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Stochastic differential equations for evolutionary dynamics with demographic noise and mutations
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We present a general framework to describe the evolutionary dynamics of an arbitrary number of types in
finite populations based on stochastic differential equations (SDEs). For large, but finite populations this allows
us to include demographic noise without requiring explicit simulations. Instead, the population size only rescales
the amplitude of the noise. Moreover, this framework admits the inclusion of mutations between different types,
provided that mutation rates μ are not too small compared to the inverse population size 1/N . This ensures that
all types are almost always represented in the population and that the occasional extinction of one type does
not result in an extended absence of that type. For μN � 1 this limits the use of SDEs, but in this case there
are well established alternative approximations based on time scale separation. We illustrate our approach by
a rock-scissors-paper game with mutations, where we demonstrate excellent agreement with simulation based
results for sufficiently large populations. In the absence of mutations the excellent agreement extends to small
population sizes.
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I. INTRODUCTION

Populations evolve when different individuals have dif-
ferent traits or strategies that determine their reproductive
success. In population genetic models, this success is typically
constant, whereas in evolutionary game theory the fitness of
an individual depends on interactions with other members of
the population. Consequently, fitness depends on the relative
proportions (or frequencies) of different strategic types and
hence gives rise to so called frequency dependent selection.
More successful strategies increase in abundance and may ei-
ther take over the entire population or, as the strategy becomes
increasingly common, may suffer from a decrease in fitness,
which can result in the coexistence of two or more traits within
the population. For example, in host-parasite coevolution, a
rare parasite may be most successful, but once it reaches
high abundance, selection pressure on the host increases
and the host is likely to develop some defense mechanism.
Consequently, the success of the parasite decreases. Such
dynamics can be conveniently described by evolutionary game
theory [1–6].

Traditionally, the mathematical description of evolutionary
game dynamics is formulated in terms of the deterministic
replicator equation [2]. This implies that population sizes are
infinite and populations are unstructured. Only more recently
the stochastic dynamics in finite populations attracted increas-
ing attention [7,8]. Typically, the stochastic approach becomes
deterministic in the limit of infinite populations. For large
but finite populations the dynamics can be approximated by
stochastic differential equations (SDEs) [8–10]. This analytic
approach is a natural extension of the replicator dynamics,
which is capable of bridging the gap between deterministic
models and individual based simulations. Moreover, SDEs are
typically computationally far less expensive than simulations
because the execution time does not scale with population
size.

II. MASTER EQUATION

In unstructured, finite populations of constant size N ,
consisting of d distinct strategic types and with a mutation
rate μ, evolutionary changes can be described by the following
class of birth-death processes: In each time step, one individual
of type j produces a single offspring and displaces another
randomly selected individual of type k. With probability
1 − μ, no mutation occurs and j produces an offspring of
the same type. But with probability μ, the offspring of an
individual of type i (i �= j ) mutates into a type j individual.
This results in two distinct ways to increase the number of
j types by one at the expense of decreasing the number of
k types by one, hence keeping the population size constant.
Biologically, keeping N constant implies that the population
has reached a stable ecological equilibrium and assumes that
this equilibrium remains unaffected by trait frequencies. The
probability for the event of replacing a type k individual with a
type j individual is denoted by Tkj and is a function of the state
of the population X = (X1,X2, . . . ,Xd ), with Xn indicating
the number of individuals of type n such that

∑d
n=1 Xn = N .

For this process it is straightforward to write down a Master
equation [10] and, at this point, there is no need to further
specify the transition probabilities Tkj :

P τ+1(X)= P τ(X)+
d∑

j,k=1

P τ
(
Xk

j

)
Tkj

(
Xk

j

)−P τ (X)Tjk(X), (1)

where P τ (X) denotes the probability of being in state X at time
τ and Xk

j = (X1, . . . ,Xj − 1, . . . ,Xk + 1, . . . ,Xd ) represents
a state adjacent to X .

III. FOKKER-PLANCK AND LANGEVIN EQUATIONS

While the master equation (1) is rather unwieldy, a
Kramers-Moyal expansion yields a convenient approximation
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for large but finite N in the form of a Fokker-Planck equation
[11]

ρ̇(x) = −
d−1∑
k=1

∂

∂xk

ρ(x)Ak(x) + 1

2

d−1∑
j,k=1

∂2

∂xk∂xj

ρ(x)Bjk(x),

(2)

where x = X/N represents the state of the population in terms
of frequencies of the different strategic types and ρ(x) is
the probability density in state x. Due to the normalization∑d

k=1 xk = 1, it suffices to consider d − 1 elements of the
deterministic drift vector Ak(x), k = 1, . . . ,d − 1. Similarly,
we only need to consider a diffusion matrix Bjk(x) with
dimension (d − 1) × (d − 1), that is, j,k = 1, . . . ,d − 1. The
drift vector Ak(x) is given by

Ak(x) =
d∑

j=1

[Tjk(x) − Tkj (x)] = −1 +
d∑

j=1

Tjk(x). (3)

For the second equality we have used
∑d

j=1 Tkj (x) = 1, which
simply states that a k-type individual transitions to some other
type (including staying type k) with probability one. Ak(x) is
bounded in [−1,d−1] because the Tjk are probabilities.

The diffusion matrix Bjk(x) is defined as

Bjk(x) = − 1

N
[Tjk(x) + Tkj (x)] for j �= k, (4a)

Bjj (x) = 1

N

⎧⎨
⎩

d∑
l=1,l �=j

[Tjl(x) + Tlj (x)]

⎫⎬
⎭ . (4b)

For a detailed derivation see, for example, [10] or [12]. Note
that the diffusion matrix is symmetric, Bjk(x) = Bkj (x) and
vanishes as ∼1/N in the limit N → ∞. Moreover, we have
for all diagonal elements Bjj (x) � 0 and for the nondiagonal
elements Bjk(x) � 0. Note that Tjj (x) cancels in Eq. (3) and
does not appear in Eq. (4)—it is thus of no further concern.

The noise of our underlying process is uncorrelated in time
and hence the Itô calculus [11] can be applied to derive a
Langevin equation, which represents in our case a stochastic
replicator-mutator equation,

ẋk = Ak(x) +
d−1∑
j=1

Ckj (x)ξj (t), (5)

where the ξj (t) represent uncorrelated Gaussian white noise
with unit variance 〈ξk(t)ξj (t ′)〉 = δkj δ(t − t ′). The matrix C(x)
is defined by CT (x)C(x) = B(x) and its off-diagonal elements
are responsible for correlations in the noise of different
strategic types.

Fluctuations arising in finite populations are approximated
by the stochastic term in the Langevin equation (5). For given
transition probabilities the matrix C(x) provides a quantitative
description of the fluctuations introduced by microscopic
processes in finite populations. In the limit N → ∞ the matrix
C(x) vanishes with ∼1/

√
N and we recover a deterministic

replicator-mutator equation. Note that the replicator equation
does not impose an upper or lower bound on A [cf. Eq. (3)].
However, this difference merely amounts to a (constant)
rescaling of time.

The multiplicative character of the noise and its strategy-
strategy correlations are determined by the form of the matrix
C(x). In order to determine C(x) we first diagonalize B(x).
Because B(x) is real and symmetric it is diagonalizable
by an orthogonal matrix U(x) with U(x)UT (x) = 1, where
1 denotes the identity matrix. Moreover, the normalized
eigenvectors f i(x) of B(x) form an orthonormal basis
f i(x) · f j (x) = δij . Thus we can construct the transforma-
tion matrix U(x) = [ f 1(x), . . . , f d−1(x)] such that B(x) =
U(x)�(x)UT (x), where �(x) is a diagonal matrix with the
eigenvalues λi(x) of B(x) along its diagonal. From Eq. (4)
follows that B(x) is positive definite and hence all eigenvalues
λi(x) are positive. Here we tacitly assume that all Tjk are
nonzero; if certain transitions are excluded, B(x) is positive
semidefinite and eigenvalues can be zero.

Finally, our matrix C(x) is given by

C(x) = U(x)

⎛
⎜⎜⎝

√
λ1 . . . 0
...

. . .
...

0 . . .
√

λd−1

⎞
⎟⎟⎠UT (x). (6)

This standard procedure to diagonalize matrices can be easily
implemented numerically. However, the diffusion matrix B(x)
obviously depends on the transition probabilities and thus on
the abundances of all strategies. Consequently, the procedure
to calculate C(x) must be continuously repeated as time
progresses and the state x changes. This is computationally
inconvenient and therefore it is desirable to calculate C(x)
analytically.

The simplest case with d = 2 strategic types results in a one-
dimensional Fokker-Planck equation [8]. Moreover, in special
cases, for example in cyclic games such as the symmetric
rock-scissors-paper game, the Fokker-Planck equation (2) can
be approximated in polar coordinates [13]. However, such
cases are nongeneric and here we focus on general, higher
dimensional situations with d � 3. As a particular example
to illustrate the framework numerically, we provide a detailed
analysis of a generic rock-scissors-paper game.

IV. MULTIPLICATIVE NOISE FOR SPECIFIC PROCESSES

In general, the diffusion matrix B(x) depends not only
on the frequencies x but also on the payoffs (fitness) of the
different strategic types. In this case, an analytic representation
of C(x) is only of limited use because it would be valid just for
one particular game. However, B(x) becomes payoff indepen-
dent if Tjk(x) + Tkj (x) is payoff independent. Fortunately this
holds for the broad and relevant class of pairwise comparison
processes. In these processes, a focal individual f and a model
m with payoffs πf and πm are picked at random and a payoff
comparison determines whether the focal individual switches
its strategy.

Let γ (πf ,πm) be the probability that the focal individual
adopts the strategy of the model (see, e.g., [14,15]) and assume
that every mutation leads to a different strategy. Then the
transition probabilities from type k to type j read

Tkj (x) = (1 − μ)xkxjγ (πj ,πk) + μxk

1

d − 1
(7)
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for j �= k. Consequently, any pairwise comparison process
with

γ (πj ,πk) + γ (πk,πj ) = const. (8)

leads to a payoff independent diffusion matrix B(x). If Eq. (8)
is fulfilled, the noise term in Eq. (5) is independent of the
evolutionary game. In particular, it allows the consideration
of multiplayer games in which the payoff functions are
nonlinear [16]. Examples for evolutionary processes that fulfill
Eq. (8) include the local update process [8] with γ (πj ,πk) =
1
2 + w(πj − πk), where w indicates the strength of selection
acting on payoff differences between different strategic types.
For w � 1 selection is weak, payoff differences amount to
little changes in fitness and the process is dominated by
random updating. For larger w selection strength increases
but an upper limit is imposed on w by the requirement
0 � γ (πj ,πk) � 1. Another example is the Fermi process
[17–19] with γ (πj ,πk) = {1 + exp[−w(πj − πk)]}−1. Again
w indicates the selection strength but without an upper bound.
In the limit w → ∞, that is, γ (πj ,πk) = �[πj − πk], where
�[x] denotes the Heavyside step function, the imitation
dynamics [20,21] is recovered. A further example, where
γ (πj ,πk) does not simply depend on the difference between
its arguments, is γ (πj ,πk) = πj

πj +πk
[7,22]. Incidentally, all

examples above satisfy γ (πj ,πk) + γ (πk,πj ) = 1 but, for
example, there might be resilience to change in the local
update process such that γ (πj ,πk) = α[ 1

2 + w(πj − πk)] with
0 < α < 1 and hence γ (πj ,πk) + γ (πk,πj ) = α < 1.

Last but not least, an example of an important process that
does not lead to a payoff independent B(x) is given by the
standard frequency dependent Moran process [7,23,24] or its
linearized equivalent [12,25].

In the following we concentrate on cases with γ (πj ,πk) +
γ (πk,πj ) = 1. This leads to

Bjk(x) = 1

N

[
−xjxk(1 − μ) − μ

d − 1
(xj + xk)

]
for j �= k

(9)

and

Bjj (x) = 1

N

{
xj (1− xj )(1− μ) + μ

d − 1
[1 + xj (d − 2)]

}
.

(10)

Unfortunately, even in this case, a full derivation of C(x) is
difficult for general d. Thus we focus on the more manageable
but highly illustrative case of d = 3. Henceforth, we set x1 = x

and x2 = y (and x3 = 1 − x − y) for convenience.

A. No mutations, μ = 0

For d = 3 and in the absence of mutations, we can give a
relatively compact analytic expression for C(x),

B(x) = 1

N

(
x(1 − x) −xy

−xy y(1 − y)

)
. (11)

The eigenvalues of this matrix are

λ±(x) = K+ ± L

2N
, (12)

where K± = x(1 − x) ± y(1 − y) and L =
√

K2
− + 4x2y2.

The eigenvectors are given by

f ±(x) = 1

N (−K− ± L,2xy) , (13)

where N =
√

4x2y2 + (−K− ± L)2 is a normalization fac-
tor. From this, it is straightforward to construct the
transformation matrix U(x) = [ f +(x), f −(x)]. The product
U(x)

√
�(x) UT (x) then yields our matrix C(x), which can be

written as

Cxx(x) = 1√
2N

⎛
⎝

√
Q+−

1 + ( 2xy

Q−−

)2 +
√

Q++
1 + ( 2xy

Q−+

)2

⎞
⎠ , (14a)

Cxy(x) = Cyx = xy√
2NL

(
√

Q+− −
√

Q++), (14b)

Cyy(x) = 1√
2N

⎛
⎝

√
Q+−

1 + ( 2xy

Q−+

)2 +
√

Q++
1 + ( 2xy

Q−−

)2

⎞
⎠ , (14c)

where Q±± = K± ± L. It is obvious that Cxx(x) � 0 and
Cyy(x) � 0. Since L � 0, we have Q++ � Q+− and therefore
Cxy(x) � 0. It is remarkable that even for this simple B(x),
the matrix C(x) already takes a rather complicated form
that is not easy to interpret. Therefore, the elements Cxx(x)
and Cxy(x) are plotted in Fig. 1. The remaining element
Cyy(x) follows from the symmetry of the matrix, that is,
in Figs. 1(a) and 1(b), the simplex needs to be mirrored
along the vertical axis x = y. Recall that the matrix C(x)
is independent of the evolutionary game that is played and
does not depend on the microscopic evolutionary process, as
long as Eq. (8), γ (πj ,πk) + γ (πk,πj ) = const., holds. While
analytical calculations of C are also, in principle, feasible for
d = 4 and d = 5, they lead to very lengthy expressions.

B. With mutations, μ > 0

The procedure to derive C(x) remains the same when
including mutations just starting with

B(x) = 1− μ

N

(
x(1− x) −xy

−xy y(1− y)

)

+ μ

2N

(
1+ x −x − y

−x − y 1+ y

)
. (15)

Unfortunately, the analytic expressions for the elements of
C(x) grow to unwieldy proportions. A graphical illustration of
the elements of C(x) for μ > 0 is shown in Fig. 1. Compared
to μ = 0, the entries of Cxx(x) become larger and the noise
terms no longer vanish at the boundaries. For example, at the
corners of the simplex we have for Cxx(x),

Cxx(1,0,0) = 3√
10

√
μ

N
,

Cxx(0,1,0) =
√

2

5

√
μ

N
,

Cxx(0,0,1) = 1√
2

√
μ

N
.
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µ = 0.2
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Cxx

1
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√

N

−1
2
√

2N

0

Cxx

Cxy = Cyx

FIG. 1. (Color online) Elements of the noise matrix C(x,y,z) for
processes fulfilling Eq. (8) with d = 3 strategies for μ = 0 (left)
and μ > 0 (right). (a) The element Cxx determines how the noise
in the x direction affects the x coordinate. In the case of μ = 0,
this noise vanishes for x → 0. For y → 0 and z → 0 we recover
the usual multiplicative noise from one-dimensional evolutionary
processes [8]. (b) For nonvanishing mutations Cxx increases at x → 0
and x → 1 and exceeds the value 1

2
√

N
(contour line) in the interior

of the simplex, which is the maximum value without mutations. The
element Cyy follows from the transformation x ↔ y. (c) The element
Cxy determines how the noise in the x direction affects the y coordinate
(or vice versa). This term is always negative, as explained in the text.
For x → 0 or y → 0, Cxy vanishes in the case of μ = 0. For z → 0
we find Cxy = −Cxx , which ensures that the sum of the noise in the
x coordinate Cxx + Cxy vanishes on this edge of the simplex: If the
noise increases x for z = 0 it has to decrease y by the same amount.
(d) In the case of μ > 0, the noise no longer vanishes at the boundaries
of the simplex but the expressions are too cumbersome to display
explicitly.

For Cxy(x) we obtain at these points

Cxy(1,0,0) = Cxy(0,1,0) = − 1√
10

√
μ

N
,

Cxy(0,0,1) = 0.

In addition, the functional form of the noise term is altered
with increasing μ and becomes significantly more complex
than in the case of no mutations, μ = 0.

For μ > 0 it is important to mention that for small mutation
rates serious mathematical intricacies arise in the vicinity of
absorbing boundaries and saddle-node fixed points [26,27].
Intuitively, the reason for these complications arises from the
diffusion approximation that underlies the derivation of the
Fokker-Planck equation (2). In systems with such absorbing
boundaries (or subspaces where one or more strategic types are
absent) finite populations spend nonnegligible time on these
boundaries in the limit μ � 1/N . In contrast, the diffusion

approximation is based on a continuum approximation, which
reflects the limit N → ∞, and adds finite size corrections for
large, finite N . For example, the state of the population x
is a continuous variable and hence can be located arbitrarily
close to a boundary in both the Fokker-Planck or Langevin
formalisms, Eqs. (2) and (5), but this is impossible in finite
populations. More specifically, this implies that the case of
μ � 1/N , for which the population could get trapped on an
absorbing boundary for an extended period of time, cannot
be captured by the diffusion approximation. Consequently, the
quality of the approximation is expected to decrease for small
μ > 0 and to get worse if N is small too. Interestingly, this
failure of the continuum approximation has not been raised in
population genetics, where similar considerations have been
made, but typically the description is only made on the level
of the Fokker-Planck equation and not based on stochastic
differential equations [28]. However, population geneticists
are typically interested in simpler scenarios, where each type
has a fixed fitness. In this case, the corresponding deterministic
system has no generic trajectories that are close to absorbing
boundaries. Moreover, the usual diffusion approximation in
population genetics, where the selection intensity scales to
zero while the population size diverges, leads to substantial
noise, such that these effects have a minor impact.

For evolutionary games with small mutation rates one is
typically not forced to apply this relatively complex approxi-
mation. Instead, a time scale separation between mutation and
selection allows to approximate the dynamics based on a pair-
wise consideration of strategies by considering an embedded
Markov chain over the (quasiabsorbing) homogenous states of
the population [29–33].

V. APPLICATION TO THE ROCK-PAPER-SCISSORS
GAME

To compare our approach based on stochastic differential
equations in d − 1 dimensions to individual based simulations
with d strategies, we focus on the case of d = 3 where we
have obtained closed analytical results above for μ = 0. As an
example, we consider the cyclic dynamics in the rock-scissors-
paper game, which is not only a popular children’s game,
but also relevant in biological [34–37] and social systems
[38,39]. Moreover, the evolutionary dynamics of this game
is theoretically very well understood, both in infinite as well
as in finite populations [2,13,14,40–42]. Here we focus on a
generic rock-scissors-paper game with payoff matrix

R S P

R

S

P

⎛
⎜⎝

0 s
2 −1

−1 0 2 + s
1+s

3 −1 0

⎞
⎟⎠ (16)

which avoids artificial symmetries. According to the replicator
equation, the game exhibits saddle node fixed points at x = 1,
y = 1, and z = 1 − x − y = 1 as well as an interior fixed point
at x̂ = ( 1

2 , 1
3 , 1

6 ), independent of the parameter s but s controls
the stability of x̂. For s > 1, x̂ is a stable focus and an unstable
focus for s < 1. We do not consider the nongeneric case of
s = 1, which exhibits closed orbits [2].
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(a)

(b)

(c)

FIG. 2. Comparison of trajectories for the (a) deterministic case
(replicator equation), (b) stochastic differential equation [Eq. (5)],
and (c) individual based simulations for an RSP interaction with
weakly attracting interior fixed point x̂ with s = 1.4 [cf. Eq. (16)]
and N = 1000 [in (b) and (c)]. Stochastic trajectories start close to x̂
and end at time T = 349.9 (b) and T = 395.8 (c). Simulations can
also be performed online at [43].

Let us first analyze the fixation probabilities and the fixation
times for the case without mutations μ = 0 for a game with
s = 1.4, such that x̂ is an attractor. The replicator equation,
obtained in the limit N → ∞, predicts that fixation never
occurs and that the population evolves toward x̂, see Fig. 2(a).
In contrast, in the stochastic system ultimately two strategies
are lost, see Figs. 2(b) and 2(c). Most importantly, the sample
trajectories generated by the stochastic differential equation (5)
in Fig. 2(b) do not exhibit any qualitative differences when
compared to individual based simulations [Fig. 2(c)]. As
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1
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4000(a) (b)

(c) (d)

FIG. 3. Probability of absorption and time to absorption (in the
absence of mutations, μ = 0). (a) and (c) Probability to reach one of
the three absorbing homogenous states of rock (solid line, �), scissors
(dashed line, �), or paper (dotted line, �) as well as (b) and (d) the
associated time to absorption for rock as a function of the population
size N with a stable (top row, s = 1.4) and unstable (bottom row,
s = 0.8) interior fixed point x̂. If x̂ is an attractor [(a) and (b)] it
may take exceedingly long times for large N until the population
reaches an absorbing state—even though this will inevitably occur.
Because of this results are only shown up to N = 3000. No such
limitations occur if x̂ is a repellor. The symbols indicate results
from individual based simulations. Error bars and gray shaded areas
indicate the standard deviation of the mean for simulations and
stochastic calculations, respectively. Simulation results and results
based on the stochastic differential equation [Eq. (5)] were both
averaged over 105 independent runs.

a complementary scenario, we consider a game with s =
0.8, such that x̂ is a repellor. According to the replicator
equation trajectories now spiral away from x̂ toward the
boundaries of the simplex and approach a heteroclinic cycle.
The probabilities that the population reaches any one of the
three homogenous absorbing states in either scenario is shown
in Fig. 3 together with the average time to fixation.

In all cases excellent agreement between the Langevin
framework (5) and individual based simulations is obtained.
Note that larger N not only improve the approximation, Eq. (5),
but also result in a performance gain as compared to individual
based simulations. More specifically, the computational effort
scales quadratically with population size for simulations but
remains constant when integrating Eq. (5) numerically (see
Fig. 5(b)).

For nonvanishing mutation rates, μ > 0, absorption is no
longer possible and the boundary of the simplex becomes
repelling. Figure 4 depicts the average frequencies of each
strategic type as a function of μ. For small μ the population
can still get trapped for considerable time along the boundary,
which results in systematic deviations between the stochastic
differential equation (5) and individual based simulations
[Fig. 4]. More specifically, for μ < 1/N the deviations in-
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FIG. 4. Average frequency (solid line) and standard deviation
(gray shaded area) of the three strategies rock [(a) and (b)], scissors
[(c) and (d)], and paper [(e) and (f)] as a function of the mutation
rate μ for small (left column, N = 100) and large populations (right
column, N = 105) with a stable interior fixed point x̂, s = 1.4,
based on Eq. (5). For comparison, symbols and error bars depict
results from individual based simulations. No simulation results are
shown for N = 105 because of prohibitive computational efforts.
Simulations and Eq. (5) are in excellent agreement for μ � 1/N

but for smaller μ substantial deviations occur (see text for details).
Stochastic fluctuations decrease with increasing N and for N = 105

the population spends most of the time in the close vicinity of x̂.
Simulation results and results based on the stochastic differential
equation [Eq. (5)] were both averaged over 1010 time steps after a
relaxation time of 106 steps (dt = 0.01 for the SDE).

crease with decreasing μ but the agreement remains excellent
for μ > 1/N . This threshold simply means that for larger μ

the time spent along the boundary can be neglected. In the
limit N → ∞ the replicator-mutator Eq. (5) exhibits a stable
limit cycle [44].

VI. DISCUSSION

Evolutionary dynamics can be implemented in multiple
ways. In particular, if only two types are present, the dynamics
reduces to a single dimension and is typically solvable
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FIG. 5. (Color online) Performance comparison of individual
based simulations (IBSs) vs stochastic differential equations (SDEs).
(a) Ratio of the CPU times CPUSDE/CPUIBS as a function of the
population size N and the number of strategic types d . The bold
contour indicates equal performance. For small N and large d IBSs
are faster (left of solid line), but for larger N and smaller d SDEs
are faster (right of solid line). Each contour indicates a performance
difference of one order of magnitude. Note that IBSs for d = 2,3 are
based on analytical calculations of the eigenvalues and eigenvectors
of B(x), which requires substantially less time and hence explains the
discontinuity in the contours. (b) Computational time with d = 10 as
a function of N for IBSs and SDEs. As a reference for the scaling
N2 and a constant are shown. (c) Computational time with N = 5000
as a function of d for IBSs and SDEs. As a reference for the scaling
d1/2 and d3 are shown. For a proper scaling argument much larger
d are required but already d = 100 far exceeds typical evolutionary
models and hence is only of limited relevance in the current context.
All comparisons use a constant payoff matrix and the local update
process [8] [such that Ak(x) = 0 and γ (πj ,πk) = 1/2], a mutation
rate of 1/N and are based on at least 1000 time steps as well as at least
1 min running time. CPU time is measured in milliseconds required
to calculate 1000 time steps. The time increment for the SDEs is
dt = 0.01.

analytically, even if the population is finite and demographic
noise is present. If more than two types are present, it
is significantly more challenging to describe the dynamics
analytically. When the mutation rates are sufficiently small
[33], there are typically at most two types present at any
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time, thus leading to situations which justify simpler tools
based on the interaction of two types. In the limit of infinite
populations, deterministic differential equations arise and can
be used to describe the system even when the population
size is large, but finite. However, it is more challenging to
incorporate noise in this case. Here we have proposed a way
to address this issue by deriving a Langevin equation for more
than two types. For large populations, it is typically much
more efficient to solve these equations numerically than to
resort to individual based simulations. A detailed performance
comparison is shown in Fig. 5. Computational costs of
simulations increase slowly with the number of strategic types
∼d1/2, but increase with the population size as N2. In contrast,
SDEs are essentially unaffected by N , but computational costs
arise from repeatedly solving for eigenvalues and eigenvectors
of B(x). In theory, analytical solutions are available for d � 5
but are probably meaningful in practice only for d = 2,3 and
numerical methods are required for d > 3, which scale with
d3 [45]. To illustrate this, for the data point N = 10 000 in
Figs. 3(c) and 3(d) the simulations required approximately two
months (1418 hours) to complete as compared to 49 min for
the corresponding calculation based on stochastic differential

equations, which corresponds to a 1700-fold performance
gain. However, if only a small number of one type is present
in a population, our approach does not work well unless
there are no mutations or the product of the population size
and the mutation rate is sufficiently high, Nμ > 1, such
that the time spent along the boundary becomes negligible
[cf. Fig. 4].

In summary, our approach establishes a transparent link
between deterministic models and individual-based simu-
lations of evolutionary processes. Moreover, the resulting
stochastic differential equations provide substantial speed-
up compared to simulations, and therefore may serve
well in the investigation of multidimensional evolutionary
dynamics.
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[18] G. Szabó and C. Tőke, Phys. Rev. E 58, 69 (1998).
[19] A. Traulsen, M. A. Nowak, and J. M. Pacheco, Phys. Rev. E 74,

011909 (2006).

[20] K. H. Schlag, J. Econ. Theory 78, 130 (1998).
[21] A. Traulsen, C. Hauert, H. De Silva, M. A. Nowak, and

K. Sigmund, Proc. Natl. Acad. Sci. USA 106, 709 (2009).
[22] C. Hauert, Int. J. Bifurcation Chaos Appl. Sci. Eng. 12, 1531

(2002).
[23] A. Traulsen, N. Shoresh, and M. A. Nowak, Bull. Math. Biol.

70, 1410 (2008).
[24] P. M. Altrock and A. Traulsen, Phys. Rev. E 80, 011909 (2009).
[25] J. C. Claussen, Eur. Phys. J. B 60, 391 (2007).
[26] F. A. Chalub and M. O. Souza, Theor. Popul. Biol. 76, 268

(2009).
[27] F. A. C. C. Chalub and M. O. Souza, Commun. Math. Sci. 7,

489 (2009).
[28] W. J. Ewens, Mathematical Population Genetics (Springer, New

York, 2004).
[29] D. Fudenberg and L. A. Imhof, J. Econ. Theory 131, 251

(2006).
[30] L. A. Imhof, D. Fudenberg, and M. A. Nowak, Proc. Natl. Acad.

Sci. USA 102, 10797 (2005).
[31] S. Van Segbroeck, F. C. Santos, T. Lenaerts, and J. M. Pacheco,

Phys. Rev. Lett. 102, 058105 (2009).
[32] K. Sigmund, H. De Silva, A. Traulsen, and C. Hauert, Nature

(London) 466, 861 (2010).
[33] B. Wu, C. S. Gokhale, L. Wang, and A. Traulsen, J. Math. Biol.

1, (2012), doi: 10.1007/s00285-011-0430-8.
[34] B. Sinervo and C. M. Lively, Nature (London) 380, 240

(1996).
[35] B. Sinervo et al., Proc. Natl. Acad. Sci. USA 103, 7372

(2006).
[36] T. L. Czaran, R. F. Hoekstra, and L. Pagie, Proc. Natl. Acad. Sci.

USA 99, 786 (2002).
[37] B. Kerr, M. A. Riley, M. W. Feldman, and B. J. M. Bohannan,

Nature (London) 418, 171 (2002).

041901-7

http://dx.doi.org/10.1016/j.physrep.2007.04.004
http://dx.doi.org/10.1016/j.plrev.2009.08.001
http://dx.doi.org/10.1016/j.plrev.2009.08.001
http://dx.doi.org/10.1016/j.biosystems.2009.10.003
http://dx.doi.org/10.1038/nature02414
http://dx.doi.org/10.1038/nature02414
http://dx.doi.org/10.1103/PhysRevLett.95.238701
http://dx.doi.org/10.1103/PhysRevLett.95.238701
http://dx.doi.org/10.1007/BF00133171
http://dx.doi.org/10.1103/PhysRevE.74.011901
http://dx.doi.org/10.1103/PhysRevE.74.011901
http://dx.doi.org/10.1103/PhysRevE.81.066122
http://dx.doi.org/10.1103/PhysRevE.81.066122
http://dx.doi.org/10.1103/PhysRevE.74.051907
http://dx.doi.org/10.1103/PhysRevE.74.051907
http://dx.doi.org/10.1103/PhysRevE.82.046106
http://dx.doi.org/10.1103/PhysRevE.82.046106
http://dx.doi.org/10.1073/pnas.0912214107
http://dx.doi.org/10.1073/pnas.0912214107
http://dx.doi.org/10.1006/game.1993.1023
http://dx.doi.org/10.1103/PhysRevE.58.69
http://dx.doi.org/10.1103/PhysRevE.74.011909
http://dx.doi.org/10.1103/PhysRevE.74.011909
http://dx.doi.org/10.1006/jeth.1997.2347
http://dx.doi.org/10.1073/pnas.0808450106
http://dx.doi.org/10.1142/S0218127402005273
http://dx.doi.org/10.1142/S0218127402005273
http://dx.doi.org/10.1007/s11538-008-9305-6
http://dx.doi.org/10.1007/s11538-008-9305-6
http://dx.doi.org/10.1103/PhysRevE.80.011909
http://dx.doi.org/10.1140/epjb/e2007-00357-2
http://dx.doi.org/10.1016/j.tpb.2009.08.006
http://dx.doi.org/10.1016/j.tpb.2009.08.006
http://dx.doi.org/10.1016/j.jet.2005.04.006
http://dx.doi.org/10.1016/j.jet.2005.04.006
http://dx.doi.org/10.1073/pnas.0502589102
http://dx.doi.org/10.1073/pnas.0502589102
http://dx.doi.org/10.1103/PhysRevLett.102.058105
http://dx.doi.org/10.1038/nature09203
http://dx.doi.org/10.1038/nature09203
http://dx.doi.org/10.1007/s00285-011-0430-8
http://dx.doi.org/10.1007/s00285-011-0430-8
http://dx.doi.org/10.1007/s00285-011-0430-8
http://dx.doi.org/10.1038/380240a0
http://dx.doi.org/10.1038/380240a0
http://dx.doi.org/10.1073/pnas.0510260103
http://dx.doi.org/10.1073/pnas.0510260103
http://dx.doi.org/10.1073/pnas.012399899
http://dx.doi.org/10.1073/pnas.012399899
http://dx.doi.org/10.1038/nature00823


TRAULSEN, CLAUSSEN, AND HAUERT PHYSICAL REVIEW E 85, 041901 (2012)

[38] C. Hauert, S. De Monte, J. Hofbauer, and K. Sigmund, Science
296, 1129 (2002).

[39] D. Semmann, H. J. Krambeck, and M. Milinski, Nature (London)
425, 390 (2003).
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