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Abstract: Cooperators and defectors can coexist in ecological public goods games. When the game is

played in two-dimensional continuous space, a reaction diffusion model produces highly irregular

dynamics, in which cooperators and defectors survive in ever-changing configurations (Wakano et al.,

2009. Spatial dynamics of ecological public goods. Proc. Natl. Acad. Sci. 106, 7910–7914). The dynamics

is related to the formation of Turing patterns, but the origin of the irregular dynamics is not well

understood. In this paper, we present a classification of the spatio-temporal dynamics based on the

dispersion relation, which reveals that the spontaneous pattern formation can be attributed to the

dynamical interplay between two linearly unstable modes: temporal instability arising from a Hopf-

bifurcation and spatial instability arising from a Turing-bifurcation. Moreover, we provide a detailed

analysis of the highly irregular dynamics through Fourier analysis, the break-down of symmetry, the

maximum Lyapunov exponent, and the excitability of the reaction-term dynamics. All results clearly

support that the observed irregular dynamics qualifies as spatio-temporal chaos. A particularly

interesting type of chaotic dynamics, which we call intermittent bursts, clearly demonstrates the effects

of the two unstable modes where (local) periods of stasis alternate with rapid changes that may induce

local extinction.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Spontaneous and complex pattern formation represents a
common principle not only in physical and chemical systems but
also in biological systems (Gell-Mann, 1994; Pearson, 1993) or
vegetation patterns in arid ecosystems (Rietkerk et al., 2004).
Similar types of patterns emerge in evolutionary settings of social
dilemmas, as shown in Fig. 1 (Wakano et al., 2009).

Social dilemmas are characterized by a conflict of interest
between individuals and the group (Hauert et al., 2006b; Hardin,
1968), which arise in humans (Milinski et al., 2006, 2008) and
microorganisms alike (Rainey and Rainey, 2003; Neu, 1992;
Velicer and Yu, 2003). Humans are facing sustainable manage-
ment challenges of global proportions when it comes to fisheries,
fossil fuels or the climate (Ostrom, 1999) – each individual has the
opportunity to make a small sacrifice for the benefit of all.
Similarly, microorganisms can synthesize and secrete enzymes at
some cost to get access to nutrients (Greig and Travisano, 2004) or
to deactivate antibiotics (Neu, 1992), but this benefits others as
well. Both scenarios are prone to exploitation because those that
rely on everyone else’s efforts do better – to the detriment of all.
Such situations are captured by public goods games (Kagel and
Roth, 1995; Hauert et al., 2006b).
ll rights reserved.

).
In a typical public goods interaction, N individuals choose
whether to contribute into a common pool or not. The total
contributions are multiplied by a factor, r41, and distributed
equally among all participants. Hence, for roN defectors
dominate but for r4N it becomes advantageous to switch to
cooperation (Hauert et al., 2006b). In well-mixed populations
interaction groups are randomly formed according to binomial
sampling and the evolutionary dynamics can be described by the
replicator equation (Hofbauer and Sigmund, 1998), which
predicts the demise of cooperators for roN. However, this classic
result neglects the fact that cooperator populations have a higher
productivity than defector populations. This should be reflected in
the natural assumption that cooperators are capable of maintain-
ing higher population densities than defectors.

In ecological public goods games (Hauert et al., 2006a, 2008)
the density of cooperators, u, and of defectors, v, can vary
(uþvr1). The density dependent dynamics is captured by the
following set of ordinary differential equations (ODE):

_u ¼ u½wðfCþbÞ�d�,

_v ¼ v½wðfDþbÞ�d�, ðODEÞ

where b denotes the baseline birth rate, d the death rate,
w¼1�u�v the density dependent reproductive success and fC,
fD represent the payoff for cooperators and defectors, respectively,
for the details, see Appendix A and Hauert et al. (2006a, 2008).
The average interaction group size is S ¼ ðuþvÞN. This introduces
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Fig. 1. A snapshot of irregular spatial dynamics in ecological public goods games.

The color brightness indicates the density of cooperators (green) and defectors

(red). Parameters: r¼2.35, D¼3.6, b¼1, d¼1.2, N¼8, t¼8000, L¼400. (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
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Fig. 2. Isoclines for u and v. Note that the u- and v-axes are also isoclines for v and

u, respectively. The extinction equilibrium O is always locally stable and the two

equilibria along the u-axis are always unstable. The internal equilibrium Q,

(uQ,vQ)¼(0.062,0.075), is an unstable focus for rorH � 2:3658. Parameters:

r¼2.34, b¼1, d¼1.2, N¼8.
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a negative feedback between ecological dynamics and evolu-
tionary games: If population densities are high, interaction group
size, S, is large and defectors dominate. This reduces the average
population payoff and hence leads to a decrease of the population
density. As a consequence, S decreases but once Sor holds, the
social dilemma is relaxed and cooperators thrive, which increases
the population density because of a higher average population
payoff and results again in larger interaction groups and the cycle
continues. In the following we focus on the more interesting case
where the death rate exceeds the baseline birth rate (d4b) such
that defectors cannot survive in the absence of cooperators ( _vo0
for u¼0).

This system admits rich dynamics including a Hopf-bifurcation
and stable limit cycles (Hauert et al., 2008). However, truly
fascinating dynamics unfold when including spatial dimensions
and allowing individuals to migrate by adding a diffusion term to Eq.
(ODE). Spatial extension favors the survival of cooperators if their
diffusion rate is smaller than that of defectors. Therefore, coopera-
tors do not outrun defectors but aggregate in clusters. The fast
diffusing defectors readily locate thriving patches of cooperators
but at the same time diffusion prevents defectors from efficiently
exploiting those patches. This can result in the spontaneous
formation of spatio-temporal patterns including highly irregular
dynamics of ever changing patterns (Wakano et al., 2009).

Here we present a detailed analysis of the irregular dynamics
based on dispersion relation, which reveals an interesting interplay
between the dynamical instability arising from the Hopf-bifurca-
tion of Eq. (ODE) and the Turing instability of the spatial system.
Furthermore, we provide detailed evidence that the population
dynamics exhibits spatio-temporal chaos in this regime.
2. Model

As a preparation for the discussion of the spatial dynamics let
us briefly recall some important properties of the non-spatial
dynamics (see Eq. (ODE)). First note that the dynamic does not
admit chaotic solutions because it is a two-variable dynamical
system. Second, under our assumptions (1rbod, 2oroN), the
ODE admits two fixed points that are of particular interest: O and
Q. The isoclines of the ODE are shown in Fig. 2. The state O
denotes the extinction of the population (u¼v¼0) and is always
locally stable. The existence and local stability of the internal
equilibrium Q, where cooperators and defectors coexist, depends
on the parameter values. Unfortunately, the coordinates of Q,
(uQ,vQ), are not analytically accessible and hence the threshold
parameter values are only numerically obtained. Taking r as a
bifurcation parameter, the system exhibits a Hopf bifurcation at
r¼rH. For r4rH , Q is a stable focus. We can show (by calculating
the first Lyapunov coefficient numerically) that the bifurcation is
subcritical. This means that an unstable periodic solution exists
for r4rH and that no (stable) limit cycle bifurcates from Q (for
details see Hauert et al., 2008). Thus, the ODE asymptotically
converges to either O or Q (if Q is locally stable). Numerically we
confirm that O is globally stable for rorH and that the system is
bistable for r4rH . The basin of attraction of Q increases with r but
remains limited. No limit cycle is found.

2.1. Spatial model

Under the assumption that cooperators and defectors migrate
randomly in a continuous two-dimensional space, the spatial
dynamics is obtained by adding diffusion terms to Eq. (ODE),
which results in the following reaction diffusion (RD) system:

@tu¼DCr
2uþu½wðfCþbÞ�d�,

@tv¼DDr
2vþv½wðfDþbÞ�d� ðRDÞ

in a square domain ðx,yÞA ½0,L�2 with zero-flux boundary condi-
tions (see Appendix B). The functions u(x,y,t) and v(x,y,t) denote
the density of cooperators and defectors at location (x,y) and
time t. As before, w¼1�u�v determines the negative feedback
between population density and birth rates. The diffusion
coefficients DC and DD specify the migration rates for cooperators
and defectors and r2 denotes the diffusion operator. By rescaling
space, we can choose the diffusion coefficient of cooperators to be
unity such that

DC ¼ 1, DD ¼D:

The system exhibits a wide variety of dynamics depending
essentially on r and D.
3. Dispersion relation

Cooperators and defectors act as activators and inhibitors,
respectively, and diffusion-induced instability (Turing instability)
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occurs for sufficiently large D, i.e. if defectors diffuse faster than
cooperators (Wakano et al., 2009). This result can be refined by
classifying the dynamics according to the linear stability of the
spatial model based on the dispersion relation. The dispersion
relation links the wave number of a spatial perturbation and the
corresponding eigenvalue. Small perturbations at the equilibrium
Q given by ðuQ þducosk1xcosk2y,vQþdvcosk1xcosk2yÞ, grow or
shrink according to du� expðlðkÞtÞ and dv� expðlðkÞtÞ where
k2
¼k1

2+k2
2. The equilibrium is locally stable iff ReðlðkÞÞo0 for all k.

Since (uQ,vQ) are analytically inaccessible, the dispersion relation
is derived numerically, see Fig. 3. In the region of interest, the
dispersion relation has two peaks, Reðlð0ÞÞ and lðk�Þ: the first peak
at k¼0 (and hence termed zero-mode) refers to the instability of Q
in the ODE and the second peak at k* originates from Turing
instability and is hence termed Turing-mode. For rorH the
equilibrium Q is unstable and reflected in a positive zero-mode,
which indicates that the amplitude of temporal oscillations is
increasing. If the Turing-mode is positive, spatial disturbances
with the corresponding wavelength are amplified and grow
Fig. 3. Dispersion relation. Real part of the eigenvalue of the linearized system

around Q is shown as a function of the wave number k of the spatial perturbation.

For r ¼ 2:34orH the zero-mode (k¼0) has a complex eigenvalue with a positive

real part. As k increases, the eigenvalues become real and the second peak appears

at k�C0:245, which corresponds to a wavelength of l¼25.1. Parameters: r¼2.34,

D¼5, b¼1, d¼1.2, N¼8.

Fig. 4. Classification of instabilities. According to dispersion relation at equili-

brium Q (shown in boxes), the parameter space (r,D) is divided into four regimes.

The bold line marks the Hopf bifurcation while the thin line corresponds to the

Turing bifurcation. The filled circle represents the Turing–Hopf bifurcation point at

ðrH ,DT ðrHÞÞC ð2:3658,4:7Þ.
exponentially as long as the system is well approximated by
linearization, i.e. as long as the deviation from Q is small.
Numerically we confirmed that the dispersion relation has at
most two peaks for all parameter values.

The Hopf bifurcation (ecologically induced instability) and the
Turing bifurcation (diffusion-induced instability) can be used to
classify the instability of the spatially homogeneous coexistence
equilibrium (u(x,y),v(x,y))¼(uQ,vQ). Hereafter we denote by Q the
corresponding spatially homogeneous solution of the spatial
dynamics. The Hopf bifurcation turns Q into an unstable node
for rorH while Turing bifurcation makes Q unstable to spatial
perturbations for D4DT ðrÞ. The threshold for Turing instability,
DT(r), can be numerically obtained without calculating spatio-
temporal dynamics (Wakano et al., 2009). For Turing instabilities
it is often assumed that they develop in the vicinity of a stable

equilibrium of the corresponding ODE, which would require
r4rH . Here we extend the domain of DT(r) to rorH by defining
that Turing-mode has zero eigenvalue when (r,D)¼(r,DT(r)). The
two lines r¼rH and D¼DT(r) divide the parameter space (r,D) into
four regimes, depending on the two types of instabilities, see
Fig. 4.

The dynamics in the two regimes where r4rH holds are well
understood (Wakano et al., 2009). Here we focus on the other two
regimes (rorH), for which Q is unstable with respect to spatially
homogeneous perturbations (zero-mode). This type of instability
has been termed ecologically induced instability because it already
exists for ecological dynamics in the absence of space (ODE).
Without spatial heterogeneity, the population goes extinct. In a
region where both diffusion- and ecologically induced instability
exist, Q is unstable with respect to both types of perturbations.
Since both zero-mode and Turing-mode grow, the dynamics may
depend on the dominant mode. If zero-mode is dominant (i.e.
Reðlð0ÞÞblðk�Þ), global oscillations are expected to drive the
population to extinction. If Turing-mode is dominant, spatial
perturbations with stripes or spots should grow—at least at first.
The growth of the Turing-mode is suppressed by the non-linearity
of the system resulting in stationary patterns of stripes or spots.
However, since the zero-mode is also unstable, it is not clear
whether Turing patterns can indeed emerge and persist. Such
global predictions based on a local analysis become particularly
challenging whenever the instabilities of the two modes have
similar magnitudes.
3.1. Interplay between Turing-mode and zero-mode

Predictions based on the dispersion relation (Fig. 4) do
not fully agree with the numerical results if the system displays
ecologically induced instability. This is not too surprising
because the dispersion relation applies in the vicinity of Q but
for rorH the amplitude of (temporal) oscillations around Q
increase over time. This is reflected in the unstable zero-mode,
Reðlð0ÞÞ40.

For a better understanding of the global dynamics under
ecologically induced instability, let us consider three different
cases with an unstable zero-mode. (i) In the absence of Turing
instability (DoDT ðrÞ), the zero-mode is the dominant mode and
an amplification of the temporal fluctuations results in extinction.
(ii) In the other extreme, if the Turing-mode is much more
unstable than the zero-mode, i.e. lðk�ÞbReðlð0ÞÞ40 (or
DbDT ðrÞ), the Turing instability is dominant and stationary
patterns emerge—at least if r is not so small that the population
goes extinct. The Turing instability seems to overrule the zero-
mode instability resulting in the same kind of stationary patterns
as in the regime of diffusion-induced instability (r4rH). (iii) If the
instabilities of the zero-mode and the Turing-mode are of similar
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magnitude numerical results indicate that spatio-temporal chaos
appears (see Section 4). The resulting dynamics is a combination
of stabilizing spatial pattern formation (Turing-mode) and
destabilizing temporal fluctuations (zero-mode), which we
termed intermittent burst dynamics. For symmetrical initial
configurations, spatial patterns form while temporal oscillations
increase. Initially these oscillations are globally synchronized and
eventually drive the population almost to extinction. Only small
local patches survive, which then become sources for newly
emerging spatial patterns. Over time the system loses its
symmetry (see Section 4.1) and the global synchronization also
disappears but locally synchronized oscillations persist. As a
result, the spatial patterns in different regions oscillate with
different phases (see supplementary Movie and Hauert, 2010).
According to our numerical calculations, this irregular dynamic
lasts at least for very long times. However, we cannot exclude that
this represents a long-lasting transient that eventually leads to
extinction. Decreasing D reduces the importance of the Turing-
mode and the organizing principle of the Turing instability is no
longer apparent (see Fig. 1).

The interaction (or interference) of diverging temporal oscilla-
tions (zero-mode) and organizing spatial pattern formation
(Turing-mode) suggests that the line Reðlð0ÞÞ ¼ lðk�Þ could
indicate a threshold between stationary patterns if Turing-mode
dominates and chaotic dynamics if the zero-mode dominates.
This seems to apply in the vicinity of the Turing–Hopf-bifurcation
but rapidly deteriorates for smaller r.
Fig. 5. Schematic illustration for the cause of the break-down of symmetry in

numerical solutions of Eq. (RD). In the discretized system, consider a high-density

cell (grey) surrounded by low-density cells (white) and compare the effects of

diffusion into the cells a and b. If the numerical procedure first determines the flux

from the adjacent cells in the sequence east, north, west, south, then for a, the first

three summands are small, oðeÞ, and the last one large, o(1), yielding a sum of

the form eþeþeþ1; but for b the second summand is large and the sum becomes

eþ1þeþe. Due to numerical underflow the sums are not necessarily the same and

the first one tends to be bigger than the second. In the regime of chaotic dynamics,

the system is highly susceptible to small disturbances and hence these differences
4. Properties of chaos

Even though the dynamics looks highly irregular in time and
space, it is usually impossible to actually prove that the dynamics
exhibits spatio-temporal chaos. We have performed several
analyses to provide strong evidence supporting that the dynamics
in spatial ecological public goods games indeed can display
deterministic chaos.
get amplified over time and eventually become sufficiently big to generate visible

differences. The symmetry can be preserved at considerable cost in terms of CPU

time by first sorting the summands. The sorting does not eliminate underflow

errors but only ensures that they occur in a symmetrical manner.
4.1. Symmetry break-down

Since Eq. (RD) is deterministic and the boundary conditions are
symmetric, the solution must remain symmetric as long as the
initial configuration is symmetric. However, the numerical
integration of Eq. (RD) maintains the symmetry only for some
time (kaleidoscopic patterns develop) but then irregularities
become visible, spread quickly and the symmetry disappears
(see supplementary Movie). The reason is that the accumulation
of numerical errors does not occur in a spatially symmetric
manner. For a schematic illustration of the detailed cause, see
Fig. 5. At considerable expense in terms of computing time, this
asymmetry can be removed (Fig. 6).

The numerical symmetry break-down is not merely a minor
technical issue but implies that the smallest numerical errors
grow rapidly and drastically change the global patterns. The
susceptibility to small changes is one of the hallmarks of chaos. In
Section 4.3 we demonstrate that the deviations actually grow
exponentially, as required.

For many studies on pattern formation, such small spatial
asymmetries are negligible. In fact, for models on the pattern
formation of bacterial colonies, small perturbations in system
parameters are even introduced to prevent symmetrical solutions
and trigger pattern formation and, in particular, the branching
patterns of interest (see e.g. Kawasaki et al., 1997; Mimura et al.,
2000; Wakano et al., 2004).
4.2. Population dynamics

The local dynamics of the density of cooperators and defectors
fluctuates heavily over time (see Fig. 7). The dynamics is
dominated by oscillations around the unstable focus Q. However,
no (stable) limit cycle exists because the Hopf bifurcation is
subcritical. Instead, the dynamics keeps fluctuating with increas-
ing amplitude, which results in the frequent local extinction of
cooperators and defectors (see Fig. 7 and black regions in Figs. 1
and 6). However, local populations can recover and resume the
oscillations around Q because of migrants from the neighborhood.
Because extinction events are localized, spatial heterogeneity
provides a source to repopulate vacant areas and hence prevents,
or at least reduces the risk of global extinction. The global average
of cooperator and defector densities equally oscillates around Q
but with much smaller amplitude (data not shown).

Another hallmark of chaotic dynamics is given by the
continuous power spectrum and the long tail of the time series
(Weisbuch, 1991). The power spectrum of the local dynamics is
shown in Fig. 8. The peak at period 52.5 corresponds to the
dominant oscillations around Q. Note that this is in good
agreement with expectations based on the linearized system
around Q. The Jacobian matrix has complex eigenvalues of
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Fig. 6. Snapshots of the numerical solution of Eq. (RD) in the chaotic regime for symmetrical initial configurations: original algorithm (lower row) and modified algorithm

with symmetry preserving counter measures (upper row). In the chaotic regime errors due to numerical underflow get amplified over time and eventually results in visible

irregularities and the loss of symmetry (cf. Fig. 5). Parameters: r¼2.34, D¼2, b¼1, d¼1.2, N¼8, L¼256.
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Fig. 7. Dynamics of the local density of cooperators and defectors. The trajectory

in phase space for the local dynamics in the center of the two-dimensional space is

shown together with the corresponding isoclines of the non-spatial system, Eq.

(ODE). The inset depicts a short time series of the local densities of cooperators

(green) and defectors (red). Parameters: r¼2.34, D¼2, b¼1, d¼1.2, N¼8, L¼256,

relaxation time tR¼15 000. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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l7 ¼ 0:00870:135i and hence predicts oscillations with a period
of 2p=0:135� 46:5.
4.3. Lyapunov exponent

The maximum Lyapunov exponent is one of the most
commonly used indicators for deterministic chaos. The Lyapunov
exponent measures the amplification of the distance between two
initially close configurations. If the distance grows exponentially,
the system exhibits chaos (see e.g. Schuster, 1995). The norm jsj of
a spatial configuration – where s¼ ðuðx,y,tÞ,vðx,y,tÞÞ and u(x,y,t),
v(x,y,t) denote the densities of cooperators and defectors,
respectively – is given by

jsj2 ¼

Z L

0

Z L

0
uðx,y,tÞ2þvðx,y,tÞ2 dy dx ð1Þ

on the two-dimensional domain ðx,yÞA ½0,L�2 where L represents
the linear extension of space. The distance between two
configurations s1, s2 is then simply js1�s2j. Let s(t) and seðtÞ be
the solution of Eq. (RD) with slightly different initial configura-
tions s(0)¼sR and seð0Þ ¼ sRþe, respectively. The maximum
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Fig. 8. Power spectrum of the time series generated by the local dynamics of cooperator density. The spectrum has a clear peak at period 52.5, which corresponds to the

oscillations around Q. The spectrum is continuous with a long tail and hence provides further support for chaotic dynamics. The initial transient data is omitted in the time

series. Parameters: r ¼ 2:34,D¼ 4,b¼ 1,d¼ 1:2,N ¼ 8,t¼ 3000220 000.

Table 1
Typical maximum Lyapunov exponents for the different dynamical regimes.

r D l ðt ¼ 3000Þ l ðt ¼ 4000Þ Spatial dynamics

2.34 100 �0.0026 �0.0028 Diffusion-induced

coexistence (stationary)

2.34 4 +0.1794 +0.2378 Diffusion-induced

coexistence

(intermittent burst)

2.34 2 +0.1426 +0.1653 Diffusion-induced

coexistence

(chaotic)

2.50 100 �0.0016 �0.0018 Diffusion-induced

instability (stationary)

2.50 2 �0.0431 �0.0431 Homogeneous

coexistence

(stationary)
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Lyapunov exponent, l, given by

l¼ lim
t-1

1

t
ln
jsðtÞ�seðtÞj

jej : ð2Þ

However, note that the distance between two configurations is
bounded and hence it is not possible to take the limit t-1

(because then l-0). In practice, we calculate

lðsR,tÞ ¼max
e

1

t ln
jsðtÞ�seðtÞj
jej

� �
ð3Þ

that is the Lyapunov exponent at reference state sR (see Appendix C
for detail).

Note that in the special case where the reference state
corresponds to the stationary homogeneous density distribution
the growth or decline of spatial perturbations is captured by the
dispersion relation (see Section 3).

Typical maximum Lyapunov exponents for the different
dynamical regimes are listed in Table 1 and illustrated in Fig. 9.
The maximum Lyapunov exponent for stable spatially homoge-
neous coexistence is �0.0431, which is consistent with the zero-
mode eigenvalue �0:042570:186i. All Lyapunov exponents are
negative for stationary patterns and positive for irregular patterns,
which supports that this regime exhibits spatio-temporal chaos.

4.4. Excitable system

Another important feature of our system is its ‘excitable’
reaction term. For rorH , the ODE system inevitably converges to
the extinction state O. However, the trajectories are very different
for different initial points. To illustrate this, we plot the time to
extinction, i.e. the time required for the system to converge to the
close vicinity of O as a function of the initial point (u(0),v(0))
(see Fig. 10). If r is slightly smaller than rH, trajectories stay near Q
for a long time if the initial point is near Q. Furthermore, we
observe separatrix originating from an unstable equilibrium
(saddle) on the u-axis. This divides the phase space into two
regions: If the initial point lies to the left, the system quickly
approaches O but if the initial point lies to the right, the dynamics
results in a burst of cooperation followed by an increase of
defectors, before the system eventually goes to extinction. Thus,
even though the asymptotic behavior is independent of the initial
state, the transient behavior can be markedly different: Small
perturbations of the extinction state O vanish quickly but
perturbations of appropriate size and direction can trigger the
system to ‘fire’, i.e. excite the system. Our system is more easily
excited if the perturbation consists of more cooperators and less
defectors. In spatial settings diffusion can act as the source of such
perturbations. Indeed, high-density clusters of cooperators
(green) invade empty space (black). The invasion excites the local
dynamics so that the cooperator density quickly grows and
generates opportunities for defectors to exploit, which then –
after some oscillations – leads back to local extinction. During
the time lag between local excitation (invasion) and local
extinction, cooperators and defectors co-exist and through
migration (diffusion) they can excite neighboring areas. Thus, if
new excitations are triggered before local extinction, the popula-
tion can survive.
5. Discussion

Spatial ecological public goods games can give rise to a brave
new world of pattern formation (Wakano et al., 2009). The
emergence of static patterns is well understood based on Turing
instabilities. However, Turing instabilities alone are not sufficient
to explain the particularly intriguing dynamical regime of highly
irregular spatio-temporal patterns. Based on the dispersion
relation we provide a detailed analysis of this regime and show
that the dynamics results from an interplay between the Turing
instability and ecological instability arising from the Hopf-
bifurcation (Hauert et al., 2008). Emerging spatial heterogeneity
(Turing instability) actually stabilizes the system by reducing the
chances that the population is driven to extinction. Conversely,
ecological instability tends to induce increasing oscillations that
can result in (local) extinction. These two competing forces are
responsible for the irregular dynamics and we provide strong
evidence that the irregularity actually arises from deterministic
chaos. Most notably by suggesting a numerical technique to
determine the maximum Lyapunov exponent in spatial systems.
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Fig. 9. Reference states at t¼tR (upper) and at t ¼ tRþt (middle), and the corresponding deviation vector e that gives maximum Lyapunov exponents (bottom). We do not

show the state at t¼ tRþt with deviation because the difference is indistinguishable. See Table 1 for the corresponding Lyapunov exponents. Parameters: b¼1, d¼1.2,

N¼8, tR¼3000.
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(u(0),v(0)), shown with isoclines. When the system experiences a large perturba-

tion at the extinction state O, it sometimes takes relatively long time to return

there. The dynamics has a single global attractor O but the system is excitable.

Parameters: r¼2.34, b¼1, d¼1.2, N¼8.
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Spatial structure supports cooperation because it enables
cooperators to form local clusters. This is most apparent in typical
lattice or graph structured populations (Nowak and May, 1992;
Hauert, 2001; Ohtsuki et al., 2006; Szabó and Fáth, 2007). Discrete
space and discrete density facilitate cluster formation and segrega-
tion of cooperators and defectors. Even in the absence of interac-
tions, clusters form simply because reproduction is local (cf. the vast
literature on the voter model, Liggett, 1991). In fact, game
interactions may either enhance or inhibit this inherent tendency
of cooperators to form clusters (Hauert and Doebeli, 2004). This is
very different in models with continuous space and continuous
densities, such as reaction–diffusion systems. Clustering is no longer
a built-in characteristic unless we consider advection terms such as
success-driven motion (Helbing, 2009). In reaction–diffusion system,
the density of defectors is positive everywhere and cooperation
cannot evolve even when cooperators are clustered in the initial
distribution (Wakano, 2006).

In general, diffusion flattens heterogeneous distributions but
under special circumstances diffusion interferes with the reaction
dynamics and can give rise to pattern formation. These famous
Turing patterns can be interpreted as a mechanism for sponta-
neous cluster formation. Such clusters are not a built-in property
of reaction–diffusion models but occur only if migration and game
dynamics ‘cooperate’. The key to the formation of cooperative
clusters is diffusion-induced instability: Turing patterns meet
spatial game theory.
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Appendix A. Derivation of payoff functions

An individual interacts in a group of size S with probability

Pr½S� ¼
N�1

S�1

� �
ð1�wÞS�1wN�S,

where N denotes the number of sampling trials and w indicates
the probability that a trial failed and did not add another
participant. An individual in a group of size S faces m cooperators
and S�1�m defectors among its S�1 co-players with probability

Pr½mjS� ¼
S�1

m

� �
u

uþv

� �m v

uþv

� �S�1�m
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and it gets the benefit from the investment by the m cooperators.
Thus, a defectors payoff equals mr/S and a cooperator receives
mr/S+r/S�1, which accounts for the costs of cooperation and the
return from its own investment. Thus, defectors and cooperators
in a group of size S receive the following expected payoffs

PDðSÞ ¼
r

S

XS�1

m ¼ 0

mPr½mjS�,

PCðSÞ ¼ PDðSÞþ
r

S
�1:

Averaging over all possible group sizes S, we obtain

fi ¼
XN

S ¼ 2

Pr½S�PiðSÞ

with i¼C or D. Here we assume that the payoff is zero if an
individual is the only member of its group (i.e. S¼1). Thus, the
average payoffs for defectors, fD, and cooperators, fC, are given by

fD ¼ r
u

1�w
1�

1�wN

Nð1�wÞ

� �
, ð4aÞ

fC ¼ fD�FðwÞ, ð4bÞ

where

FðwÞ ¼ 1þðr�1ÞwN�1�
r

N

1�wN

1�w
: ð4cÞ
Appendix B. Numerical setup

For the numerical solution of our spatial model, we use three
different methods: explicit Euler method, implicit Cranck–
Nicholson method with ADI (alternating direction implicit), and
finite element method (Press et al., 1988; Hecht et al., 2005) and
confirm that the different numerical algorithms produce qualita-
tively the same result. We also confirm that the different domain
shapes produce qualitatively similar results (Wakano et al., 2009).
The linear system size, L, is chosen so that L is large enough to
include multiple unstable spatial wavelengths. Preliminary
calculations show that the spatial dynamics is little affected by
the initial configurations, which makes a clear contrast with ODE
dynamics. We have studied various kinds of initial configurations
but here we mainly show the results for two types: either a disc at
the exact center of the spatial domain in which cooperators and
defectors co-exist (u¼v¼0.1) or a random distribution where the
densities of cooperators and defectors are randomly determined
by a uniform distribution in [0,0.1]. The disc pattern is used to
investigate the transient dynamics and otherwise a random
pattern is used.
Appendix C. Calculation of maximum Lyapunov exponent

The spatial domain is discretized as an n� n square lattices.
Each lattice point (i,j) represents a point (iL/n, jL/n). This
discretization turns our partial differential equation Eq. (RD)
with two species (cooperators and defectors) into a set of 2� n�

n ordinary differential equations. Thus, each spatial configuration
s ¼ (uij,vij) corresponds to a 2n2-dimensional vector. The norm of
s is defined as

jsj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i ¼ 1

Xn

j ¼ 1

ðu2
ijþv2

ijÞ

vuut :
In order to determine the maximum Lyapunov exponent, we
apply the following algorithm:
1.
 Let the system develop into chaotic dynamics (or a stationary
pattern if no chaos appears). After relaxation time tR, we obtain
a reference state s.
2.
 Choose a 2n2-dimensional deviation vector e with each of its
components randomly chosen from [0,1]. Then normalize e so
that jej ¼ 0:1.
3.
 Calculate spatio-temporal dynamics starting from s for time t.
Define the result as su.
4.
 Calculate spatio-temporal dynamics starting from sþe for time
t. Define the result as sue.
5.
 Let k be the ratio of the norm of the difference jsue�suj to the
norm of the initial difference jej ¼ 0:1. Formally,

k¼
jsue�suj

jej :
6.
 Normalize the deviation vector, i.e. set a new e as

e¼ sue�su

k
:

7.
 Repeat steps 4–6 for m times.

During the iteration, the deviation vector e aligns with
the most unstable direction indicated by the eigenvector to the
eigenvalue with the largest real part, which maximizes
the deviation jsue�suj . The maximum Lyapunov exponent l for
the reference state s is approximated by

l¼
1

t lnk,

where k represents the final value after the iteration. Numerically
we find that 20 iterations (m¼20) are sufficient to obtain
consistent results. In the chaotic regime the magnitude of
Lyapunov exponent may depend on the reference state s.
Therefore the Lyapunov exponent was calculated for two different
reference states at tR¼3000 and 4000. In Table 1 and Fig. 9, the
initial configuration is a random distribution.
Appendix D. Supplementary data

D.1. Supplementary movie

Intermittent burst dynamics. The movie is encoded in H.264
format and requires Quick Time 7 or higher. It merges 2000 JPEG
images, which are available from the author upon request. Para-
meters: r¼ 2:34,D¼ 4,b¼ 1,d¼ 1:2,N¼ 8,t¼ 028000,L¼ 256.

Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.jtbi.2010.09.036.
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