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The production, consumption, and exploitation of common re-
sources ranging from extracellular products in microorganisms to
global issues of climate change refer to public goods interactions.
Individuals can cooperate and sustain common resources at some
cost or defect and exploit the resources without contributing. This
generates a conflict of interest, which characterizes social dilem-
mas: Individual selection favors defectors, but for the community,
it is best if everybody cooperates. Traditional models of public
goods do not take into account that benefits of the common
resource enable cooperators to maintain higher population den-
sities. This leads to a natural feedback between population dy-
namics and interaction group sizes as captured by “ecological
public goods.” Here, we show that the spatial evolutionary dy-
namics of ecological public goods in “selection-diffusion” systems
promotes cooperation based on different types of pattern forma-
tion processes. In spatial settings, individuals can migrate (diffuse)
to populate new territories. Slow diffusion of cooperators fosters
aggregation in highly productive patches (activation), whereas fast
diffusion enables defectors to readily locate and exploit these
patches (inhibition). These antagonistic forces promote coexist-
ence of cooperators and defectors in static or dynamic patterns,
including spatial chaos of ever-changing configurations. The local
environment of cooperators and defectors is shaped by the pro-
duction or consumption of common resources. Hence, diffusion-
induced self-organization into spatial patterns not only enhances
cooperation but also provides simple mechanisms for the sponta-
neous generation of habitat diversity, which denotes a crucial
determinant of the viability of ecological systems.

cooperation | evolutionary game theory | pattern formation |
population dynamics

Spontaneous and complex pattern formation represents a
common principle in physical, chemical, and biological sys-
tems ranging from hydrodynamical phenomena such as the
ripples in the sand, to interacting chemical fronts (1), and the
coloration of plants and animals such as the spots of the jaguar
(2, 3), or vegetation patterns in arid ecosystems (4). Mathemat-
ical models of pattern formation use either cellular automata (5)
or differential equations (6). Here, we show that similar types of
patterns emerge in evolutionary settings of social dilemmas (7,
8). Social dilemmas are characterized by a conflict of interest
between individuals and the group. Such conflicts arise in
humans (9) and microorganisms alike (10-12). In antibiotic
resistance, for example, bacteria secrete an enzyme that prevents
cell wall degradation (11, 13, 14). Synthesizing the enzyme is
costly to the bacterium, and releasing the enzyme creates a
public good by protecting not only the bacterium itself but also
the surrounding bacteria. Thus, enzyme production represents
an act of cooperation that is prone to exploitation by mutant
strains, which synthesize fewer or no enzymes. Such situations
are captured by public-goods games (7, 15).

In a typical public-goods experiment, N individuals have the
opportunity to cooperate and invest a fixed amount, ¢, into a
common pool or to defect and invest nothing. The total invest-
ment is multiplied by a factor, » > 1, and distributed equally
among all participants—irrespective of whether they have in-
vested or not. Thus, every invested unit returns r¢/N units to the
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investor (as well as to all other participants). Consequently, for
r < N, rational players withhold their investments—but if all
participants reason in this manner, the group foregoes the
benefits of the public good, and no one receives anything. In
contrast, had everybody cooperated, they would have been
better off with a return of (» — 1)c. Conversely, if » > N rational
players invest in the public good (7) because, even with only a
single investor, the return from the public goods exceeds the
investment (rc/N > c¢).

In populations containing a fraction, u, of cooperators and a
fraction, v = 1 — u, of defectors, the evolutionary dynamics can
be described by the replicator equation (16): 1t = u(1 — u)(gc —
gp). The fitness of cooperators and defectors, gc, gp, is deter-
mined by their performance in public-goods interactions in
groups of size N that are randomly formed according to binomial
sampling. The average number of cooperators among the N — 1
interaction partners is u(N — 1). Therefore, the average payoff
of defectors is gp = u(IN — 1)rc/N, and of cooperators it is gc =
gp + rc/N — c. Thus, rc/N — ¢ measures the effective cost of
cooperation. For r < N, defectors win. For r > N, cooperators
win. However, the replicator dynamics neglects the fact that
cooperator populations have a higher productivity than defector
populations. This should be reflected in the natural assumption
that cooperators are capable of maintaining higher population
densities than defectors.

Model and Results

Ecological public goods allow the population density u + v to
fluctuate (17). This extension establishes a link between eco-
logical and evolutionary dynamics. Variable population densities
not only introduce feedbacks between reproductive success and
carrying capacity but also affect the effective group size, S, in
public-goods interactions. With u + v = 1, the densities u, v can
be interpreted in terms of probabilities when attempting to form
interaction groups with N participants [see supporting informa-
tion (SI) Text]. In particular, each binomial sampling trial fails
with probabilityw = 1 — u — v, such that the average interaction
group size is reduced to § = (u + v)N. For r < N, this results in
an interesting feedback, which enables cooperators and defec-
tors to coexist: If population densities are high, interaction
groups are large (S > r) and defectors increase, but this reduces
the return from the public good and results in a decline of the
population density. Decreasing population densities lead to
smaller interaction groups until eventually § < r holds, and
cooperators thrive. This restores high population densities, and
the cycle continues. Similar feedback mechanisms have been
discussed in the complementary context of competitive interac-
tions (18).
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Fig. 1. Chaotic pattern formation in spatial ecological public goods. A sequence of snapshots A-H demonstrates the spatial density distribution of cooperators
(green) and defectors (red) over time (see Movie S1). The symmetry of the initial configuration A should be preserved in a deterministic system, but after some
time it breaks down and disappears because of limitations of the numerical integration of Eq. 2. The exponential amplification of arbitrarily small disturbances
characterizes chaotic systems. The initial configuration is a vacant L X L square (L = 400) with no flux boundaries and a homogeneous disk with radius L/10 in
the center, where cooperators and defectors coexist at equal density (Ugisk = Vdisk = 0.1 and u = v = 0 elsewhere). The parameters of the ecological public goods
areN=28,d=1.2,b=1,r=2.34,c=1.The multiplication factor r lies slightly below the Hopf bifurcation riopf = 2.3658, such that the fixed point Q is unstable,
and in the absence of space, the population disappears. Diffusion of defectors is twice that of cooperators (Dc = 1, Dp = 2). The color brightness indicates the
density of cooperators (green) and defectors (red). The snapshots are taken at times t = 0 (4), 1,200 (B), 1,800 (C), 2,000 (D), 2,200 (E), 2,600 (F), 2,800 (G), 4,000

(H). The numerical integration uses a spatial grid with dx = 0.8 and step size dt = 0.01.

Unstructured Populations. The performance of cooperators and
defectors in ecological public goods, fc, fp (see SI Text), depends
not only on the composition of the interaction groups but also on
their size. Moreover, increasing population density exerts com-
petitive pressure on the rates of reproduction, and the evolu-
tionary dynamics become:

u=u[w(fc+b)—d]
v =v[w(fp +b) — d].

[1a]
[1b]

Cooperators and defectors have an equal and constant per capita
death rate, d, and a per capita birth rate of w(fc + b) and w(fp +
b), which decreases for increasing population densities. The
baseline birthrate, b, ensures fc + b = 0 because fc can become
negative in the limit v — 1, which is not meaningful (17).

Hereafter, we assume that the death rate exceeds the baseline
birth rate (d > b), such that defectors cannot survive in the
absence of cooperators. However, cooperators and defectors can
coexist at an equilibrium, Q, or exhibit rich population dynamics
depending on r (17). In particular, Q changes stability through a
Hopf bifurcation at rpept. For r > rpept coexistence in Q is stable
but the basin of attraction limited. For unfavorable initial
configurations, the returns from the public good are insufficient
to offset the death rate, d, and the population goes extinct: At low
densities, too few public-goods interactions occur, or, if defectors
abound, exploitation irrecoverably diminishes the public re-
source. Generally, for r < ryqps, the equilibrium Q is unstable,
and the population cannot survive (17).

Spatial Dynamics. To consider effects of spatial extension on the
dynamics of ecological public goods, we introduce diffusive
migration in 2 dimensions (19):

v =DpV¥ +v[w(fp + b) — d].

[2a]
[2b]

The functions u, v denote the density of cooperators and
defectors at location (x,y) and time ¢. As before, w =1 —u —v
determines the negative feedback between population density
and birth rates. The diffusion constants D¢ and Dp specify the

Wakano et al.

migration rates for cooperators and defectors and V2 denotes the
diffusion operator. This continuous spatial extension reveals a
fascinating world of dynamical pattern formation in ecological
public goods [see Fig. 1, Fig. S1, Movie S1, Movie S2, Movie S3,
and Movie S4, and interactive online tutorials Hauert C (2009)
Virtuallabs: Interactive tutorials on evolutionary game theory,
www.univie.ac.at/virtuallabs].

Spatial patterns unfold if defectors diffuse (migrate) faster
than cooperators, Dp = D¢. Consequently, the dominant effect
of spatial dynamics is not cooperators outrunning defectors but,
instead, the defectors’ relentless search of productive patches.
Slow migration facilitates aggregation of cooperators, whereas
fast migration supports defectors to readily locate cooperator
patches, but it also impedes their ability to exploit one particular
patch.

The equilibrium Q of Eq. 1 translates into a trivial solution of
Eq. 2 in the form of a spatially homogeneous strategy distribu-
tion with densities according to Q. However, if Q is stable, this
does not necessarily imply the stability of the corresponding
homogeneous state. In the vicinity of Q, Eq. 2 takes on the form
of an activator—inhibitor system. Any deviation from the equi-
librium is amplified by cooperators (activators) but suppressed
by defectors (inhibitors). For Dp > D, these antagonistic forces
may give rise to the formation of complex patterns (Turing
instability) (3, 6) (see Fig. 24). Any small local disturbance
propagates through the system and induces stable heterogeneous
strategy distributions (see SI Text, Fig. S2, and Movie S3). Local
disturbances may give rise to rearrangements of the patterns but
then quickly relax into another qualitatively indistinguishable
distribution of cooperators and defectors.

Conversely, if Q is unstable, then spatial extension and mi-
gration often prevents extinction and stabilizes coexistence of
cooperators and defectors either in static spots and stripes
similar to Turing patterns (see Fig. 2B) or in chaotic dynamics
of ever-changing patterns (see Fig. 1 and Movie S1, Movie S2,
and Movie S4). In general, a homogeneous population near Q
exhibits periodic density oscillations of increasing amplitude that
eventually result in extinction. However, any small local distur-
bance can propagate through space and trigger stationary,
heterogeneous strategy distributions (see Fig. 2B). The pattern
formation is again driven by the opposing forces of cooperators
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Fig. 2. Typical stationary patterns for diffusion-induced instability (Turing
patterns) (A) and diffusion induced coexistence (B) on an L X L square (no flux
boundaries). The density variation of cooperators (green) and defectors (red)
is shown along a cross-section (solid blue line). (A) In the absence of space,
cooperators and defectors coexist for suitable initial configurations (r = 2.4 >
Hopt = 2.3658). Diffusion destabilizes the spatially homogeneous state and
induces stable and static heterogeneous strategy distributions, where indi-
viduals spontaneously aggregate in spots or striped patterns. (B) In the ab-
sence of space, the population goes extinct (r = 2.24 < ryopf). Diffusion
stabilizes persistence of the population and coexistence of cooperators and
defectors by inducing heterogeneous strategy distributions. In both scenarios,
the parameters of the ecological publicgoodsaren=8,c=1,d=1.2,b=1,
Dc = 1, Dp = 10, with an initial configuration where densities are randomly
drawnin [0, 0.1]. Numerical integration is performed on a spatial grid with L =
283, dx = 1.4, and a step size of dt = 0.1. The brightness of the colors indicates
the strategy densities (Upper) and the dashed horizontal lines mark the
densities at Q (Lower).

(activators) and defectors (inhibitors). However, the activator—
inhibitor system develops in the vicinity of an unstable fixed
point (see SI Text, Fig. S3, and Movie S4), which could be termed
“diffusion-induced coexistence” in contrast to the classical
“diffusion-induced instability” of Turing patterns. Also note
that, whereas Turing patterns rely on substantial differences in
the diffusion constants of activators and inhibitors (see SI Text
and Fig. S1), this does not apply to diffusion-induced coex-
istence, where dynamic patterns emerge even for Dp = D¢ (see
Fig. 3).

ratio of diffusion constants D, /D¢

e
DY

e |

Discussion

In ecology, Turing patterns occur in spatial predator—prey
models (20). Particularly rich dynamics develop in the vicinity of
Turing—Hopf bifurcations (3, 21), as in the present case. Turing
instabilities also occur in replicator—diffusion systems, but re-
quire at least 3 different strategic types (22). Two types are
sufficient, however, if population densities can vary across space
(23). In ecological public goods, cooperators and defectors
suffice to produce rich spatiotemporal dynamics not only in the
form of Turing patterns but also through diffusion-induced
coexistence or deterministic chaos. Spatial dimensions generally
support cooperation (24), and here, this holds in 3 different ways.
First, the ratio of cooperators versus defectors is altered in favor
of cooperators, which leads to an increase of the overall popu-
lation density (see Fig. 4). Second, the robustness with respect
to variations in the initial configuration is improved such that
coexistence is much more easily achieved in spatial settings (see
SI Text and Figs. S4-S6). Finally, and most importantly, spatial
pattern formation based on diffusion-induced coexistence sub-
stantially extends the parameter range for the persistence of
cooperators to settings where, otherwise, defectors would drive
the population to extinction (see Figs. 3 and 4 for r < rgopy).

Spatial games are traditionally based on 2 distinct types of
discrete models that differ significantly from our approach. One
type considers single individuals located in each site of a lattice
or general network (25-28). Interactions are limited to a local
neighborhood, and individuals are sedentary. Note that even
small migration rates would severely challenge cooperation in
these models. The other type of model considers metapopula-
tions that consist of patches that are arranged on a lattice.
Patches are linked to neighboring patches through migrating
individuals (29-33). In the case of predator—prey interactions,
this corresponds to a system of coupled oscillators that can
exhibit highly complex dynamics (29-31). Our model represents
a continuum limit of this second type of models, applied to the
problem of cooperation.

The formulation in terms of continuous space based on partial
differential equations (PDE) allows for a deeper understanding
of the relevant mechanisms that drive the spontaneous genera-
tion of spatial heterogeneity and temporal fluctuations, which
are ultimately responsible for supporting cooperation. Addition-

multiplication factor

Fig.3.

Diversity of spatial distributions in terms of the ratio of the diffusion of defectors to cooperators Dp/Dc and the multiplication factor rin spatial ecological

public-goods games. The brightness of the colors indicates the density of cooperators (green) and defectors (red). In the absence of space, the population survives
for r > ryop. If cooperator diffusion exceeds defector diffusion, Dp/Dc < 1, the dynamics is barely affected by space, except for a small chaoticregion (blue frame)
near ryopf. The dynamics becomes much richer for Dp/Dc > 1. For r < ryept, the chaotic regime increases (blue frame) and is replaced by diffusion induced
coexistence patterns for high Dp/Dc (red frame). For r > riopf, the homogeneous spatial distributions (orange frame) are replaced by diffusion-induced instability
(Turing patterns; green frame) for high Dp/Dc. For very large r, all patterns disappear. The parametersare N=8,c=1,d=12,b=1,Dc=1,L = 283,dx = 1.4,
dt = 0.1 (rops = 2.3658) and an initial configuration with random cooperator and defector densities in [0, 0.1]. For a detailed phase plane diagram and other

initial configurations see S/ Text and Figs. S1 and S5.
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Fig. 4. Average global population density (A) and ratio of cooperators to

defectors (B) as a function of the multiplication factor r in ecological public-
goods interactions. The nonspatial stable equilibrium (solid lines; requires r >
vopf) is shown together with numerical results for the stationary spatial
distributions (dots). The chaotic regime depicts the average and standard
deviation of the time series from t = 5,000 to 10,000 with dt = 0.1, dx = 1.4 and
L = 283. For small r, the population goes extinct, but for increasing r, the
population persists and exhibits chaotic dynamics that change into quasistatic
and static patterns emerging through diffusion-induced coexistence (r <
I'topf). FOr r > ryopt, static patterns are triggered by diffusion-induced insta-
bility (Turing patterns) and relax into spatially homogeneous coexistence for
high r. Diffusion supports cooperation by significantly increasing the persis-
tence region of the population and in the chaoticregime, cooperator densities
even exceed those of defectors. Snapshots illustrate typical patterns emerging
in the different dynamical regimes. The brightness of the colors indicates the
density of cooperators (green) and defectors (red). The parameters for the
ecological publicgoodsgameare N=8,c=1,d=1.2,b=1,Dc=1,Dp =10
such that ryopr = 2.3658.

ally, PDEs allow one to derive macroscopic quantities such as the
relevant scale as well as the threshold for the onset of patterns
emerging through Turing instabilities—features that are only
empirically accessible in lattice models.

In our model, the local variability of the population density is
a crucial feature combined with differences in migration rates of
cooperators and defectors. The feedback between population
density and interaction group size introduces a coupling of
ecological and evolutionary dynamics, which enables coopera-
tors to survive in well-mixed models (17). Fixing population
densities at constant levels eliminates cooperation in both well-
mixed and continuous spatial settings. In contrast to lattice
models, continuous spatial extension alone is not enough to avert
the extinction of cooperators, because diffusion prevents spatial
segregation of cooperators and defectors, and hence, cooperators
are unable to prevent exploitation by forming clusters. It is not
merely the spatial dimensions but the emerging spatial heteroge-
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neity that enables cooperators to persist at higher densities, or even
more importantly, to survive under conditions that would inevitably
result in the demise of the population otherwise.

Increased migration rates of defectors are motivated by the
fact that defectors deplete common resources (or are unable
to sustain them), and this causes them to move elsewhere.
Conversely, migration rates of cooperators should be lower to
enable them to take advantage of the locally sustained com-
mon resource.

In the context of antibiotic resistance, our results suggest that
in spatial settings, susceptible free-riding strains (defectors) with
high motility may actually increase the chances of survival as well
as the density of the enzyme-producing, resistant strains (coop-
erators) and thereby aggravate the challenges for medical treat-
ments. An interesting twist is introduced in microbial popula-
tions where migration rates or cell motility itself is linked to
public-goods interactions. Examples include collective lubricant
production in Paenibacillus to move across hard surfaces (34),
the creation of an extracellular fibril matrix in Myxococcus to
allow for cooperative swarming (12), or the formation of biofilms
in Pseudomonas to gain competitive advantages in accessing
limiting resources such as oxygen (10, 35). Particularly intriguing
pattern formations are observed in Escherichia coli (36, 37). The
chemotactic response to excreted aspartate amplifies spatial
heterogeneity and enables cells to efficiently exploit available
nutrients at the cost of producing the chemical signal. In the
wake of the swarming cells, aggregates of sessile cells form. Cell
aggregation may alleviate oxidative stress. Hence, in response to
2 common resources, nutrients and oxygen, E. coli strains
diversify into 2 types with different motility (37).

Spatial heterogeneity supports coexistence (29, 30). In ecol-
ogy, the most prominent example of pattern formation refers to
the emergence of spatial vegetation patterns, which are usually
associated with the risk of impending desertification (4, 38)
because they indicate the ecosystems’ bistability (39). Actually,
the patterns stabilize the vegetated state, but environmental
changes (absence of precipitation, overgrazing) may induce
catastrophic shifts toward the desert state. In ecological public
goods, similarly sharp transitions to extinction or homogeneous
states are triggered by extreme external changes affecting the
yield of the public resource.

Individuals consuming common resources, such as in Hardin’s
Tragedy of the commons (8), or producing common resources
may alter and shape their environment in an enduring manner.
This is particularly evident in microbial systems involving extra-
cellular products such as in antibiotic resistance (11, 13, 14),
biofilms (10), or swarming (12) and represent crucial determi-
nants of microbial ecology (40). Spatial ecological public goods
model concurrent spontaneous habitat diversification and spe-
cies coexistence and hence suggest a mechanism to promote
biodiversity (30, 41).
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