growth rates even if f1 < 1. Due
to our choice of non-increasing functions for fN (that decay to 0 asN
grows), this will lead to metastable states but never to unbounded
growth of the population.

3. Evolutionary dynamics of the Wright–Fisher branching
process

Let E(xC ,xD) [yC ] and E(xC ,xD) [yD] denote the expected numbers
of cooperators and defectors in the next generation given xC coop-
erators and xD defectors in the current generation. In this section,
we are mainly interested in the existence of metastable equilibria,
which are defined as states,

(
x∗

C , x
∗

D

)
, such that

E(x∗C ,x∗D)
[yC ] = x∗

C ; (5a)

E(x∗C ,x∗D)
[yD] = x∗

D. (5b)

Populations will fluctuate around these states for some time, al-
though extinction is inevitable. The time to extinction depends on
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Fig. 1. Two examples of baseline reproductive capacities, fN . In (A), fN = max
{
0, cK + r

(
1 −

N
K

)}
for cK = 1.1, r = 0.01, and K = 100. This function decreases linearly to 0

and remains at 0 for all sufficiently large N since the reproductive capacity is (by definition) non-negative. This function is called ‘‘rectified’’ linear because of the constraint
that fN ⩾ 0. In (B), fN = (1 + r)min

{
1, K

N

}
for r = −0.001 and K = 5000. The reproductive capacity is held constant and equal to 1 + r whenever 1 ⩽ N ⩽ K . When

the population size is greater than K , the resources contributing to reproductive capacities are no longer abundant and must be divided up among the individuals in the
population, which gives the expression fN = (1 + r) K

N for N ⩾ K . This function is called ‘‘threshold-constant’’ because it is constant up to the threshold population size
N = K . Note that in (A), when the population size is initially small, there is net population growth since f1 > 1. In (B), fN < 1 for every N , so any population evolving
according to this function alone will (on average) shrink in the direction of extinction. This immediate extinction could be prevented by choosing r > 0 instead of r < 0 as
in (B).

the population’s carrying capacity (see below and Appendix C).
Even when the population eventually goes extinct with probabil-
ity 1, it can take extremely long to do so.

We are particularly interested in the case when a population
of defectors cannot survive for long on their own but a popula-
tion of cooperators can. While a population of defectors evolves
according to fN , a population of cooperators evolves according to
the reproductive capacity (1 + w (R − 1)) fN , which can be greater
than 1 evenwhen fN < 1. In polymorphic populations, cooperators
and defectors have reproductive capacities given by FC (xC , xD)
and FD(xC , xD) in Eq. (4), which are functions of xC and xD, but
also depend on the baseline reproductive capacity, fN , the cost of
cooperation, w, and the multiplication factor for the public good,
R. We also consider situations in which a population of defectors
can reach a metastable carrying capacity, i.e. when f1 > 1. In this
case, we are interested in the effects that w and R can have on the
numbers of cooperators and defectors in polymorphic metastable
states.

3.1. Selection dynamics (without mutation)

When the initial numbers of cooperators and defectors are
small, stochastic effects have a profound influence over the long-
run composition of the population. We show in Appendix B that
any non-zero metastable equilibrium must be monomorphic (all-
cooperator or all-defector) for the update rule defined by Eq. (2).
Although defectors generally have larger growth rates than coop-
erators in mixed populations, they can go extinct quickly in small
populations, which, in turn, can permit cooperators to prosper.
For example, suppose that defectors cannot survive on their own
(f1 < 1), which means that any population of defectors shrinks,
on average, from one generation to the next. If any population of
cooperators grows, due to the multiplication factor R > 1, then
the only populations that persist beyond a short time horizon are
those composed entirely of cooperators. Therefore, cooperators
have a type of survivorship bias. Fig. 2 illustrates this phenomenon,

showing that defectors often outcompete cooperators (approxi-
mately 85% of the time) when both are in the population (A),
but once one type goes extinct, the population must consist of
just cooperators in order to survive for any considerable length
of time (B). These simulations are done with the baseline capacity
fN = max

{
0, cK + r

(
1 −

N
K

)}
, where cK = 0.99, r = 0.01, and

K = 100; cost of cooperation w = 0.1; and multiplication factor
R = 2.0.

3.2. Mutation–selection dynamics

A common way to quantify the evolutionary success of cooper-
ators is to introduce strategymutations and study the frequency of
cooperators in the mutation–selection equilibrium (Tarnita et al.,
2009b; Antal et al., 2009a; Tarnita et al., 2011). Mutations indicate
errors in the transmission (either cultural or genetic) of the two
strategies (cooperation and defection) and can be small (Nowak,
2006b; Wu et al., 2011) or large (Traulsen et al., 2009) depending
on their interpretation. The success of cooperation is quantified
by its average frequency in the population over many genera-
tions. In a population of cooperators and defectors under neutral
drift (i.e. without selective differences between the two types),
cooperators are indistinguishable from defectors and are equally
frequent in the mutation–selection equilibrium. If selection brings
the cooperator frequency above 1/2, then selection is said to favor
cooperation. By this metric, selection typically disfavors coopera-
tion in unstructured populations (Tarnita et al., 2009b).

If the population size is static and the update rule is that of
the Wright–Fisher process, Eq. (1), then the baseline reproductive
capacity appearing in Eq. (4), fN , cancels out. Only the relative
fitnesses of cooperators and defectors matters. The dynamics are
then captured in the relative frequencies of cooperators and de-
fectors. Since cooperators are always less frequent than defectors
when the intensity of selection, w, is positive, selection unam-
biguously disfavors cooperators relative to defectors. This result
can be seen in Fig. 3(D)–(F), in which results are shown for three
different values of w. These simulations were generated using a
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Fig. 2. Dynamics of the Wright–Fisher branching process in the absence of mutation. The baseline reproductive capacity is given by fN = max
{
0, cK + r

(
1 −

N
K

)}
, where

cK = 0.99, r = 0.01, and K = 100. The initial population consists of just 5 cooperators and 5 defectors. Approximately 15% (rounded to the nearest percentage) of runs result
in the behavior of panel (B), with defectors going extinct and cooperators reaching their carrying capacity. The remaining runs resemble panel (A), with almost-immediate
extinction of the entire population. Without mutation, any metastable equilibrium is necessarily monomorphic; since defectors cannot survive on their own (f1 < 1), it
follows that only all-cooperator states can be observed as the long-run outcome of these initial conditions. Notably, while defectors go extinct in fewer than 200 generations
in (A), in (B) the population of cooperators thrives even after 109 generations (although it goes extinct, eventually, with probability 1). To demonstrate the initial ascent of
cooperators, we include here only the first 500 generations. Parameters: u = 0, w = 0.1, and R = 2.0.

multiplication factor of R = 2.0 and a mutation rate of u = 0.01.
That selection favors defectors is a standard property of many
social dilemmas in unstructured populations; additional mecha-
nisms (such as spatial structure) must typically be present in order
for cooperators to outperform defectors (Nowak et al., 2009).

When the population size can fluctuate and u is the probability
that a mutation occurs, then the dynamics are governed by Eq. (3).
Here, it is still the case that selection decreases the frequency of
cooperators relative to defectors. On the other hand, the population
can quickly go extinct if selection is not sufficiently strong, which
we illustrate in Fig. 3(A)–(C) with R = 2.0, u = 0.01, and fN =

(1 + r)min
{
1, K

N

}
with r = −0.001 and K = 5000. Thus, co-

operation can be favored in such situations because it protects
against extinction.

One key difference from models with fixed population size is
that, in a branching process, the population either grows unbound-
edly or eventually goes extinct (Jagers and Klebaner, 2012; Hamza
et al., 2015). That is, if the population remains bounded in size, then
the only true stationary state is extinction. Despite this behavior
capturing the long-run dynamics of the process, there can also
exist metastable equilibria in which the process persists prior to
population extinction.We show in Appendix C that the persistence
time grows exponentially inK [see also (Jagers andKlebaner, 2011;
Faure and Schreiber, 2014; Schreiber, 2017)], meaning that if E [τK ]
is the expected number of generations prior to extinction after
starting in the quasi-stationary distribution, then there exists c >
0 (independent of K ) for which E [τK ] ⩾ ecK .

More informally, if
(
x∗

C , x
∗

D

)
is a metastable equilibrium and σ

denotes standard deviation, then

σ(x∗C ,x∗D)
[yC ] /E(x∗C ,x∗D)

[yC ] =
1√
x∗

C

; (6a)

σ(x∗C ,x∗D)
[yD] /E(x∗C ,x∗D)

[yD] =
1√
x∗

D

. (6b)

Therefore, the fluctuations around a metastable equilibrium con-
stitute only small fractions of x∗

C and x∗

D when x∗

C and x∗

D are suffi-
ciently large (see Appendix B for further details). Since x∗

C and x∗

D

grow with K , and since the fluctuations in x∗

C and x∗

D are on the
order of

√
x∗

C and
√
x∗

D, respectively, the expected amount of time
until deviations from themean destroy the population, i.e. deviates
so far as to hit (xC , xD) = (0, 0), grows rapidly in K . Fig. 4 shows
the quasi-stationary distributions of xC and xD that result from
fluctuations around metastable equilibria, such as those shown in
Fig. 3(C).

The dynamics of this public goods game result from the balance
among three factors: mutation, selection, and population survival.
Although long-term population survival can be achieved by in-
creasing the cost of cooperation, w, it can also be destroyed by
decreasing the mutation rate, u. In Appendix B, we show that for
any N ⩾ 1 and any non-zero mutation rate and cost of coop-
eration, there exists a critical multiplication factor, R∗

N , such that
the population is supported at a metastable equilibrium consisting
of at least N players whenever R > R∗

N . In general, the harmful
effect (population extinction) of either low costs of cooperation or
low mutation rates can be mitigated by increasing the return on
investment in the public good.

Selection can also increase cooperator abundance while de-
creasing their relative frequency (Fig. 5). This phenomenon is
a consequence of the fact that the presence of cooperators can
change the carrying capacity of population. That abundance and
frequency can move in opposite directions is unique to models
with variable population size and presents an interesting question
about the definition of cooperator success.We show in Appendix B
that the fraction of cooperators present in ametastable equilibrium
is independent of fN and depends on just u,w, and R. Thus, when u,
w, and R are fixed, defectors claim a fixed fraction (at least 1/2) of
the total population, which means that cooperators are disfavored
relative to defectors. However, based on population growth alone,
cooperators could be considered to be favored by selection in an
absolute sense because their abundance is an increasing function
of the cost of cooperation, w.

4. Discussion

Public goods games have been used to model conflicts of inter-
est ranging from cooperation in microorganisms (Craig MacLean
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Fig. 3. Mutation–selection dynamics for theWright–Fisher branching process (panels (A)–(C)) and theWright–Fisher process with constant population size (panels (D)–(F)).
The baseline reproductive capacity is fN = (1 + r)min

{
1, K

N

}
, where r = −0.001 and K = 5000, although this is relevant only for (A)–(C) since the population size is held

fixed in (D)–(F). In all panels, the population initially consists of 2500 cooperators and 2500 defectors, the strategy mutation rate is u = 0.01, and the multiplication factor
for the public goods game is R = 2.0. In the top row, the population size can fluctuate over time; in the bottom row, it is held constant at 5000 players. In (A) and (D), there
are no selective differences between cooperators and defectors (w = 0). In (B) and (E), a cooperator sacrifices a small fraction, w = 0.002, of his or her baseline reproductive
capacity in order to provide the community with a benefit. In (C) and (F), cooperators sacrifice a larger portion, w = 0.01, of their reproductive capacity when provisioning
a public good. While the population is artificially prevented from going extinct in (D)–(F), it can go extinct in (A)–(C) and does so quickly when the cost of cooperation is too
small (panels (A) and (B)) since f1 < 1. Although increasing the cost of cooperation tends to decrease the frequency of cooperators relative to defectors, a sufficient amount
of selection is necessary for the survival of the population as a whole. Therefore, there is an optimal cost of cooperation, w∗ , falling between 0.002 and 0.01, that maximizes
the frequency of cooperators subject to survival of the population.

and Brandon, 2008; Czárán and Hoekstra, 2009; Cordero et al.,
2012; Sanchez and Gore, 2013; Allen et al., 2013), to alarm calls
in monkeys (Seyfarth et al., 1980; Clutton-Brock, 2016), sentinel
behavior in meerkats (Clutton-Brock et al., 1999), and large-scale
human efforts aimed at combating climate change (Milinski et al.,
2006; Jacquet et al., 2013) and pollution (Ehmke and Shogren,
2008). Due to its linearity and close relationship to the prisoner’s
dilemma, the public goods game we consider is sometimes called
the ‘‘N-person prisoner’s dilemma’’ (Archetti and Scheuring, 2012).
Provided 1 ⩽ R ⩽ N , this game presents a conflict of interest
between the group and the individual that can be reduced to a
sequence of N − 1 prisoner’s dilemma interactions (Hauert and
Szabó, 2003). However, the analysis and interpretation of a single
public goods game is somewhat more straightforward than that of
a series of prisoner’s dilemma interactions when the population
size fluctuates over time.

In populations of fixed size, extinction is impossible and de-
fectors can survive without the support of cooperators. This point
marks perhaps the most prominent feature of classical models in
evolutionary game theory that breaks down when the population
size can fluctuate over time. When populations vary in size and

defectors cannot sustain themselves on their own, cooperators
must be present and selection must be sufficiently strong in order
to maintain the existence of the population (Fig. 3). Furthermore,
when the population size is assumed to be fixed, selection de-
creases the frequency of cooperators if and only if it decreases the
number, or abundance, of cooperators. In fluctuating populations,
selection can decrease the frequency of cooperators while increas-
ing their abundance (Fig. 5).

We have referred to w as the ‘‘cost of cooperation’’ because of
its interpretation as the expected fraction of offspring that must be
sacrificed in order to cooperate. However, we note that because
this fraction of an individual’s baseline reproductive capacity is
shared across the population, larger w also means a greater effect
of cooperation (similar to the return, R). Further, if w = 0 then
the population is identical to a population of defectors. In standard
Wright–Fisher processes, fN is irrelevant and it is common to
rewrite the terms in Eq. (4) as FC = 1 + wπC and FD = 1 + wπD,
and to refer to w the ‘‘strength’’ (Antal et al., 2009a; Chastain et
al., 2014; Allen et al., 2017) or ‘‘intensity’’ of selection (Nowak et
al., 2004; Wu et al., 2010, 2013). When the population size is held
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Fig. 4. Simulation of the quasi-stationary distribution for several values ofK . Here,K enters in the baseline reproductive capacity, fN = (1 + r)min
{
1, K

N

}
, where r = −0.001.

In each panel, cooperators and defectors are each initialized at an equal abundance of K/2. The plots are histograms for cooperator (blue) and defector (red) abundance over
the first 25 000 generations. The equilibrium fraction of cooperators, p, depends on only u, w, and R and is the same for all panels. Therefore, the peaks are centered at
x∗

C/K = 0.999x (1 + w (R − 1) x) ≈ 0.2954 for cooperators and x∗

D/K = 0.999 (1 − x) (1 + w (R − 1) x) ≈ 0.7066 for defectors (see Appendix B). As K grows, this quasi-
stationary distribution converges to the Dirac measure centered on (0.2954, 0.7066). Parameters: u = w = 0.01 and R = 2.0. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Mutation–selection dynamics when a population of defectors can sustain itself at a positive carrying capacity (f1 > 1). The baseline reproductive capacity is
fN = max

{
0, cK + r

(
1 −

N
K

)}
, where cK = 1, r = 0.001, and K = 5000. In each panel, the population starts out with 100 cooperators and 100 defectors. In (A), w = 0

and cooperators are indistinguishable from defectors. The population grows to a metastable equilibrium with roughly equal frequencies of cooperators and defectors;(
x∗

C , x
∗

D

)
= (2500, 2500). In (B), the cost of cooperation is positive (w = 0.002) and defectors begin to outnumber cooperators;

(
x∗

C , x
∗

D

)
≈ (4287, 5219). At the metastable

equilibrium, however, cooperators in (B) slightly outnumber cooperators in (A). In (C), the cost of cooperation is increased to w = 0.01 and the gap between cooperator and
defector abundance widens;

(
x∗

C , x
∗

D

)
≈ (5806, 13 890). Although cooperators are less frequent than defectors in (C), they are more abundant in (C) than they were in (A)

and (B), suggesting that their abundance is favored by selection even though their relative frequency is not. Parameters: u = 0.01 and R = 2.0.

constant in our model, w corresponds exactly to this well-known
notion of selection intensity.

That the frequencies of cooperators relative to defectors in the
metastable equilibria of Figs. 3(C), 3(F), and 5(C) are all the same
is not a coincidence. The fraction of cooperators, p, present at a
metastable equilibrium is independent of the baseline reproduc-
tive capacity, fN , and depends on only the mutation rate, u; the
cost of cooperation, w; and the multiplication factor for the public
goods game, R. The population size at a metastable equilibrium,
however, does depend on fN . In Appendix B, we give an explicit
formula for p and a condition for the existence of a non-zero
metastable equilibrium in terms of fN , w, R, and p.

In the absence of mutation, either cooperators or defectors
must be extinct in any metastable equilibrium. Although defectors
outperform cooperators in a mixed population, a population of
cooperators reaches a higher carrying capacity and persists at this
size for a longer time than does a population of defectors. Small
populations of cooperators have a distinct advantage over their
all-defector counterparts due to larger growth rates. In particular,

quick extinction is less likely for all-cooperator populations than it
is for all-defector populations, reflecting observations of Huang et
al. (2015) and Waite et al. (2015) for related models.

Unlike in the models of Houchmandzadeh and Vallade (2012)
and Houchmandzadeh (2015), the population size in our model is
not a deterministic function of the fraction of cooperators. Rather,
it is a randomquantity derived from the collective offspring pool of
the parental generation. The population size at time t + 1 depends
on both the number of cooperators and the number of defectors at
time t .

A framework more similar to ours is that of Behar et al. (2016),
which uses stochastic differential equations to model the num-
bers of producers and non-producers of a common resource. Both
numbers increase when small but eventually non-producers drive
the population to extinction. Analogous to the possible role of
mutations described here, Behar et al. (2016) allow migration to
reseed populations with producers. A metastable equilibriummay
then occur in the total population even as each local population
experiences boom and bust cycles. Our focus here has been on
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treating baseline reproductive dynamics as an exogenous feature
and understanding on how these may be perturbed by a game to
allow a variety of different carrying capacities to emerge depend-
ing on the parameters of the model.

Since population size can fluctuate in our model, one could also
allow themultiplication factor of the public good, represented here
by R, to change with N . If this multiplication factor gets weaker as
N grows, then one observes dynamics similar to those here even
if fN is independent of N . Viewing R as a function of N presents an
alternativeway tomodel populations that cannot have unbounded
growth due to environmental constraints. Another extension of
our model could involve asymmetric mutation rates with, for
example, C → Dmutations more likely than D → C . Although the
importance of asymmetric mutation in population models is well-
established (Eigen et al., 1988; Durrett and Schmidt, 2008; Arnoldt
et al., 2012), we do not expect this would cause any qualitative
changes in the results reported here unless the asymmetry was
very extreme.

Incorporating dynamic population size into classical evolution-
ary models complicates the analysis of their dynamics. Notably,
how one measures the evolutionary success of cooperators is not
as unambiguous here as it is in models with fixed population size.
We have shown that selection can favor cooperator abundance
despite disfavoring cooperator frequency, and that even though
cooperators are exploited by defectors, they can be crucial to the
survival of the population as a whole.
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Appendix A. Wright–Fisher branching process

A.1. Update rule

Suppose that the population is unstructured but allowed to vary
in size. For simplicity, assume thatwe are dealingwith a symmetric
gamewith two strategies, C (‘‘cooperate’’) and D (‘‘defect’’). A state
of the population is then uniquely defined by a pair, (xC , xD), where
xC and xC are the number of players using C andD, respectively. The
population size is N = xC + xD, which can vary over time.

Suppose that the reproductive capacities of cooperators and de-
fectors in state (xC , xD) are given by functions FC = FC (xC , xD) and
FD = FD(xC , xD), respectively. That is, the reproductive capacities
are frequency-dependent and determined by the number of each
type of player in the population. We define reproductive capacity
as the expected number of surviving offspring of an individual over
its lifetime. Ours is therefore an ‘‘absolute’’ interpretation of repro-
ductive capacity. We assume a reproductive mechanism in which
the number of offspring is Poisson-distributed with mean equal
to the parent’s reproductive capacity. Therefore, the probability of
transitioning from (xC , xD) to (yC , yD) over a single generation in
this ‘‘Wright–Fisher branching process’’ is

PWFB(yC , yD | xC , xD) =

(
(xCFC )yC e−xC FC

yC !

)
×

(
(xDFD)yDe−xDFD

yD!

)
. (7)

As in the standardWright–Fisher process, we assume that genera-
tions are non-overlapping.

Remark 1. If the population size is static and fixed at N , then, for
xC + xD = yC + yD = N ,

PWFB(yC , yD | xC , xD ; fixed population size)

=

(
(xC FC )yC e−xC FC

yC !

)(
(xDFD)yD e−xDFD

yD!

)
∑

zC+zD=N

(
(xC FC )zC e−xC FC

zC !

)(
(xDFD)zD e−xDFD

zD!

)
=

(
(xC FC )yC e−xC FC

yC !

)(
(xDFD)yD e−xDFD

yD!

)
1
N!

∑
zC+zD=N N!

(
(xC FC )zC e−xC FC

zC !

)(
(xDFD)zD e−xDFD

zD!

)
=

(
(xC FC )yC e−xC FC

yC !

)(
(xDFD)yD e−xDFD

yD!

)
1
N!

(xCFC + xDFD)Ne−(xC FC+xDFD)

=
N!

yC !yD!

(
xCFC

xCFC + xDFD

)yC( xDFD
xCFC + xDFD

)yD

= PWF(yC | xC ), (8)

recovering the classical transition rule based on binomial sam-
pling (Haccou et al., 2005). Therefore, the update rule defined
by Eq. (7) may be thought of as a generalization of the classical,
frequency-dependent Wright–Fisher process.

A.2. Reproductive capacities and selection

In the absence of selection, each player in a population of size N
has a reproductive capacity determined by a baseline reproductive
capacity, fN . We consider the following two functional forms for fN ,
examples of which are depicted in Fig. 1 in the main text.

A.2.1. Rectified linear
One natural way to model reproductive capacity is as a linear

function of the population size, N . In this case, we can write fN =

max
{
0, cK + r

(
1 −

N
K

)}
for someparameters cK , r , andK .We refer

to fN as a ‘‘rectified’’ linear reproductive capacity since it piecewise-
linear with the constraint fN ⩾ 0 for every N . Note that fN∗ = 1
when N∗

= K
(
1 −

1
r (1 − cK )

)
. Therefore, N∗ may be interpreted

as the (neutral) carrying capacity of the population since, when
fN∗ = 1, each individual is replaced by one offspring on average.
Note that K itself is not necessarily the neutral carrying capacity
for this form of fN .

A.2.2. Threshold-constant
If the reproductive capacity is constant, then every player

expects to produce 1 + r offspring that survive into the next
generation, where r ⩾ −1. We assume that this growth is even-
tually bounded by environmental constraints, so we set fN =

(1 + r)min {1, K/N} for some K . We refer to fN as a ‘‘threshold-
constant’’ reproductive capacity since it is constant up to a thresh-
old (N = K ) and then decreasing to 0 beyond K . When r < 0,
there is no solution to fN = 1 since fN ⩽ 1 + r < 1 for each N .
When r > 0, we have f(1+r)K = 1, so N∗

= (1 + r) K is the neutral
carrying capacity of the population.

A.2.3. Selection
In a game with strategies C and D, let πC (xC , yC ) and πD(xC , xD)

be the total payoffs to C and D, respectively, when there are xC
cooperators and xD defectors. If the population size is fixed, then
a payoff of π is typically converted to a fitness of f by defining
f = 1 + wπ , where w is the ‘‘selection strength’’ [see Antal et al.,
2009a, b]. This perturbation approach has even been extended to
asymmetric games played between different populations (Veller
and Hayward, 2016). While our setup is somewhat different, we
maintain this convention of using payoffs from a game to perturb
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reproductive capacities. In particular, ifw is a parameter represent-
ing the intensity of selection, then the reproductive capacities of
cooperators and defectors are given by

FC (xC , xD) :=

(
1 + wπC (xC , xD)

)
fxC+xD; (9a)

FD(xC , xD) :=

(
1 + wπD (xC , xD)

)
fxC+xD , (9b)

respectively. In other words, the baseline reproductive capacity,
fxC+xD , is perturbed by the game according to the strength of selec-
tion, w. In order to maintain non-negative reproductive capacities,
w must be sufficiently small. In the next section, we consider a
public goods game in whichw has a clear biological interpretation.

Appendix B. Dynamics of the public goods game

In the public goods game, a cooperator sacrifices a fraction,w, of
his or her baseline reproductive capacity in order to contribute to a
public good. This contribution is enhanced by a factor of R > 1 and
then distributed evenly among all of the players in the population.
In terms of the payoff function in Eq. (9a), we have πC (xC , xD) =

R
(

xC
xC+xD

)
− 1 and πD (xC , xD) = R

(
xC

xC+xD

)
as well as Eq. (4) in the

main text.

B.1. Metastable equilibria

Consider a population evolving according to the update rule
of Eq. (3). As noted in the main text, such a branching process
either growswithout bound or eventually goes extinct. Even when
the population has an extinction probability of 1, there can be so-
called ‘‘metastable’’ states (or ‘‘equilibria’’) around which the pop-
ulation fluctuates for many generations. While a quasi-stationary
distribution for the process describes the distribution of strategy
abundances prior to extinction, ametastable equilibriumdescribes
the mean(s) around which these strategy counts fluctuate. We are
interested in when these metastable equilibria exist and how they
are influenced by the parameters of the model.

Let E(xC ,xD) [yC ] (resp. E(xC ,xD) [yD]) be the expected abundance
of cooperators (resp. defectors) in the next generation given xC
cooperators and xD defectors in the current generation. Formally,
a metastable equilibrium for this process is a state at which
E(x∗C ,x∗D)

[yC ] = x∗

C and E(x∗C ,x∗D)
[yD] = x∗

D. That is, cooperator and
defector abundances each remain unchanged (on average) at a
metastable equilibrium.Weuse the term ‘‘metastable’’ because the
population fluctuates around this state but eventually goes extinct.
We discuss extinction time in Appendix C. First, we derive the
metastable equilibria for public goods games.

B.1.1. Derivation of metastable equilibria
Let u be the strategy-mutation rate. With probability 1 − u,

an offspring acquires the strategy of the parent. With probability
u, the offspring takes on one of C and D uniformly at random.
In state (xC , xD), the expected number of cooperators in the next
generation is

E(xC ,xD) [yC ] =

∑
(yC ,yD)

PWFB(yC , yD | xC , xD)

×

((
1 −

u
2

)
yC +

(u
2

)
yD
)

=

∑
(yC ,yD)

(
(xCFC )yC e−xC FC

yC !

)(
(xDFD)yDe−xDFD

yD!

)
×

((
1 −

u
2

)
yC +

(u
2

)
yD
)

=

(
1 −

u
2

)
xCFC +

(u
2

)
xDFD. (10)

Similarly, the expected number of defectors in the next generation
is
( u
2

)
xCFC +

(
1 −

u
2

)
xDFD. Therefore, the system of equations we

need to solve in order to find a metastable equilibrium is

xC =

(
1 −

u
2

)
xCFC +

(u
2

)
xDFD; (11a)

xD =

(u
2

)
xCFC +

(
1 −

u
2

)
xDFD. (11b)

In other words, it must be true that

xC =

[(
1 −

u
2

)
xC
(
1 + wπC (xC , xD)

)
+

(u
2

)
xD
(
1 + wπD (xC , xD)

)]
fxC+xD; (12a)

xD =

[(u
2

)
xC
(
1 + wπC (xC , xD)

)
+

(
1 −

u
2

)
xD
(
1 + wπD (xC , xD)

)]
fxC+xD . (12b)

These equations are trivially satisfied when xC = xD = 0 (pop-
ulation extinction). There can also be solutions to Eq. (12) with
xC ̸= 0 or xD ̸= 0; we give a condition for the existence of non-zero
solutions below.

Remark 2. If u = 0, then Eq. (12) reduces to the system

xC =

(
1 + wπC (xC , xD)

)
xC fxC+xD; (13a)

xD =

(
1 + wπD (xC , xD)

)
xDfxC+xD . (13b)

If xC and xD satisfy this system and xC , xD ̸= 0, then(
1 + wπC (xC , xD)

)
fxC+xD =

(
1 + wπD (xC , xD)

)
fxC+xD = 1. (14)

Therefore, eitherw = 0 and fxC+xD = 1 orw ̸= 0 and πC (xC , xD) =

πD (xC , xD). However, for the public goods game, it is always the
case that πC (xC , xD) < πD (xC , xD) when xC > 0, so it must be true
that w = 0 and fxC+xD = 1. Thus, if u = 0 and w > 0, then any
solution satisfies xC = 0 or xD = 0. In other words, in the absence
of mutation, selection forces the extinction of at least one strategy.

Similarly, if u > 0 and there is a solution (xC , xD) with xC = 0,
then one obtains xDFD = 0 from Eq. (11a) and xD = 0 from Eq.
(11b). For a similar reason, if there is solution with xD = 0, then it
must also be true that xC = 0. Thus, if (xC , xD) is a non-zero solution
to Eq. (12) with u > 0, then xC > 0 and xD > 0.

Lemma 1. If u > 0, then there exists p ∈ (0, 1) such that any non-
zero solution to Eq. (12), (xC , xD), satisfies

xC
xC+xD

= p. In other words,
the fraction of cooperators is the same in any solution to Eq. (12).

Proof. If (xC , xD) is a solution to Eq. (12) with xC , xD ⩾ 0 and
xC + xD > 0, then p :=

xC
xC+xD

can be expressed in terms of the
payoff functions by Eq. (15) as given in Box I. Since πC (xC , xD) =

R
(

xC
xC+xD

)
−1 and πD(xC , xD) = R

(
xC

xC+xD

)
, Eq. (15) is equivalent to

ϕ(p) := 2 (1 − uR) wp2 + (uw (R + 1) − 2u − 2w) p + u
= 0. (16)

Since ϕ(p) is (at most) quadratic, ϕ(0) = u, and ϕ(1) = −u(1 −

w + Rw), we see that if u > 0, then there is a unique solution to
Eq. (15) that falls within [0, 1], and, furthermore, this solution is in
(0, 1). Explicitly, p is given by Eq. (17) (which is given in Box II) if
R ̸= 1/u and w ̸= 0, and p = u/(2u + (1 − u) w) if R = 1/u or
w = 0, which completes the proof. □

From the proof of Lemma 1, we see that if u = 0, then either (i)
w = 0 and every p ∈ [0, 1] is a solution to Eq. (15) or (ii) w > 0
and the only solutions to Eq. (15) are p = 0 and p = 1. For any
u ∈ [0, 1], the fraction of cooperators in a non-zero metastable
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p =
xC

xC + xD

=

(
1 −

u
2

)
xC
(
1 + wπC (xC , xD)

)
+
( u
2

)
xD
(
1 + wπD (xC , xD)

)
xC
(
1 + wπC (xC , xD)

)
+ xD

(
1 + wπD (xC , xD)

)
=

(
1 −

u
2

) ( xC
xC+xD

)(
1 + wπC

(
xC

xC+xD
,

xD
xC+xD

))
+
( u
2

) ( xD
xC+xD

)(
1 + wπD

(
xC

xC+xD
,

xD
xC+xD

))
(

xC
xC+xD

)(
1 + wπC

(
xC

xC+xD
,

xD
xC+xD

))
+

(
xD

xC+xD

)(
1 + wπD

(
xC

xC+xD
,

xD
xC+xD

))
=

(
1 −

u
2

)
p
(
1 + wπC (p, 1 − p)

)
+
( u
2

)
(1 − p)

(
1 + wπD (p, 1 − p)

)
p
(
1 + wπC (p, 1 − p)

)
+ (1 − p)

(
1 + wπD (p, 1 − p)

) . (15)

Box I.

p =
uw (R + 1) − 2u − 2w +

√
u2w2R2 + 2u2w2R + 4u2wR − 4uw2R + u2w2 − 4u2w + 4u2 − 4uw2 + 4w2

4 (uR − 1) w
. (17)

Box II.

equilibrium is independent of the baseline reproductive capacity,
fN . However, the existence of a metastable equilibrium and the
size of the population at such an equilibrium both depend on
the baseline reproductive capacity. Suppose that xC = pN and
xD = (1 − p)N satisfy Eq. (12), where p ∈ [0, 1] is a fraction of
cooperators that satisfies Eq. (15). From Eq. (12),

p =

[(
1 −

u
2

)
p
(
1 + wπC (p, 1 − p)

)
+

(u
2

)
(1 − p)

(
1 + wπD(p, 1 − p)

)]
fN ; (18a)

1 − p =

[(u
2

)
p
(
1 + wπC (p, 1 − p)

)
+

(
1 −

u
2

)
(1 − p)

(
1 + wπD(p, 1 − p)

)]
fN , (18b)

which, in turn, holds if and only if the total population size, N
satisfies

fN =
1

1 + w (R − 1) p
. (19)

The right-hand-side of Eq. (19) is independent of fN , and once this
quantity is calculated, it is straightforward to check for any fN
whether there exists N for which Eq. (19) holds. If fN is strictly
monotonic, then there exists at most one N that satisfies this
equation. For other types of baseline reproductive capacities, there
might be several such N that satisfy Eq. (19) (resulting in several
non-zero metastable equilibria).

In addition to the simulations described in the main text,
Figs. 6–7 demonstrate further effects of model parameters on
metastable equilibria.

Lemma 2. If u ∈ (0, 1) and w ̸= 0, then p is a strictly increasing
function of R with p ↑ 1/2 as R → ∞.

Proof. Since the polynomial defined by Eq. (16) satisfies ϕ(0) = u
and ϕ(1/2) = −w(1 − u)/2, we see that the solution to ϕ(p) = 0
that falls within [0, 1] is actually at most 1/2. Moreover, we can

write

ϕR(p) := ϕ(p) = 2(uR − 1)wp
(
1
2

− p
)

−

(
(1 − u) w + 2u

)
p + u, (20)

where, notably, only the coefficient of p
( 1
2 − p

)
depends on R.

Thus, if R1 < R2 and p1 satisfies ϕR1 (p1) = 0, then ϕR2 (p1) > 0.
Since ϕ(1/2) < 0, the unique solution to ϕR2 (p2) = 0 satisfies
p2 > p1, thus p is an increasing function of R. That p ↑ 1/2 as
R → ∞ follows immediately from taking the limit of Eq. (17). □

Theorem 1. Suppose that fN ↓ 0 as N → ∞. If u ̸= 0 and w ̸= 0,
then, for each N ⩾ 1, there is a critical multiplication factor, R∗

N ⩾ 1,
which is the minimum multiplication factor for which there exists a
non-zero metastable equilibrium supporting a population size of at
least N whenever R ⩾ R∗

N .

Proof. Since p ↑ 1/2 as R → ∞, we see that 1
1+w(R−1)p ↓ 0 as

R → ∞. Let

R∗

N := inf
{
R ⩾ 1 | fN ′ =

1
1 + w (R − 1) p

for some N ′ ⩾ N
}

. (21)

Since fN ↓ 0 asN → ∞, we have R∗

N < ∞. If R ⩾ R∗

N andN ′ satisfies
fN ′ =

1
1+w(R∗

N−1)p
, then

(
x∗

C , x
∗

D

)
=
(
pN ′, (1 − p)N ′

)
is ametastable

equilibrium by Eq. (18). Furthermore, if R ⩾ R∗

N , then

1
1 + w (R − 1) p

⩽
1

1 + w
(
R∗

N − 1
)
p
, (22)

and it follows that any solution to fN ′′ =
1

1+w(R−1)p satisfies N ′′ ⩾

N ′ ⩾ N , as desired. □

Remark 3. If infN⩾1fN > 0, then Theorem 1 need not hold. For
example, whenever R is sufficiently large and w ̸= 0, we have

1
1+w(R−1)p < infN⩾1fN , so no value of N satisfies Eq. (19).

B.1.2. Variance
In state (xC , xD), the expected squared number of cooperators

in the next generation is
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Fig. 6. Evolutionary game dynamics when there is no mutation and the baseline reproductive capacity, fN , is defined by fN = max
{
0, cK + r

(
1 −

N
K

)}
, where cK = 1,

r = 0.005, and K = 1000. The multiplication factor for the public goods game is R = 1.5 and the cost of cooperation is w = 0.01. In (A), the population is initialized
with no cooperators and 10 defectors. The defectors grow until they reach their carrying capacity of 1000 and then persist at this metastable equilibrium (f1 ⩾ 1). In (B),
the population is initialized with 10 cooperators and no defectors. The cooperators then grow in abundance until they reach their carrying capacity of approximately 2000
players. It is immediate from panels (A) and (B) that groups of cooperators perform better than groups of defectors since selection allows them to reach a higher carrying
capacity. In (C), the population is initialized with 10 cooperators and no defectors, and the population then proceeds to reach its carrying capacity. After 5000 generations, an
additional 10 defectors are introduced into the population, which disrupts the metastable equilibrium reached by the all-cooperator population. Defectors then outcompete
and replace cooperators and finally reach their carrying capacity, which, as in (A), is significantly lower than the carrying capacity of an all-cooperator population.

Fig. 7. Mutation–selection dynamics with drastically reduced mutation rates. The
parameters used here are u = 0.00001, w = 0.005, and R = 2.0. The baseline
reproductive capacity is fN = max

{
0, cK + r

(
1 −

N
K

)}
, where cK = 0.995,

r = 0.005, and K = 2000. The population is initialized with 100 cooperators
and no defectors, and the cooperators then grow to reach their carrying capacity.
Although small clusters of defectors are occasionally introduced through mutation,
cooperators can resist invasion for a short period of time. Eventually, defectors
invade and replace cooperators, and the population goes extinct due to the fact that
defectors cannot survive on their own (f1 < 1).

E(xC ,xD)

[
y2C
]

=

∑
(yC ,yD)

PWFB

(
yC , yD | xC , xD

)
m2, (23)

where

m2 =

yC∑
a=0

yD∑
b=0

(a + b)2
(
yC
a

)(
1 −

u
2

)a(u
2

)yC−a
(
yD
b

)
×

(
1 −

u
2

)yD−b(u
2

)b

=

(
1 −

u
2

)
yC
(
1 +

(
1 −

u
2

)
(yC − 1)

)
+ 2

(u
2

)
×

(
1 −

u
2

)
yCyD +

(u
2

)
yD
(
1 +

(u
2

)
(yD − 1)

)
. (24)

It follows from a straightforward calculation that

E(xC ,xD)

[
y2C
]

=

[(
1 −

u
2

)
(xCFC ) +

(u
2

)
(xDFD)

]
+

[(
1 −

u
2

)
(xCFC ) +

(u
2

)
(xDFD)

]2
= E(xC ,xD) [yC ] + E(xC ,xD)[yC ]2. (25)

Therefore, Var(xC ,xD) [yC ] = E(xC ,xD) [yC ], and, similarly,
Var(xC ,xD) [yD] = E(xC ,xD) [yD]. Thus,

σ(xC ,xD) [yC ] /E(xC ,xD) [yC ] =
1√

E(xC ,xD) [yC ]
; (26a)

σ(xC ,xD) [yD] /E(xC ,xD) [yD] =
1√

E(xC ,xD) [yD]
, (26b)

which both approach 0 as E(xC ,xD) [yC ] and E(xC ,xD) [yD] get large.

Appendix C. Extinction time for branching games

We now characterize the extinction time for our model, in-
spired by techniques used in classical branching processes [see
(Jagers and Klebaner, 2011; Faure and Schreiber, 2014; Schreiber,
2017)]. Let x = (xC/K , xD/K ) be normalized quantities of coop-
erators and defectors, where K > 0 parametrizes the baseline
reproductive capacity, fN . Let

A(x) :=

(
(1 − u)FC (xK ) uFD(xK )

uFC (xK ) (1 − u)FD(xK )

)
, (27)

and consider the map, φ, defined by

φ : R2
⩾0 −→ R2

⩾0

: x ↦−→ A(x)x. (28)

Since FC and FD are bounded, so too is φ.
We consider the normalized Markov chain XK

t = (Ct/K ,Dt/K ),
where Ct and Dt are the number of cooperators and defectors
at time t , respectively. Write pK (x, y) = P

[
XK
t+1 = y | XK

t = x
]
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for the transition kernel. The transition probabilities are Poisson-
distributed with mean given by the matrix A(x). Note that
pK (0, y) = 0 for all y ̸= 0 since 0 is an absorbing state.

A measure µK ∈ ∆(R2
⩾0 − 0) is a quasi-stationary distribution

for pK if there exists λK ∈ (0, 1) such that∫
x∈R2

⩾0−0
pK (x, E) dµK (x) = λKµK (E) . (29)

for all E ⊆ R2
⩾0 − 0. We denote the extinction time, i.e. the time

until the chain is absorbed at the state 0, by τK . Note that, if we
start distributed according to a quasi-stationary distribution, µK ,
then the probability of being absorbed in the next step is 1 − λK
since

P
[
XK
t+1 = 0 | XK

t ∼ µK
]

=

∫
x∈R2

⩾0−0
pK (x, 0) dµK (x)

=

∫
x∈R2

⩾0−0

(
1 − pK (x,R2

⩾0 − 0)
)
dµK (x)

= 1 − λK . (30)

Moreover, if not absorbed in the next time step, the chain remains
distributed according to µK . Therefore, the extinction time τK is a
geometric random variable with parameter 1 − λK , and E [τK ] =

1/(1 − λK ), where E [τK ] denotes the expected value of τK when
the chain is initially distributed according to µK .

Proposition 1. There exists c > 0, independent of K , such that
E [τK ] ⩾ ecK .

Proof. For the model considered in the main text, φ has a unique
fixed point, x∗, with φ(x∗) = x∗. Moreover, this fixed point is
an attractor. (One can show that the normalized quasi-stationary
distribution µK converges weakly to δx∗ as K → ∞.) Therefore,
there exists δ > 0 and an open set, U , containing x∗ such that
Nδ

(
φ
(
U
))

⊆ U , where for E ⊆ R2
⩾0 − 0, the δ-neighborhood of

E is defined as

Nδ(E) :=

{
y ∈ R2

⩾0 − 0 | inf
x∈E

∥y − x∥ < δ

}
. (31)

By definition of the quasi-stationary distribution, µK , we have

λKµK (U) =

∫
x∈R2

⩾0−0
pK (x,U) dµK (x)

⩾

∫
x∈U

pK (x,U) dµK (x)

⩾ µK (U) inf
x∈U

pK (x,U)

= µK (U)

(
1 − sup

x∈U
pK (x,U c)

)
. (32)

For x ∈ U , φ(x) ∈ φ(U), which implies that Nδ(φ(x)) ⊂ Nδ(φ(U)) ⊂

U . Therefore,

λK ⩾ 1 − sup
x∈U

pK (x,U c)

⩾ 1 − sup
x∈U

pK (x,Nδ(φ(x))c). (33)

To complete the proof, we bound pK (x,Nδ(φ(x))c) via a large-
deviation estimate based on the Chernoff–Cramer method. If Z is
a Poisson random variable with mean φ(x)K , then

pK (x,Nδ(φ(x))c) = P
[
XK
t+1 ̸∈ Nδ(φ(x)) | XK

t = x
]

= P
[⏐⏐XK

t+1 − φ(x)
⏐⏐ > δ | XK

t = x
]

= P [|Z − φ(x)K | > δK ] . (34)

Using Markov’s inequality and the Poisson moment-generating
function, we see that

P [Z > (φ(x) + δ) K ] ⩽
E
[
etZ
]

et(φ(x)+δ)K =
eφ(x)K(et−1)

et(φ(x)+δ)K . (35)

As a function of t , the minimum of eφ(x)K(e
t
−1)

et(φ(x)+δ)K is at t∗ =

log (1 + δ/φ(x)). Since the function g(y) := log (1 + δ/y)
(y + δ) − δ satisfies g(y) > 0 and g ′(y) < 0 for all y > 0, we
have

P [Z > (φ(x) + δ) K ] ⩽ e−g(φ(x))K ⩽ e−g(m)K , (36)

where m = maxx∈R2
⩾0

φ(x). It follows that with c := g(m),

E [τK ] =
1

1 − λK
⩾ ecK , (37)

which completes the proof. □
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