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Methods

The methods are based on a straightforward application of evolutionary game dynamics for

finite populations. First, we discuss the dynamics based on social learning together with ana-

lytical approximations and implementations of individual based simulations. In section 1 we

describe what happens in the absence of punishment, i.e. for three strategies: X-players partic-

ipate, and contribute an amount c to the public goods (PG) game; Y -players participate, but do

not contribute; and Z-players do not participate. With X , Y and Z, we also denote the number

of players using the corresponding strategy (and M = X + Y + Z is the total population size,

which we assume to be constant). In sections 2 and 3, we additionally consider V -players, who

contribute to the PG as well as to a punishment pool, with and without second-order punish-

ment. In sections 4 and 5 this is repeated for W -players, who contribute to the PG game and

then peer-punish (with or without second order punishment). Finally, in section 6, we address

the competition of peer and pool punishment (i.e., M = X+Y +Z+V +W ). In each section,

we compute the average payoff values, and analyze a limiting case (’strong imitation’).

1Social learning

We assume that two players i and j are randomly chosen. Their expected payoff values Pi and

Pj depend on the strategies of the two players and on the frequencies X, Y, ... of the strategies.

There are many ways to model social learning. We shall assume that player i adopts the strategy

of player j with a probability which is an increasing function of the payoff difference Pj − Pi.

A frequently used choice for this probability is

1

1 + exp [−s(Pj − Pi)]
, (1)

where the ’imitation strength’ s ≥ 0 measures how strongly the players are basing their de-

cisions on payoff comparisons31,32,33,34,35. For s → 0 (or for Pi = Pj), a coin toss decides

whether to imitate or not. Small values of s correspond to a regime we call ’weak imitation’. In

this case, imitation is basically random, but more successful players are imitated slightly more

often. For s → +∞, i.e., ’strong imitation’, a more successful player is always imitated, a less

successful never. The homogeneous populations correspond to absorbing states of the stochastic

process: once such a state is reached, imitation cannot produce any change. Thus we shall as-

sume that additionally, with a certain probability µ > 0 (the exploration rate), a player switches

randomly to another strategy without imitating another player. The resulting Markov chain has

a stationary distribution which, if the population size M is large and there are more than two

strategies, requires considerable efforts to compute numerically. In addition to individual-based

computer simulations, we shall consider the limiting case of very small exploration rates, the

so-called ’adiabatic’ case. In that case, if in a homogeneous population a single dissident arises,

then its fate (elimination or fixation) will be settled through the imitation process before the

next exploration step occurs.

More precisely, let us assume that there are d strategies 1,...,d. By Xk we denote the number

of players using strategy k (ΣXk = M ). The homogeneous population with Xk = M will be

denoted by Allk. With probability µ/(d − 1), a single individual switches from k to l = k.

The probability that subsequently, imitation leads to the fixation of the dissident strategy l is

denoted by ρkl. The fixation probability can be computed by the formulas known from the
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theory of birth-death processes34,35,36,

ρkl =
1

1 +
M−1

q=1

q
Xl=1

Tl→k(Xl)
Tk→l(Xl)

.

In our case, the probability that one out of Xl players with strategy l is chosen as a focal player

and imitates one of the Xk = M −Xl players with strategy k is given by

Tl→k(Xl) =
Xl

M

M −Xl

M

1

1 + exp [−s(Pk − Pl)]
,

where payoffs Pl and Pk depend on the number of l and k players, i.e., on Xl and Xk = M−Xl.

The fixation probability ρkl simplifies to

ρkl =
1

1 +
M−1

q=1 exp

s
q

Xl=1 (Pk − Pl)
 (2)

This form makes it easy to address the limit of strong imitation, s → +∞.

The probability of a transition from Allk to Alll is µρkl/(d − 1). If the d × d transition

matrix is mixing, it has a unique normalized left eigenvector to the eigenvalue 1, and this is

the stationary distribution which describes the percentage of time (in the long run) spent by the

state of the population in the vicinity of the homogeneous state Allk. One can show37,38 that the

stationary distribution of the full system converges for µ → 0 to the stationary distribution of

this ’embedded’ Markov chain on the homogeneous states whose transition probabilities from

Allk to Alll (for k = l) are given by ρkl/(d − 1) (µ cancels out). For numerical confirmation,

we refer to Fig. 1 (in the Supplementary Information).

Simulations and numerical solutions

The individual based simulations mimic the social learning dynamics outlined above for arbi-

trary exploration rates, µ. Each individual achieves an average payoff based on random sam-

pling of the interaction groups. This reflects a situation where individuals interact often and

only occasionally reassess and update their strategies. With probability µ, players randomly

adopt any other available strategy, and with probability 1− µ, they update according to Eq. (1).

The long-run mean frequency of each strategy is determined by averaging over T > 107 updates

per player.

3



3www.nature.com/nature

SUPPLEMENTARY INFORMATIONdoi: 10.1038/nature09203

theory of birth-death processes34,35,36,

ρkl =
1

1 +
M−1

q=1

q
Xl=1

Tl→k(Xl)
Tk→l(Xl)

.

In our case, the probability that one out of Xl players with strategy l is chosen as a focal player

and imitates one of the Xk = M −Xl players with strategy k is given by

Tl→k(Xl) =
Xl

M

M −Xl

M

1

1 + exp [−s(Pk − Pl)]
,

where payoffs Pl and Pk depend on the number of l and k players, i.e., on Xl and Xk = M−Xl.

The fixation probability ρkl simplifies to

ρkl =
1

1 +
M−1

q=1 exp

s
q

Xl=1 (Pk − Pl)
 (2)

This form makes it easy to address the limit of strong imitation, s → +∞.

The probability of a transition from Allk to Alll is µρkl/(d − 1). If the d × d transition

matrix is mixing, it has a unique normalized left eigenvector to the eigenvalue 1, and this is

the stationary distribution which describes the percentage of time (in the long run) spent by the

state of the population in the vicinity of the homogeneous state Allk. One can show37,38 that the

stationary distribution of the full system converges for µ → 0 to the stationary distribution of

this ’embedded’ Markov chain on the homogeneous states whose transition probabilities from

Allk to Alll (for k = l) are given by ρkl/(d − 1) (µ cancels out). For numerical confirmation,

we refer to Fig. 1 (in the Supplementary Information).

Simulations and numerical solutions

The individual based simulations mimic the social learning dynamics outlined above for arbi-

trary exploration rates, µ. Each individual achieves an average payoff based on random sam-

pling of the interaction groups. This reflects a situation where individuals interact often and

only occasionally reassess and update their strategies. With probability µ, players randomly

adopt any other available strategy, and with probability 1− µ, they update according to Eq. (1).

The long-run mean frequency of each strategy is determined by averaging over T > 107 updates

per player.

3



4www.nature.com/nature

doi: 10.1038/nature09203 SUPPLEMENTARY INFORMATION

0.0001 0.001 0.01 0.1 1
0

0.2

0.4

0.6

0.8

1

0.0001 0.001 0.01 0.1 1
0

0.2

0.4

0.6

0.8

1

0.0001 0.001 0.01 0.1 1
0

0.2

0.4

0.6

0.8

1

0.0001 0.001 0.01 0.1 1
0

0.2

0.4

0.6

0.8

1

0.0001 0.001 0.01 0.1 1
0

0.2

0.4

0.6

0.8

1

0.0001 0.001 0.01 0.1 1
0

0.2

0.4

0.6

0.8

1

0.0001 0.001 0.01 0.1 1
0

0.2

0.4

0.6

0.8

1

0.0001 0.001 0.01 0.1 1
0

0.2

0.4

0.6

0.8

1

fre
qu

en
ci

es

exploration rate µ

fre
qu

en
ci

es

exploration rate µ

a b

c d

cooperators X defectors Y non-participants Z pool-punishers V peer-punishers W

Figure 1: Scenarios of sanctioning in public goods games for variable exploration rates µ. For large
µ, random exploration dominates, which results in roughly equal average frequencies of all available
strategies. All strategies tend to be present in the population at all times. Because a fraction µ of the
population always mutates, the minimum frequency of each strategy is µ/d (for d strategies) and the grey-
shaded areas are inaccessible to the process. For smaller µ, the population spends increasing amounts of
time in homogeneous states between subsequent mutations. (a) even though sufficiently large µ can push
the population from the region of attraction of AllY to AllV, the population is unable to remain near this
cooperative state and defection dominates. (b) in voluntary public goods games, pool punishers prevail
except for large µ, where risk-averse non-participants take over. (c, d) whether peer-punishers or pool-
punishers prevail in voluntary public goods games depends on second-order punishment (c.f. Fig. 3).
Without second-order punishment, peer-punishers prevail, c, but exploration rates µ of order 0.01 are
large enough to destroy cooperation, so that non-participants prevail. With second-order punishment,
pool-punishers dominate, (d), and since AllV is strongly attracting, much larger µ-values are required
before cooperation is destroyed. The data points, obtained by having each player update 107 times, are
supported by analytical approximations (solid lines) for very small values of µ. Parameters: same as in
Fig. 2 (main text), but with fixed imitation strength s = 10 and variable exploration rate µ.
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Numerical computations of the stationary distribution (for small µ) based on the fixation

probabilities in Eq. (2) and individual-based simulations show that the results hold not only for

the limiting case, but for a large set of plausible values for the parameters µ, s, c, r, γ, β, M , G

and B, see37,38. For online experimentation, we refer to http://www.hanneloredesilva.at/sanctions

and the VirtualLabs at http://www.univie.ac.at/virtuallabs.

1 No punishment

In a population consisting of X contributors and Y = M −X defectors, random samples of N

individuals play the PG game. A co-operator obtains on average

N−1
k=0

�
X−1
k

�
M−X
N−1−k


�
M−1
N−1

 (rc
k

N − 1
− c)

= rc
X − 1

M − 1
− c

(the summation variable k represents the number of other contributors, sampling is done without

replacement, probabilities obey the hypergeometric distribution). Defectors obtain from the

public good on average

N−1
k=0

�
X
k

�
M−1−X
N−1−k


�
M−1
N−1

 rc
k

N − 1
= rc

X

M − 1
.

Let us now assume that the population consists of X contributors, Y defectors and Z non-

participants. The probability that the other N−1 players of a sample are unwilling to participate

is �
Z

N−1


�
M−1
N−1

 .

Hence the average payoff for defectors is

PY =

�
Z

N−1


�
M−1
N−1

σ + (1−
�

Z
N−1


�
M−1
N−1

)rcM − Z − Y

M − Z − 1
, (3)

that for contributors

PX =

�
Z

N−1


�
M−1
N−1

σ + (1−
�

Z
N−1


�
M−1
N−1

)c(rM − Z − Y − 1

M − Z − 1
− 1), (4)
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and of course PZ = σ (cf.39). The three strategies form a Rock-Paper-Scissors cycle. More

precisely, if Z = 0, defectors do always better than contributors (PY > PX); but in the absence

of contributors (X = 0), non-participants do better than defectors (PZ ≥ PY , with equality

if and only if Y = 1); and in the absence of defectors (Y = 0), contributors do better than

non-participants (PX ≥ PZ , with equality if and only if X = 1).

The resulting stochastic process exhibits cycling behavior. It is clear that if most players use

strategy X , then Y -players do better, and if most players use strategy Y , the Z-players do better.

It is less obvious to see why, in a population where most players use Z, X players do best. But

if most players are non-participants, PG groups are small. In that case, random fluctuations can

lead to groups with mostly X-players, who do well, so that many imitate them. This relates to

Simpson’s paradox39

For small exploration rates, the embedded Markov chain describing the transitions between

AllX , AllY and AllZ is given by


1− 1
2
ρXY − 1

2
ρXZ

1
2
ρXY

1
2
ρXZ

1
2
ρY X 1− 1

2
ρY X − 1

2
ρY Z

1
2
ρXY

1
2
ρZX

1
2
ρZY 1− 1

2
ρZX − 1

2
ρZY


 . (5)

The normalized left eigenvector to the eigenvalue 1 gives the stationary distribution, which by

Eq. (2) can be evaluated numerically as a function of the imitation strength s. This is the basis of

the analytical approximation under weak mutation shown in Figs. 2 and 3 (main text) and Fig. 1

(SI). In the limiting case of strong imitation, s → +∞, the embedded Markov chain simplifies

significantly; for instance, ρXZ = 0 and ρXY = 1. Interestingly, ρZX = 1/2. The reason is that

a single X-mutant in a population of Z-players cannot participate in any game, and has payoff

σ like the other non-participants. The next change obtained through the imitation process is

equally likely to revert the X-player to the fold or to produce a second X-player. From then on,

X-players have an expected payoff larger than σ and will increase to fixation. The transition

matrix between AllX , AllY and AllZ reduces for s → ∞ to


1
2

1
2

0

0 1
2

1
2

1
4

0 3
4


 (6)
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and the stationary distribution (the left eigenvector to the eigenvalue 1) is given by (1
4
, 1
4
, 1
2
). The

same argument used to simplify the dynamics for small µ and s → ∞ is used in the discussion

about punishment below.

2 Pool Punishment

Let us now assume in addition that V of the M players engage in pool punishment. This means

that when Nv of them find themselves in a PG game, they not only contribute c to the public

good, but pay an extra fee G towards the punishment pool. The fine of each exploiter will be

proportional to the number of punishers, and hence of the form NvB, for some B > 0.

For the moment, we neglect the possibility of second-order punishment (i.e. the punishment

of non-punishers). The payoffs for non-participants and contributors are therefore unaffected.

The payoff for pool-punishers satisfies

PV =

�
Z

N−1


�
M−1
N−1

σ + (1−
�

Z
N−1


�
M−1
N−1

)[c(rM − Z − Y − 1

M − Z − 1
− 1)−G]. (7)

Indeed, punishers only pay a fee into the pool if another player is willing to participate. The

payoff for defectors is

PY =

�
Z

N−1


�
M−1
N−1

σ + (1−
�

Z
N−1


�
M−1
N−1

)crM − Z − Y

M − Z − 1
− B(N − 1)V

M − 1
. (8)

(If there is at least one punisher among the N − 1 co-players in the sample, the PG game is

played.)

If we assume that a population of pool-punishers does better than the non-participants, i.e.,

that

σ < (r − 1)c−G, (9)

then we obtain, in the case of strong imitation, the following embedded Markov chain for the

transitions between the states AllX,AllY, AllZ and AllV :


2
3

1
3

0 0

0 2
3

1
3

0

1
6

0 2
3

1
6

1
3

0 0 2
3




. (10)
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The explanation for the 1
6

terms is the same as that for the 1
4

in (6). If, in an AllZ-population, a

mutation produces a single X-player, this player finds no partners for the PG game and obtains

the same payoff as the non-participants. The next change obtained through the imitation process

is equally likely to revert the X-player to the fold or to produce a second X-player. From then

on, X-players have an expected payoff larger than σ and will increase to fixation.

The unique stationary distribution is given by 1
7
(2, 2, 2, 1). This corresponds to two rock-

paper-scissors cycles, one from AllY to AllZ to AllX and back to AllY again, the other (four-

membered) from AllY to AllZ to AllV to AllX and back to AllY . Computer simulations

confirm that the four homogeneous states supersede each other.

If the game is compulsory, i.e., if there are no Z-players, then the transitions between the

states AllX , AllY and AllV are given by



1
2

1
2

0

0 1 0

1
2

0 1
2


 (11)

and the stationary distribution is (0, 1, 0). Free-riders take over.

3 Second-order pool-punishers

Let us now assume that the second-order exploiters, i.e., the X-players, are also punished. Thus

their payoff is given by

PX =

�
Z

N−1


�
M−1
N−1

σ + (1−
�

Z
N−1


�
M−1
N−1

)c(rM − Z − Y − 1

M − Z − 1
− 1)− B(N − 1)V

M − 1
. (12)

The other payoff values remain unchanged.

If pool-punishers can invade non-participants, i.e., (9) holds, the embedded Markov chain is

given by in the case of strong imitation by



2
3

1
3

0 0

0 2
3

1
3

0

1
6

0 2
3

1
6

0 0 0 1




. (13)
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The unique stationary distribution is (0, 0, 0, 1), which means that punishers prevail.

4 Peer Punishment

Let us now assume instead that W players in the population engage in peer punishment. Each

peer-punisher imposes a fine β on each defector in his or her sample, at a cost γ. Thus if there

are Ny defectors and Nw peer-punishers in the sample, each defector pays a total fine Nwβ, and

each punisher incurs a cost Nyγ. We first omit second-order punishment.

In the absence of pool punishment, i.e. if M = X + Y + Z + W , the average payoff for

punishers is

PW = PX − (N − 1)Y

M − 1
γ (14)

where PX is given by (4), and the defectors’ payoff is given by the expression in (3), reduced

by
(N − 1)W

M − 1
β. (15)

For strong imitation, the embedded Markov chain on the states AllX , AllY , AllZ and AllW

has the transition matrix 


2
3
− 1

3M
1
3

0 1
3M

0 2
3

1
3

0

1
6

0 2
3

1
6

1
3M

0 0 1− 1
3M




. (16)

If, for instance, W -dissidents arise in an X-population, they do as well as the residents (all

contribute, no one punishes), and the fixation probability in this ’neutral case’ is 1/M . It is easy

to see that this Markov chain has a unique stationary distribution, given by

1

M + 8
(2, 2, 2,M + 2). (17)

For instance, if the populations size is M = 92, then for 94 percent of the time, the population

is dominated by peer punishers.
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5 Second order peer-punishers

Let us now assume that peer-punishers engage in second-order punishment: thus they impose

fines β on the contributors too, at a cost γ to themselves.

If M = X + Y + Z +W , the average payoff PX for contributors is given by (4), reduced

by the average fine
(N − 1)W

M − 1
β(1−

�
M−Y−2
N−2


�
M−2
N−2

 ) (18)

and the peer-punishers’ payoff by (14), reduced by the average cost

(N − 1)X

M − 1
γ(1−

�
M−Y−2
N−2


�
M−2
N−2

 ) (19)

for meting out extra punishment. The term (1− ...) corresponds to having at least one defector

in the sample (otherwise a punisher cannot be aware that the contributor does not punish).

In the limiting case of strong imitation, the Markov chain is exactly as before. Indeed, during

the imitation process the population never consists of more than two types. Hence second-order

punishment (which requires that W -players see that X-players fail to punish Y -players) will

never occur.

6 The competition of pool- and peer-punishers

The outcome is: without second order punishment, pool-punishers lose and peer-punishers pre-

dominate in the long run. With second-order punishment, it is just the reverse. (We assume

that pool-punishers punish peer-punisher, since these do not contribute to the punishment pool.

It seems less likely that peer-punishers will punish pool-punishers, and we shall not assume it

here. However, we stress that this assumption does not really matter. The reason: in a popula-

tion with peer- and pool-punishers only, peer-punishment is not used and the pool-punishers do

not reveal that they do not engage in it.)

Let us first consider the case without second-order punishment. For strong imitation, the

embedded Markov chain describing the transitions matrix between AllX , AllY , AllZ, AllV

10
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and AllW is 


3
4
− 1

4M
1
4

0 0 1
4M

0 3
4

1
4

0 0

1
8

0 5
8

1
8

1
8

1
4

0 0 1
2

1
4

1
4M

0 0 0 1− 1
4M




. (20)

The unique stationary distribution is 1
3M+23

(6, 6, 4, 1, 3M + 6). This means that the majority

consists of peer-punishers. In the case with second-order punishment, the matrix is



3
4

1
4

0 0 0

0 3
4

1
4

0 0

1
8

0 5
8

1
8

1
8

0 0 0 1 0

1
4M

0 0 0 1− 1
4M




. (21)

In this case, the stationary distribution is (0, 0, 0, 1, 0). Pool-punishers win.
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