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Self-organized criticality in a nutshell
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~Received 26 February 1999; revised manuscript received 25 May 1999!

In order to gain insight into the nature of self-organized criticality~SOC!, we present a minimal model
exhibiting this phenomenon. In this analytically solvable model, the state of the system is fully described by a
single-integer variable. The system organizes in its critical state without external tuning. We derive analytically
the probability distribution of durations of disturbances propagating through the system. As required by SOC,
this distribution is scale invariant and follows a power law over several orders of magnitude. Our solution also
reproduces the exponential tail of the distribution due to finite size effects. Moreover, we show that large
avalanches are suppressed when stabilizing the system in its critical state. Interestingly, avalanches are affected
in a similar way when driving the system away from the critical state. With this model, we have reduced SOC
dynamics to a leveling process as described by Ehrenfest’s famous flea model.@S1063-651X~99!09209-0#

PACS number~s!: 05.65.1b, 05.40.Fb, 05.10.Gg
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I. INTRODUCTION

In 1987, Bak, Tang, and Wiesenfeld~BTW! @1# intro-
ducedself-organized criticality~SOC! by way of a so-called
sandpile model. The work of Baket al.has become the lead
ing paradigm of SOC and triggered various theoretical a
experimental works on the subject. They argued that S
provides a natural framework in which to describe pheno
ena as diverse as 1/f noise in resistors, fluctuations of th
river Nile, earthquakes, extinction of species, traffic jam
etc. For an excellent overview, see@2# and references therein

In 1996, a random neighbor approximation of the origin
BTW model, together with a suitable definition of SOC, w
presented by Flyvbjerg@3#, which reads: A self-organizing
critical system is a driven, dissipative system consisting

~1! a mediumthat has
~2! disturbancespropagating through it, causing
~3! a modificationof the medium, such that eventually
~4! the medium is in acritical state, and
~5! the medium ismodified no more.

This approach conserves the intriguing dynamics of S
without the requirement of an extended system. We n
present a simple model that is neither extended nor diss
tive with regard to the amount of sand in the system, but s
exhibits SOC behavior. Although, other grain-conserv
models have been presented earlier@6#, these systems did no
display SOC, since they had to be tuned externally to
critical state. Moreover, our model allows for an analytic
solution. In sharp contrast to the large number of mod
displaying SOC, only a few exact results are known
present~see, e.g.,@7#!.

II. MODEL

Roughly speaking, our model represents a conserva
variant of Flyvbjerg’s random neighbor model. The syste
consists ofN dynamical sites and a large reservoir withNres
grains of sand (Nres.N). Each dynamical site may contai
one grain of sand such that we haveN0 empty andN1 filled
sites withN01N15N. In every time step, a grain from th
PRE 601063-651X/99/60~3!/2706~4!/$15.00
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reservoir is dropped on a random site. With probabil
N0 /N the chosen site is empty and becomes filled. Thus,
haveN0→N021, N1→N111. Otherwise, with a probability
of N1 /N, the site is already filled and is said totopple. This
means that both grains are put back into the reservoir lea
to N0→N011, N1→N121. Since we consider a large re
ervoir, changes inNres are irrelevant, i.e.,Nres.0 all the
time. Starting with all sites empty and repeating the abo
process over many time stepst, the system will eventually
reach a state with a characteristic number of filled sites sp
fied by the mean up to timet: ^N1&

t. For t→`, it follows
from the symmetry of the model that the mean number
filled sites converges to the equilibrium value^N1&

t5N/2.
As we will see, this state is critical in the sence that fluctu
tions around it have no inherent time or length scale, i
scale with a power law. Comparing Flyvbjerg’s and o
models, we see that both are driven by an external ene
source. Our model satisfies Flyvbjerg’s definition of SOC
random neighbor systems with the difference that it is~a!
grain-conserving and~b! the driving force is realized in a
somewhat different way: Whenever an avalanche is ov
Flyvbjerg’s driving mechanism throws another grain of sa
into the system. As a consequence his model has two de
pled time scales: a large one on which the system is filled
adding grains from an external reservoir and a short one
which the avalanches run. In our model, the system
proaches the critical state and we observe natural fluctuat
around it. Hence, we have only one time scale relevant to
fluctuations and the equilibration or relaxation process.

III. DYNAMICS AND DISTURBANCES

The equation of motion for the probabilityPt(N1) of
finding N1 grains of sand in the system at timet reads

Pt11~N1!5
N111

N
Pt~N111!1

N2N111

N
Pt~N121!.

~1!

Equation~1! describes the approach to equilibrium as well
fluctuations around it in the famous flea model by Ehrenf
@8#. It corresponds to Flyvbjerg’s model when summing ov
2706 © 1999 The American Physical Society
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the avalanche variable and by neglecting the absorbing s
The solution of Eq.~1! is known@4# for the initial condition
N1(0)5N1

0 and reads

PN
1
0

t
~N1!5~21!N1

0
22N (

j 52N/2

N/2 S 2 j

N D t

CN1

j C
j 1N/2
N/22N1

0

, ~2!

where theCk
j ’s are defined by the identity

~12z!N/22 j~11z!N/21 j5 (
k50

N

Ck
j zk. ~3!

We define disturbances~avalanches! of the system as
one-sided deviations from̂N1&

t, denoting the mean numbe
of filled sites up to timet. An avalanche is said to start
N1,^N1&

t or N1.^N1&
t holds for the first time. The end i

specified by the first return to the stateN1>^N1&
t or N1

<^N1&
t, respectively. The end of one avalanche correspo

to the beginning of the subsequent one. The duration or
time l of an avalanche is specified as the number of ti
stepst required to return toN1>^N1&

t or N1<^N1&
t, re-

spectively.
Now we calculate avalanches at the critical point wh

the mean number of filled sites^N1&
t reaches the equilibrium

valueN/2. Let D(l) denote the probability of an avalanch
of length l at the critical point. Thus,D(l) stands for the
probability of all paths starting inN15N/2 at time t and
returning toN15N/2 for the first time att1l.

For N/2 even, this probability distribution of fluctuation
in the Ehrenfest model was derived by Kac in 1947@4# while
discussing matters of irreversibility and Poincare´ cycles in
statistical mechanics:

D~l!52212NS 1

2
1

1

ND( 8S 2 j

N D l22

CN/22 j
21 CN/221

j ,

~4!

where the summation is extended over all odd integej
between2N/2 andN/2. The discrete solutions~1! and ~4!
are very hard to interpret. For this reason we consider
continuum limitN→` leading to intuitive solutions.

Let us introduce the scaling variablesx5(N1

2N/2)/AN, t5t/N and the probability densityf (x,t)
5NPt(N1). Inserting these definitions into Eq.~1! and ig-
noring all subdominant powersO(1/N), we obtain a Fokker-
Planck equation:

] t f ~x,t !5S 1

2
]x

212]xxD f ~x,t !. ~5!

The stochastic nature of the process is reflected in the d
sive first term on the right-hand side of Eq.~5!. The second
term is convective, resulting in a forceF522x driving the
system back to the critical valuex50. Equation 5 describe
a random walker in a parabolic potential. In this picture,
lifetime of an avalanche corresponds to the first return ti
of the random walker starting and ending atx50.

The analytical solution of Eq.~5! is known for the initial
condition f (x,0)5d(x2x0), whered(x) stands for Dirac’s
delta function, specifying that at timet50 the system is in
statex5x0:
s.

s
-

e

e

e

u-

e
e

f ~x,t !5
1

Aps~ t !2
expS 2

~x2x0e22t!2

s~ t !2 D ~6!

with

s~ t !25
1

2
~12e24t!. ~7!

Because of the diffusive term in Eq.~5!, the information
about the initial statex0 vanishes exponentially fast with
increasing time. In the long time limitt→`, the stationary
solution is the Gaussian:

f ~x!5A2

p
e22x2

. ~8!

Let D( l ) denote the probability of an avalanche of lengthl,
where l scales ast with l 5l/N. Thus,D( l ) stands for the
probability of all paths starting inx50 at timet and return-
ing to x50 for the first time att1 l . This corresponds to the
flux out of the system at an absorbing boundary inx50 as a
function of time.

A solution g(x,t) of Eq. ~5! with an absorbing boundary
in x50 is generated by differentiating Eq.~6! with respect to
x0. This yields indeed another solution, with initial conditio
g(x,0)5]x0

d(x2x0), because]x0
commutes with the opera

tors of the Fokker-Planck equation~5!:

g~x,t !5]x0
f ~x,t !5

2

Aps~ t !3
expS 2

~x2x0e22t!2

s~ t !2 D
3~x2x0e22t!e22t. ~9!

For x050 and x.0, Eq. ~9! is the solution for a random
walker in a parabolic potential with initial conditionx050
and an absorbing boundary inx50. The latter requires tha
g(0,t)50 for all t.0.

In order to obtain the avalanche distributionD( l ), we
have to calculate the fluxj (x,t) at x50. Here the continuity
equation together with Eq.~5! gives us a relation between th
flux j (x,t) and the solutiong(x,t) of Eq. ~5!:

j ~x,t !52E ] tg~x,t !dx. ~10!

For avalanches starting att50 and lasting untilt5 l , this
leads to

D~ l !5 j ~x,t5 l !ux505A8

p
~12e24l !23/2e22l . ~11!

Note that Eq.~11! is exact in the continuum limit; however
it is an approximation to the avalanche distribution deriv
numerically from Eq.~1! and calculated below. For sma
avalanche lengthsl, the discrete nature of our model plays a
important role and thus the accuracy of Eq.~11! is expected
to decrease. Figure 1 displays the perfect agreement ofD( l )
up to smalll, calculated according to Eq.~11! and numeri-
cally derived from Eq.~1!. Up to avalanche lengths of th
system size,l &1 (l&N), the distribution follows a power
law ; l 23/2, but for l .1 (l.N), the power law is exponen
tially suppressed withe22l due to finite size effects
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Unfortunately we could not show the discrete soluti
@Eq. ~4!# because of numerical evaluation difficulties forN
52500. However, we verified that for smallerN the analyti-
cal and numerical solutions of Eq.~1! are indentical for all
avalanche sizes~not shown!.

IV. SUPPRESSING DISTURBANCES

Let us now consider the problem of controlling av
lanches. To suppress large avalanches, we stabilize the
tem in its critical state. The simplest method by which
achieve this is to rewrite Eq.~1! such that in every time ste
t another grain of sand is added ifN1,^N1&

t or removed if
N1.^N1&

t with a constant probabilityr. This mechanism
drives the system systematically back to its critical state
the continuum limitN→`, using the same scaling variable
as before and settingr5r /AN, we obtain the Fokker-Planc
equation for the disturbed system:

] t f ~x,t !5F1

2
]x

212]xS x2sgn~x!
r

2D G f ~x,t !, ~12!

where sgn(x) denotes the signum function. The only diffe
ence between this equation and the undisturbed Eq.~5! is a
shift of the parabolic potential by sgn(x)r /2. In analogy, we
may also drive the system away from the critical state,
sulting in a potential shift of2sgn(x)r /2 in the other direc-
tion. This divides the dynamics of the system into a subcr
cal and supercritical regime in terms of the avalanc
distributions. In order to estimate these distributions, we c
sider as before a random walker in the respective poten
The different potentials felt by the walker are indicated
Fig. 2 for the undisturbed system as well as the subcrit
and supercritical regimes.

Returning to the picture of the flea model, this controlli
mechanism simply means that in every time step we co
the number of fleas on both dogs and force, with a cer

FIG. 1. Comparison of the approximate analytical~solid line!
and numerical~dash-dotted line! solutions for the distribution of the
avalanche lengths. The two curves are in perfect agreement in
the power law regime as well as the exponential tail. Only pr
abilities of very short avalanches are underestimated~see text!. The
numerical solution is calculated according to Eq.~1! with N
52500. The avalanche lengths are scaled in terms of the sy
sizeN, such thatl 51 corresponds to a length ofl5N.
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probability, another flea to jump from the dog bearing mo
fleas to the other one or vice versa.

Subcritical regime

The avalanche distributionD( l ,r ) in the subcritical re-
gime is estimated by considering all paths of a random w
starting and ending atx50. Note, however, that now an
increased force ofF52(x1r /2) drives the walker back to
the origin. An avalanche withx,0 corresponds to a random
walk starting and ending atx52r /2 for x<r /2 in the undis-
turbed potential. Due to the symmetry of the system,
same argument holds for avalanches withx.0. Therefore, it
is sufficient to consider only one case. In such an asymme
situation, we are not able to calculate the exact avalan
distribution as done in Sec. III. For this reason, we estim
the avalanche distribution first by calculating the probabil
of all paths starting and ending atx52r /2 @see Eq.~6!# in
the undisturbed potential. Second, the distribution
weighted by the probability that the walker has not reach
the forbidden area. This is specified by the integral of E
~11! from l to `. This leads to:

D~ l ,r !;S E
l

`

s l 8
23e22l 8dl 8Ds l

21 expS 2
r 2~12e22l !2

2~12e24l !
D

52~12e24l !21e22l expS 2
r 2~12e22l !2

2~12e24l !
D . ~13!

Numerical solutions of the subcritical regime are shown
Fig. 3 for different values ofr.

th
-

m

FIG. 2. Potential felt by the random walker in the undisturb
critical case~top graph!, as well as in the subcritical~middle graph,
solid line! and supercritical~bottom graph, solid line! regimes. The
subcritical and supercritical regimes are obtained by a shift of6r /2
of the original parabolic potential. Note that in the supercritic
regime, the two minima are separated by a potential barrie
x50 and the walker may get trapped for long times arou
x56r /2.
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Supercritical regime

In the supercritical regime, the random walker feels
drift force F52(x1r /2) that restrains the walker from re
turning to the originx50. This is readily seen in Fig. 2
noting the potential barrier atx50 separating the two energ
minima atx6r /2. Thus, for larger the walker may become
trapped aroundx6r /2 for very long times. However, fo
small avalanche lengths, the avalanche distribution is e
mated using analogous arguments as in the subcritica
gime. Estimations for the two regimes differ only for larg
avalanches (l .1). Here, the distribution is estimated by th
time it takes for a random walker starting atx6r /2 to reach
x50. This corresponds to a random walker starting ax
50 of the undisturbed potential, trying to reachx6r /2:

D~ l ,r !;~12e24l !21/2expS 2
r 2

2~12e24l !
D . ~14!

For lengthsl @1 (l@N), this leads toD( l ,r )5const. Nu-
merical solutions of the subcritical and supercritical regim
are shown in Fig. 3 for different values of the external d
turbancer. The results for the supercritical regime resem
those obtained by Bundschuh and La¨ssig@5# for Flyvbjerg’s

FIG. 3. Numerical solution of the subcritical and supercritic
avalanche distributions for different degrees of controlling withN
51000. All distributions are normalized to 1. For avalanche leng
l &1, the subcritical and supercritical distributions are very simi
However, in the supercritical regime, avalanches withl .1 are far
more likely and occur over a certain range with almost cons
probability. This corresponds to the analytical estimation in E
~14!.
.
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model with very small absorption rates. In this limit, the tw
models, Flyvbjerg’s and ours, become quite similar, the s
difference being that we do not distinguish between grain
the reservoir and those in the avalanche. They found an
ponential distribution dominating the power law and dras
cally increasingthe frequency of large avalanches. Togeth
with Flyvbjerg, they point out that SOC systems must
sufficiently damped. In our model, this refers to the critic
case withr 50. For rÞ0, the power law and thus SOC i
suppressed with an efficiency increasing withur u. In particu-
lar, for r ,0 we also observe an increase of large avalanc
( l .1) over the power law.

The numerical solution displayed in Fig. 3 shows th
with regard to the undisturbed system, avalanches up
length of l &1 are suppressed in both regimes. This sugge
that the dynamics of a sandpile having an angle sligh
above and slightly below the critical value are very simi
~see Fig. 3!.

V. CONCLUSIONS

We have shown that our simple model is SOC in t
sense that it reaches a critical state without external tun
In the critical state, the probability distribution of distu
bances propagating through the system is scale invariant
follows a power law over many orders of magnitude. Mor
over, the analytical solution in the continuum approximati
@Eq. ~11!# is in perfect agreement with numerical solutions
the discrete model@Eq. ~1!# except fort;O(1/N). It repro-
duces not only the power law regime, but also the expon
tial tail of the distribution. In addition, we have shown that
suitable drift, stabilizing the system in its critical state, su
presses large avalanches. Interestingly, the same effe
achieved when driving the system away from the critic
state. This results in very similar avalanche distributions
to avalanche lengths corresponding to the system size.

We introduced a grain-conservating variant of sandp
models. However, an equivalently valid interpretation of o
model is Ehrenfest’s flea model@8#. Therefore, our mode
describes the process of approaching an equilibrium stat
a large set of uncoupled two-state systems together with fl
tuations ~avalanches! around this state. Two-state system
where this effect is observable are abundant in nature~see,
e.g.,@9#!. We just mention Ising magnets in the paramagne
state. One-sided deviations of the magnetization from z
will display avalanches whose durations are distributed w
a power law. Thus, we suggest that SOC is an inherent p
nomenon of slow leveling processes.
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