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Self-organized criticality in a nutshell
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In order to gain insight into the nature of self-organized critical®0C0), we present a minimal model
exhibiting this phenomenon. In this analytically solvable model, the state of the system is fully described by a
single-integer variable. The system organizes in its critical state without external tuning. We derive analytically
the probability distribution of durations of disturbances propagating through the system. As required by SOC,
this distribution is scale invariant and follows a power law over several orders of magnitude. Our solution also
reproduces the exponential tail of the distribution due to finite size effects. Moreover, we show that large
avalanches are suppressed when stabilizing the system in its critical state. Interestingly, avalanches are affected
in a similar way when driving the system away from the critical state. With this model, we have reduced SOC
dynamics to a leveling process as described by Ehrenfest’'s famous flea h&id#83-651X99)09209-0

PACS numbeps): 05.65:+b, 05.40.Fb, 05.10.Gg

[. INTRODUCTION reservoir is dropped on a random site. With probability
No/N the chosen site is empty and becomes filled. Thus, we
In 1987, Bak, Tang, and WiesenfelTW) [1] intro-  haveNy—Ny—1,N;—N;+ 1. Otherwise, with a probability
ducedself-organized criticality SOO by way of a so-called of N; /N, the site is already filled and is said timpple This
sandpile model. The work of Badt al. has become the lead- means that both grains are put back into the reservoir leading
ing paradigm of SOC and triggered various theoretical ando Ng—Ng+ 1, N;—N;—1. Since we consider a large res-
experimental works on the subject. They argued that SO@rvoir, changes i\, are irrelevant, i.e.N,.s>0 all the
provides a natural framework in which to describe phenomtime. Starting with all sites empty and repeating the above
ena as diverse asflhoise in resistors, fluctuations of the process over many time stepsthe system will eventually
river Nile, earthquakes, extinction of species, traffic jamsreach a state with a characteristic number of filled sites speci-
etc. For an excellent overview, sg and references therein. fied by the mean up to time: (N;)”. For 7—, it follows
In 1996, a random neighbor approximation of the originalfrom the symmetry of the model that the mean number of
BTW model, together with a suitable definition of SOC, wasfilled sites converges to the equilibrium valgd;)”=N/2.
presented by Flyvbjer§3], which reads: A self-organizing As we will see, this state is critical in the sence that fluctua-
critical system is a driven, dissipative system consisting of tions around it have no inherent time or length scale, i.e.,
scale with a power law. Comparing Flyvbjerg’s and our
models, we see that both are driven by an external energy
source. Our model satisfies Flyvbjerg’s definition of SOC for
random neighbor systems with the difference that itas
grain-conserving andb) the driving force is realized in a
somewhat different way: Whenever an avalanche is over,
This approach conserves the intriguing dynamics of SOd-lyvbjerg’s driving mechanism throws another grain of sand
without the requirement of an extended system. We nownto the system. As a consequence his model has two decou-
present a simple model that is neither extended nor dissip&/ed time scales: a large one on which the system is filled by
tive with regard to the amount of sand in the system, but stildding grains from an external reservoir and a short one on
exhibits SOC behavior. Although, other grain-conservinghich the avalanches run. In our model, the system ap-
models have been presented eaflér these systems did not Proaches the critical state and we observe natural fluctuations
display SOC, since they had to be tuned externally to théround it. Hence, we have only one time scale relevant to the
critical state. Moreover, our model allows for an analytical fluctuations and the equilibration or relaxation process.
solution. In sharp contrast to the large number of models
displaying SOC, only a few exact results are known at IIl. DYNAMICS AND DISTURBANCES
present(see, e.g.[7]).

(1) a mediumthat has

(2) disturbancegpropagating through it, causing

(3) a modificationof the medium, such that eventually
(4) the medium is in aritical state and

(5) the medium ismodified no more

The equation of motion for the probabilitP"(N,) of

finding N; grains of sand in the system at timereads
Il. MODEL

Nl+lPTN 1 N_Nl+1
N (N T

Roughly speaking, our model represents a conservative P7*1(N;)= PT(N{—1).
variant of Flyvbjerg’s random neighbor model. The system 1)
consists ofN dynamical sites and a large reservoir wiklh.¢
grains of sand N,.s>N). Each dynamical site may contain Equation(1) describes the approach to equilibrium as well as
one grain of sand such that we havg empty andN, filled  fluctuations around it in the famous flea model by Ehrenfest
sites withNg+N;=N. In every time step, a grain from the [8]. It corresponds to Flyvbjerg’s model when summing over
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the avalanche variable and by neglecting the absorbing sites. (x—xge~ 22
The solution of Eq(1) is known[4] for the initial condition f(x,t)= —zexp( — 0—2) (6)
N;(0)=N? and reads Vo (t) a(t)
. N/2 25\ 7 o0 with
T — N;o—N j -
PN?(Nl)_(_l) 12 j=ZN/2 (W) C]Nlcj+N/211 (2) , 1 u
o(t)’=5(1-e ), (7

where theCl’s are defined by the identity
Because of the diffusive term in E@5), the information
about the initial statex vanishes exponentially fast with
increasing time. In the long time limit—<, the stationary
solution is the Gaussian:

We define disturbance&@valanchey of the system as
one-sided deviations frogN,)”, denoting the mean number f(x)= \/zeZXZ. ®
of filled sites up to timer. An avalanche is said to start if ™
N;<(N;)" or N;>(N;)" holds for the first time. The end is
splec§ﬁeld> by thle f<irs%>return to the stag=(N,)" or N, Let D(l) denote the probability of an avalanche of length

<(N,)7, respectively. The end of one avalanche correspond¥Nere! scales as with | =\/N. Thus,D(l) stands for the

to the beginning of the subsequent one. The duration or lifeProPability of all paths starting ix=0 at timet and return-
dng tox=0 for the first time at+1. This corresponds to the

time A of an avalanche is specified as the number of tim ) X
steps required to return tN;=(N;)” or Ny<(N;)7, re- Itj:cggaogftgfnzystem at an absorbing boundary#0 as a

spectively.

pNow v)v/e calculate avalanches at the critical point where A Solutiong(x,t) of Eq. (5) with an absorbing boundary
the mean number of filled sitédl;)” reaches the equilibrium N X=0 is generated by differentiating E) with respect to
valueN/2. LetD(\) denote the probability of an avalanche Xo- This yields indeed another solution, with |_n|t|al condition
of length A at the critical point. ThusD(A) stands for the ~9(X.0)= dx,8(x—Xo), because, commutes with the opera-
probability of all paths starting itN;=N/2 at time 7 and  tors of the Fokker-Planck equati@b):
returning toN,;=N/2 for the first time atr+\.

N
(1—2)N27i(1 4 z)N2+] :k§=‘,0 Clz“. (3)

For N/2 even, this probability distribution of fluctuations g0t = dy F(x,1)= exd — (X—xe *)?
in the Ehrenfest model was derived by Kac in 194Ywhile ' T Jma(t)® a(t)?
discussing matters of irreversibility and Poincangles in ot
statistical mechanics: X(X—xpe “)e . 9
1 1 [2j\ 22 _ For xo=0 andx>0, Eq. (9) is the solution for a random
D(\)=—2t"N 5N > (W) Cnis-Chiz-1 walker in a parabolic potential with initial conditiox,=0

4) and an absorbing boundary ¥+ 0. The latter requires that
g(0t)=0 for all t>0.

where the summation is extended over all odd integers In order to obtain the avalanche distributi@(l), we

between—N/2 andN/2. The discrete solution€l) and (4) have to calculate the fluxx,t) atx=0. Here the continuity

are very hard to interpret. For this reason we consider th@duation together with E@5) gives us a relation between the

continuum limitN— o leading to intuitive solutions. flux j(x,t) and the solutiorg(x,t) of Eq. (5):
Let us introduce the scaling variablex=(N;
—N/2)/\/N, t=7/N and the probability densityf(x,t) j(x,t):—fatg(x,t)dx, (10)

=NP7(N,). Inserting these definitions into E¢l) and ig-

noring all subdominant powef3(1/N), we obtain a Fokker-  For avalanches starting &&0 and lasting untitt=1, this
Planck equation: leads to

1
0tf(x,t)=<§&§+ 28XX> f(x,0). (5 D(H=j(x,t=1)|y—0= \/g(l—e‘“)mez'. (11)

The stochastic nature of the process is reflected in the diffuNote that Eq(11) is exact in the continuum limit; however,
sive first term on the right-hand side of E&). The second it is an approximation to the avalanche distribution derived
term is convective, resulting in a forée= —2x driving the  numerically from Eg.(1) and calculated below. For small
system back to the critical value=0. Equation 5 describes avalanche lengthis the discrete nature of our model plays an
a random walker in a parabolic potential. In this picture, theimportant role and thus the accuracy of Efjl) is expected
lifetime of an avalanche corresponds to the first return timeo decrease. Figure 1 displays the perfect agreemed{ ljf
of the random walker starting and endingxat 0. up to smalll, calculated according to Eq11) and numeri-
The analytical solution of Eq5) is known for the initial  cally derived from Eq.(1). Up to avalanche lengths of the
condition f(x,0)= 8(x—Xg), where §(x) stands for Dirac's system size|<1 (A=<N), the distribution follows a power
delta function, specifying that at tinte=0 the system is in law ~1~%?2 but for|>1 (A>N), the power law is exponen-
statex=Xg: tially suppressed withe ?' due to finite size effects.
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FIG. 1. Comparison of the approximate analyti¢sblid line) \ /\ /
and numericaldash-dotted linesolutions for the distribution of the -ri2 0 rf2
avalanche lengths. The two curves are in perfect agreement in botl State x

the power law regime as well as the exponential tail. Only prob-

abilities of very short avalanches are underestiméee text The  gijtical case(top graph, as well as in the subcriticainiddle graph,
numerical solution is calculated according to Ed) with N g4jig jing) and supercriticalbottom graph, solid lineregimes. The
=2500. The avalanche lengths are scaled in terms of the syste@ypcritical and supercritical regimes are obtained by a shift o2
sizeN, such that =1 corresponds to a length af=N. of the original parabolic potential. Note that in the supercritical

) ~regime, the two minima are separated by a potential barrier at
Unfortunately we could not show the discrete solutionx=0 and the walker may get trapped for long times around

[Eq. (4)] because of numerical evaluation difficulties fdr  x=+r/2.
=2500. However, we verified that for smallerthe analyti-
cal and numerical solutions of E¢l) are indentical for all
avalanche size&ot shown.

FIG. 2. Potential felt by the random walker in the undisturbed

probability, another flea to jump from the dog bearing more
fleas to the other one or vice versa.

IV. SUPPRESSING DISTURBANCES

Let us now consider the problem of controlling ava- Subcritical regime

lanches. To suppress large avalanches, we stabilize the sys-The avalanche distributio®(l,r) in the subcritical re-
tem in its critical state. The simplest method by which togime is estimated by considering all paths of a random walk
achieve this is to rewrite Eq1) such that in every time step starting and ending ax=0. Note, however, that now an
7 another grain of sand is addedNf <(N,)” or removed if  jncreased force oF =2 (x+r/2) drives the walker back to
N;>(Ny)" with a constant probability. This mechanism the origin. An avalanche witk<0 corresponds to a random
drives the system systematically back to its critical state. I, 5k starting and ending at= —r/2 for x<r/2 in the undis-

the continuum limitN—c, using the same scaling variables ,;peq potential. Due to the symmetry of the system, the
as before and setting= r/\N, we obtain the Fokker-Planck game argument holds for avalanches withO. Therefore, it
equation for the disturbed system: is sufficient to consider only one case. In such an asymmetric
situation, we are not able to calculate the exact avalanche
f(x,t), (12) distribution as done in Sec. Ill. For this reason, we estimate
the avalanche distribution first by calculating the probability
of all paths starting and ending at —r/2 [see Eq.(6)] in
where sgnX) denotes the signum function. The only differ- the undisturbed potential. Second, the distribution is
ence between this equation and the undisturbed®ds a  weighted by the probability that the walker has not reached

shift of the parabolic potential by sgx)r/2. In analogy, we  the forbidden area. This is specified by the integral of Eq.
may also drive the system away from the critical state, re{11) from | to «. This leads to:

sulting in a potential shift of-sgn)r/2 in the other direc-
tion. This divides the dynamics of the system into a subcriti- ® s . r’(1—e 22
cal and supercritical regime in terms of the avalanche D(U)“( f o, e & d")tﬂ eXp ~ o —ao
distributions. In order to estimate these distributions, we con- 2(1-e"")

1 2
=02+ 20,

af(xH=|3

—

sider as before a random walker in the respective potential. r2(1—e 22
The different potentials felt by the walker are indicated in =2(1—e ¥)"1e7? exp( — —) (13
Fig. 2 for the undisturbed system as well as the subcritical 2(1-e™ ")

and supercritical regimes.

Returning to the picture of the flea model, this controlling
mechanism simply means that in every time step we cournilumerical solutions of the subcritical regime are shown in
the number of fleas on both dogs and force, with a certairrig. 3 for different values op.
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model with very small absorption rates. In this limit, the two
models, Flyvbjerg’s and ours, become quite similar, the sole
difference being that we do not distinguish between grains in
the reservoir and those in the avalanche. They found an ex-
ponential distribution dominating the power law and drasti-
cally increasingthe frequency of large avalanches. Together
with Flyvbjerg, they point out that SOC systems must be
sufficiently damped. In our model, this refers to the critical
case withr=0. Forr#0, the power law and thus SOC is
suppressed with an efficiency increasing with In particu-
lar, for r <0 we also observe an increase of large avalanches
(I>1) over the power law.

The numerical solution displayed in Fig. 3 shows that,
with regard to the undisturbed system, avalanches up to a
length ofl <1 are suppressed in both regimes. This suggests

FIG. 3. Numerical solution of the subcritical and supercritical that the dynamics of a sandpile having an angle slightly

avalanche distributions for different degrees of controlling viNth

above and slightly below the critical value are very similar

=1000. All distributions are normalized to 1. For avalanche lengthsSee Fig. 3
=<1, the subcritical and supercritical distributions are very similar.

However, in the supercritical regime, avalanches withl are far

V. CONCLUSIONS

more likely and occur over a certain range with almost constant

probability. This corresponds to the analytical estimation in Eq.

(14).

Supercritical regime

We have shown that our simple model is SOC in the
sense that it reaches a critical state without external tuning.
In the critical state, the probability distribution of distur-
bances propagating through the system is scale invariant and

In the supercritical regime, the random walker feels thef0llows @ power law over many orders of magnitude. More-

drift force F=2(x+r/2) that restrains the walker from re-

over, the analytical solution in the continuum approximation

turning to the originx=0. This is readily seen in Fig. 2, [Eqg.(1D)]is in perfect agreement with numerical solutions of

noting the potential barrier at=0 separating the two energy
minima atx=*r/2. Thus, for large the walker may become
trapped aroundk=r/2 for very long times. However, for
small avalanche lengths, the avalanche distribution is est
mated using analogous arguments as in the subcritical rér€SSes large avalanches.
gime. Estimations for the two regimes differ only for large
avalanchesl(>1). Here, the distribution is estimated by the

time it takes for a random walker starting»at r/2 to reach

x=0. This corresponds to a random walker startingxat

=0 of the undisturbed potential, trying to react r/2:

r2

D(l,r)~(1—e4'>1’2exp( - ) (14)

For lengthsl>1 (A>N), this leads toD(l,r)=const. Nu-

the discrete moddlEq. (1)] except fort~O(1/N). It repro-
duces not only the power law regime, but also the exponen-
tial tail of the distribution. In addition, we have shown that a
§uitable drift, stabilizing the system in its critical state, sup-
Interestingly, the same effect is
achieved when driving the system away from the critical
state. This results in very similar avalanche distributions up
to avalanche lengths corresponding to the system size.

We introduced a grain-conservating variant of sandpile
models. However, an equivalently valid interpretation of our
model is Ehrenfest’s flea modé8]. Therefore, our model
describes the process of approaching an equilibrium state in
a large set of uncoupled two-state systems together with fluc-
tuations (avalanches around this state. Two-state systems
where this effect is observable are abundant in natsee,
e.g.,[9]). We just mention Ising magnets in the paramagnetic

merical solutions of the subcritical and supercritical regimesstate. One-sided deviations of the magnetization from zero
are shown in Fig. 3 for different values of the external dis-will display avalanches whose durations are distributed with
turbancep. The results for the supercritical regime resemblea power law. Thus, we suggest that SOC is an inherent phe-

those obtained by Bundschuh andskmm[5] for Flyvbjerg’s

nomenon of slow leveling processes.
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