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Chapter 1

Preliminaries

1.1 Introduction

Lie algebras and quantum groups have been widely studied in the context of representation

theory, while invariants of knots and links are objects of significant importance in topology.

There exist connections between these objects that can be of interest for both of these fields.

One example of such a connection is Reshetikhin and Turaev’s construction of link invari-

ants generalising the Jones polynomial from representations of quantum groups [RT90]. The

Reshetikhin-Turaev invariants can be enriched by categorification: replacing representations of

the quantum group by categories equipped with a quantum group action and replacing polyno-

mial invariants by homological link invariants. Our objective in this thesis is to describe several

of the categorifications which are important in both representation theory and topology and to

study some of the new structure that appears in the categorified world.

On the topological side, one of the triumphs of categorification is Khovanov homology, a cate-

gorification of the Jones polynomial to a homological link invariant first introduced by Mikhail

Khovanov in the late 1990s [Kho00]. Khovanov homology is strictly stronger than its decategori-

fied counterpart [BN02] and can detect the unknot [KM11]. Khovanov has also made a signifi-

cant contribution to the categorification of representations of quantum groups [HK01] [HK06],

and moreover of quantum groups themselves [KL09].

The added algebraic structure of homological link invariants can furthermore can make these

invariants interesting objects from the perspective of representation theory in their own right.

Another aim of this thesis is to demonstrate this relationship in the case of a homological

invariant of annular links, which arises as representations of a particular Lie algebra, known as

a current algebra.

Chapter 1 introduces notation, definitions and basic theorems and properties that will be used

in later chapters. In particular, we give an overview of the representation theory of semisimple

Lie algebras and quantum groups, following [FH91], [Hum72] and [Lus93]. This representation

1



2 CHAPTER 1. PRELIMINARIES

theory is used extensively in the remaining chapters. The main result is a classification of the

irreducible finite-dimensional representations of the Lie algebra sl
2

, and a detailed proof of the

complete reducibility of its finite-dimensional representations.

In chapter 2, we study particular types of current algebras and their representations, such as

the polynomial current algebras examined in [CG07], and representation algebras g(V ). We

give a description of the representations of particular examples of these algebras that arise in

our study of annular Khovanov homology using quiver representations. We first give a proof

of a theorem of Loupias [Lou72] on quiver representations of the Lie algebra sl
2

(V
1

). We then

state and prove an analogous result for the current algebra sl�
2

(V
2

), which reappears in chapter

4 in our discussion of annular Khovanov homology.

In chapter 3 we examine the work of Khovanov and Huerfano in [HK01] and [HK06], presenting

their work on categorifications of representations of quantum groups. This chapter is largely

independent of the preceding chapters, however some of the algebraic objects studied here are

encountered in earlier sections. For example, the zigzag algebra plays a significant role in

both the representation theory of current algebras in chapter 2 as well as the construction of a

categorification of the adjoint representation in this chapter.

The principal objective of chapter 4 is to relate knot homology to the representation theory

studied in previous chapters, giving a representation theoretic presentation of annular Khovanov

homology, a homology theory of knots and links in the solid torus defined by Asaeda, Przytycki

and Sikora in [APS04]. In particular, the main theorem 4.4.1 of this chapter defines an explicit

action of the current algebra sl�
2

(V
2

) on annular Khovanov homology. We give a complete and

independent proof of this theorem, originally due to Grigsby-Licata-Wehrli [GLW]. Of partic-

ular interest here is the relationship between the current algebra action and Lee’s deformation

of Khovanov homology, as seen in [Lee05].

1.2 Notation

Calligraphic scripts denote categories (C, D) and functors (E , F , G).

Cursive scripts A , B denote finite-dimensional k-algebras, for algebraically closed field k of

characteristic zero.

The letters V andW denote representations or vector spaces. Vector spaces are finite-dimensional

and over the field C unless otherwise specified.

Letters M and N denote modules over some algebra A .

g denotes a Lie algebra, and h a Cartan subalgebra.

Greek letters ↵,�,�, µ denote weights of a representation of a Lie algebra.

Categories are written in bold. For example, Vect is the category of finite-dimensional vector



1.3. REPRESENTATION THEORY 3

spaces and linear maps, and A -Mod is the category of modules over an algebra A .

A subscript g before a category indicates that the category has graded objects, for example

gVect is the category of graded vector spaces and grading-preserving linear maps.

1.3 Representation theory

Let A be a finite-dimensional k-algebra, for algebraically closed field k of characteristic zero.

Let (⇢, V ) denote a finite-dimensional representation of A where ⇢ : A ! End(V ) is an

algebra homomorphism, though we will generally omit the homomorphism ⇢ in our description

of representations. An algebra A is semisimple if all its representations split into a direct sum

of irreducible representations.

The following theorems are used without further comment throughout this thesis:

Lemma 1.3.1 (Schur). Let A be an algebra over some field k, that is not necessarily alge-

braically closed. Let V and W be representations of A and � : V ! W a non-zero map of

representations of A . Then

(i) If V is irreducible then � is injective.

(ii) If W is irreducible then � is surjective.

Corollary 1.3.2 (Schur’s lemma for algebraically closed fields). Let A be a k-algebra for

algebraically closed k and let V be a finite-dimensional irreducible representation A , with � 2
EndA (V ), then � is a scalar operator: � = � · idV for some � 2 k.

Theorem 1.3.3 (Krull-Schmidt). Any finite-dimensional representation of a finite-dimensional

algebra A can be decomposed uniquely (up to isomorphism and reordering of summands) into

a direct sum of indecomposable representations.

Definition Let M be a finitely generated A -module. Then a Jordan-Hölder series (or com-

position series) for M is a chain

0 = M
0

⇢ M
1

⇢ M
2

⇢ . . . ⇢ Mn�1

⇢ Mn = M

of submodules of M such that Mi+1

/Mi is a simple module for all i < n.

Theorem 1.3.4 (Jordan-Hölder). Let M be a finitely-generated A -module with Jordan-Hölder

series 0 = M
0

⇢ M
1

⇢ M
2

⇢ . . .Mn�1

. . .Mn = M and 0 = N
0

⇢ N
1

⇢ N
2

⇢ . . . ⇢
Nk�1

⇢ Nk = M . Then n = k and there exists some permutation � 2 Sn�1

such that

Ni+1

/Ni
⇠= M�(i)+1

/M�(i) for all 0  i < n.
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1.4 Quivers and their representations

Quivers are particularly simple objects and their representations are very visual, making them

ideal for studying other categories of representations.

Definition A quiver Q is a directed graph, consisting of a set of vertices Vi, i 2 I and a set of

directed edges, denoted by arrows, between them aj , j 2 J , where I and J are (not necessarily

finite) index sets.

Given an arrow aj from Vi to Vk, we call Vi the source and Vk the target of aj . A path in Q is

a finite word in the aj , ! = ajkajk�1 . . . aj1 , jn 2 J such that the target of ajn is the source of

ajn+1 for each n 2 {1, . . . , k � 1}.

Remark. There is no restriction on the edges, namely we may have multiple edges between two

vertices, and loops from a vertex to itself are also allowed. We also do not require the graph to

be connected.

Example. An example of a quiver is

• • • •

•

Definition A quiver representation of a quiver Q is a pair (M,�), where M = {Mi | i 2 I} is

a set of finite-dimensional vector spaces, one for each vertex of Q, and

� = {�j : Mi ! Mk | i, k 2 I, j 2 J}

is a set of linear maps between the Mi, one for each edge in Q.

A quiver representation can be considered as a representation of an associative algebra:

Definition The path algebra AQ of a quiver Q is an associative algebra with basis given by

the oriented paths of Q, including trivial paths vi, i 2 I corresponding to the vertices of Q.

Multiplication is concatenation of paths, with the path ab consisting of the path b followed by

the path a. If the ending vertex of a path b is not the same as the starting vertex of a path a,

then we define the product ab to be zero.

Theorem 1.4.1. The category of representations of a quiver Q is equivalent to the category of

representations of the path algebra AQ.
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1.5 Algebras

The following algebras will be studied in later chapters.

1.5.1 Hopf algebras

Many of the algebras of interest to us here, such as the universal enveloping algebra of a Lie

algebra, and quantum groups are examples of Hopf algebras. Hopf algebras are bialgebras.

This structure is of particular use when considering tensor products of representations: given

a Hopf algebra H and two representations V and W of H , one can regard the tensor product

V ⌦W as a representation of H itself, not just as a representation of H ⌦H . This is due to

a comultiplication map � : H ⌦ H ⌦ H . We introduce some of this structure here.

Let A and C be k-linear spaces for some field k.

Definition The triple (A , µ, ◆), where the multiplication map µ : A ⌦ A ! A and unit

◆ : k ! A are k-module homomorphisms, is a k-algebra if the following diagrams commute:

A ⌦ A ⌦ A A ⌦ A

A ⌦ A A

idA ⌦ µ

µ ⌦ idA µ

µ

A ⌦ A

k ⌦ A A ⌦ k

A

◆ ⌦ idA

⇠
=

⇠
=

µ

idA ⌦ ◆

where the isomorphisms k ⌦ A ! A and A ⌦ k ! A are given by left scalar multiplication.

The first diagram shows that multiplication under µ is associative, and the second diagram

illustrates the unit law.

We can also define the dual of a k-algebra:

Definition The triple (C ,�, ") where � : C ! C ⌦ C , called the comultiplication map, and

" : C ! k, called the counit, are k-module homomorphisms, is called a coalgebra if the following

diagrams commute:
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C ⌦ C ⌦ C C ⌦ C

C ⌦ C C
�

�

� ⌦ idC

idC ⌦ �

C ⌦ C

k ⌦ C C ⌦ k

C

" ⌦ idC

⇠
=

⇠
=

�

idC ⌦ "

where the first diagram shows that the comultiplication map � is coassociative and the second

demonstrates the counit law.

We may also consider an object that combines the structure of an algebra and a coalgebra:

Definition A bialgebra over k is a 5-tuple (B, µ, ◆,�, ") such that

1. (B, µ, ◆) is an algebra

2. (B,�, ") is a coalgebra

3. � and " are k-algebra homomorphisms.

We are now able to define a Hopf algebra:

Definition A Hopf algebra is a 6-tuple (H , µ, ◆,�, ", �) such that (H , µ, ◆,�, ") is a bialgebra

and � : H ! H is a k-module homomorphism called the antipode such that the following

diagram commutes:

H ⌦ H H ⌦ H

H k H

H ⌦ H H

�

"

�

idH ⌦ �

µ

◆

� ⌦ idH

µ
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1.5.2 Superalgebras

Definition A superalgebra over a field k (here, k will always be the field C of complex numbers)

is a Z
2

-graded algebra, namely an algebra A that has a decomposition

A = A
0

�A
1

together with a bilinear operation A ⇥ A ! A that preserves the grading as follows: AiAj ✓
Ai+j where we consider i, j and i+ j as elements of Z

2

.

We will call an element a in A even if a 2 A
0

or odd if a 2 A
1

. We further define the parity

p(a) of a homogeneous element a of A as

p(a) =

8
<

:
0 if a 2 A

0

1 if a 2 A
1

In the case of Lie algebras:

Definition A Lie superalgebra is a Lie algebra g with a Z
2

-grading g = g
0

� g
1

such that the

Lie bracket satisfies the following condition:

[gi, gj ] ✓ gi+j

where we again consider i, j and i+ j as elements of Z
2

.

Any element x 2 g decomposes uniquely into homogeneous parts x = x
0

+ x
1

where x
0

is even

and x
1

is odd.

The Lie bracket now satisfies some slightly modified relations:

[x, y] = �(�1)p(x)·p(y)[y, x]

for homogeneous elements x and y, so that if either x or y is even, we have our usual Lie bracket

condition. The Jacobi identity for homogeneous elements x, y and z in g becomes:

[[x, y], z] + (�1)p(x)(p(y)+p(z))[[y, z], x] + (�1)(p(x)+p(y))p(z)[[z, x], y] = 0.

The Z
2

-grading becomes apparent when considering the universal enveloping algebra of a Lie

superalgebra g: U(g) is the associative algebra generated by the elements of g, modulo the

relation [x, y] = xy � (�1)p(x)p(y)yx for all homogeneous elements x and y in g. Hence, if both

x and y are odd, then the Lie bracket of x and y in U(g) is given by [x, y] = xy + yx.

1.6 Homomorphism spaces in graded categories

Given a category C with Z-graded objects, for example the category of graded vector spaces,

morphisms are defined to be grading-preserving, so that any f : M ! N satisfies f(Mn) ⇢ Nn
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for all integers n. Hence, the homomorphism space HomC(M,N) is a vector space consisting

of all grading-preserving morphisms. Another homomorphism space of interest is the graded

homomorphism space HOMC(M,N) :=
L

k2Z HomC(M{k}, N). This associates a graded vec-

tor space to pairs of objects in C, and will often introduce interesting ties between objects and

their categorifications.

1.7 The Grothendieck group of a category

In chapters 4 and 5 we will be discussing a process called decategorification: passing from an

object to one with less structure. In given contexts, decategorification has a specific meaning.

If the original object is a category then decategorification consists of taking the Grothendieck

group of the category. This is defined as follows:

Definition Let C be an abelian category. Then the Grothendieck group K(C) of the category

C is the abelian group generated by isomorphism classes [M ] of objects M in C modulo the

relation [M ] = [M
1

] + [M
2

] if there exists an exact sequence

0 M
1

M M
2

0

There is a similar definition for additive categories:

Definition Let C be an additive category. Then the split Grothendieck group K
0

(C) is the

abelian group generated by isomorphism classes [M ] of objects M in C modulo the relation

[M
1

�M
2

] = [M
1

] + [M
2

] for all objects M
1

and M
2

in C.

Suppose further that objects in the category C are Z-graded, so that M = �n2ZMn. Then

the shift functor {k} shifts the grading of objects in C up by some integer k: Mn{k} = Mn�k.

This grading gives the Grothendieck group of C the structure of a Z[q, q�1]-module by defining

[M{k}] = qk[M ] for any object M in C and any integer k.

1.8 Semisimple Lie algebras and quantum groups

The language and classical results in Lie theory are used extensively in later chapters. For this

reason, we introduce the main results in the representation theory of semisimple Lie algebras

and quantum groups. Proofs of the following are well-known, and can in particular be found

in [FH91] and [Hum72]. The exception to this general overview is the section on the Lie algebra

sl
2

C, for which we give a complete description of irreducible finite-dimensional representations

and give a detailed proof of the complete reducibility of finite-dimensional representations.
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1.9 Introductory example: sl2

The representation theory of the Lie algebra sl
2

have a very simple description but is also an

archetype for the representation theory of a much larger class of Lie algebras. Our aim here is

to study the finite dimensional representations of the Lie algebra sl
2

over the complex numbers.

In so doing, we give a complete proof of the following two theorems:

Theorem 1.9.1. Up to isomorphism, there exists a unique finite-dimensional irreducible rep-

resentation of sl
2

C with highest weight n for every nonnegative integer n.

Theorem 1.9.2. The finite dimensional representations of sl
2

are completely reducible.

1.9.1 The Lie algebra sl2C

As a set, sl
2

C is the set of traceless matrices with complex entries:

sl
2

C =

("
a b

c �a

# ����� a, b, c 2 C
)

Considering sl
2

as a Lie algebra, we use the fact that sl
2

is an associative algebra with multi-

plication given by matrix multiplication, so that the Lie bracket is given by

[x, y] = xy � yx for all x, y 2 sl
2

As a complex vector space, sl
2

is three-dimensional, with standard basis

e =

"
0 1

0 0

#
f =

"
0 0

1 0

#
h =

"
1 0

0 �1

#

and relations

[h, e] = 2e [h, f ] = �2f [e, f ] = h

Thus a representation of sl
2

is a vector space V together with linear operators E,F and H

acting on V such that

HE � EH = 2E HF � FH = �2F EF � FE = H

1.9.2 Irreducible representations

The operator H plays a critical role in the classification of irreducible representations of sl
2

.

Action of sl
2

on generalised eigenspaces of H

Let V be a finite-dimensional representation of sl
2

over C. Then H has at least one eigenvalue

on V since C is algebraically closed, and there is a basis for V in which H is upper-triangular.
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Furthermore, H has finitely many eigenvalues since V is finite-dimensional. Consequently, let

� be the eigenvalue of H with largest real part, called the highest weight of the representation.

More generally a weight is an eigenvalue of H, and this terminology is extended to eigenspaces

and eigenvectors.

Let V (�) be the generalised weight space of H associated to the highest weight �, and let

v 2 V (�), so that there exists some k 2 N such that (H � �I)kv = 0. I claim that the action

of E on this weight space is trivial. First, consider the action of E on any generalised weight

space. Let µ be a weight on V , and w some generalised weight vector associated to µ. Then

there exists some n 2 N such that (H � µI)nw = 0. Consider (H � µI)nE. From the relation

HE � EH = 2E, we have HkE = E(H + 2)k for all k 2 N. This is seen by induction on k.

Then, from a binomial expansion

(H � µI)nE = E(H + 2I � µI)n = E(H � (µ� 2)I)n

From this, we see that

(H � (µ+ 2)I)nEw = E(H + 2I � (µ+ 2)I)nw = E(H � µI)nw = 0

Thus, Ew is again a generalised eigenvector for H, with weight µ+ 2. Returning to v 2 V (�),

Ev is a generalised eigenvector for H with weight �+2. But � was assumed to have the largest

real part, so the eigenspace associated to �+ 2 must be trivial and E|V (�) = 0.

Similarly, taking µ as above and following the same process, the relation HF � FH = �2F

leads to

(H � (µ� 2)I)nFw = 0

so that Fw is also a generalised eigenvector for H, with associated eigenvalue µ� 2.

Consider the sequence of vectors in V of the form F jv for j 2 N [ {0} and v 2 V (�). Each of

the F jv is a generalised eigenvector for H, with associated weight �� 2j, which are clearly all

distinct. Thus the F jv form a linearly independent set in V , and by finite-dimensionality of V

there must exist some M 2 N such that FMv = 0. Let N be the smallest integer such that

FNv = 0. Since F jV = F j�NFNv with j �N > 0 for all j > N , F jv = 0 for all j > N .

This process shows that that V contains a submodule

W� =
[

µ

Vµ

where µ = �� 2k for k = {0, 1, . . . , N � 1} and Vµ the generalised eigenspace for H associated

to µ. For any such weight µ and any w 2 Vµ, Ew 2 Vµ+2

⇢ W , or Ew = 0 for µ = �, and

Fw 2 Vµ�2

⇢ W , or Fw = 0 if µ = �� 2(N � 1). Thus E and F shift generalised eigenvectors

up or down to successive eigenspaces in W .

Any finite-dimensional representation will contain a submodule of the form W�, we shift our

focus to the highest weight � and show that � is not only real, but integral and equal to N � 1.

Claim 1.9.3. EF j = F jE + j(H + (j � 1)I)F j�1
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Proof. The case j = 1 holds from the relations in sl
2

. Applying the relation HF �FH = �2F

successively, F jH = (H + 2j)F j for j � 1. Using this relation,

EF j+1 = EF jF

= (F jE + j(H + (j � 1)I)F j�1)F

= F j(FE +H) + j(H + (j � 1)I)F j

= F j+1E + (H + 2j + jH + j(j � 1)I)F j

= F j+1E + (j + 1)(H + jI)F j

By induction on j, the claim holds on N.

Applying this to V , from the fact that E acts trivially on the highest weight space V�,

EF jv = j(H + (j � 1)I)F j�1v

Letting j = N ,

0 = EFNv = N(H + (N � 1)I)FN�1v

By assumption, FN�1v 6= 0 since N is the smallest integer such that FNv = 0 and N 2 N,
so (H + (N � 1)I)FN�1v = 0, and FN�1v is an eigenvector for H, with eigenvalue �(N � 1).

However, FN�1v is a (generalised) eigenvector for H with eigenvalue �� 2(N � 1). Therefore

�� 2(N � 1) = �(N � 1), so � = N � 1 as claimed.

Thus the highest weight of V is a nonnegative integer, and since V is arbitrary, this holds for all

finite-dimensional representations of sl
2

C. We now show existence and uniqueness of irreducible

representations with highest weight N for all nonnegative integers N . This is equivalent to the

statement that there is exactly one irreducible representation of dimension N + 1 for every

nonnegative integer N .

Existence

Let V be a vector space of dimension �+ 1 for � a nonnegative integer. Then I claim that we

can define an action of sl
2

C on V such that V is irreducible, with highest weight �..

Let {v
0

, v
1

, . . . , v�} be a basis for V . Define the action of F on V by setting vi = F i(v
0

) and

F k(vi) = 0 if i+k > �. Then we defineH(vi) = (��2i)vi. Then by definition the highest weight

of V is �. From the previous calculation of EF k, define E(vi) = i(��i+1)vi�1

, with E(v
0

) = 0.

It remains to show that the commutation relations hold to prove that V equipped with this

action of E,F and H is an sl
2

(C) representation. First we check that HF � FH = �2F .

HF (vi)� FH(vi) = HF i+1(v
0

)� (�� 2i)F (vi)

= H(vi+1

)� (�� 2i)(vi+1

)

= (�� 2(i+ 1)� �+ 2i)vi+1

= �2F (vi).
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For [H,E],

HE(vi)� EH(vi) = i(�� i+ 1)H(vi�1

)� (�� 2i)E(vi)

= i(�� i+ 1)(�� 2(i� 1))vi�1

� (�� 2i)i(�� i+ 1)vi�1

= 2i(�� i+ 1)vi�1

= 2E(vi)

Finally, for [E,F ],

EF (vi)� FE(vi) = E(vi+1

)� i(�� i+ 1)F (vi�1

)

= (i+ 1)(�� i)vi � i(�� i+ 1)vi
= (�� 2i)vi
= H(vi)

This construction turns V into an sl
2

(C) module, and it remains to show that it is irreducible.

Suppose there is some non-zero submodule W contained in V . Then W must contain some

non-zero vector w of the form w =
P�

i=0

aivi where the ai are complex constants. Since W is

an sl
2

(C) module, it must contain all possible images of w under the operators E, F and H. If

i is the smallest integer such that ai is non-zero, apply F �� i times, so that v� = 1

ai
F��i(w)

is an element of W . Successively applying E, all the basis vectors of E must be elements of W ,

so that W = V . Hence V contains no proper submodules.

Therefore, for every positive integer N there exists an irreducible representation of sl
2

C with

highest weight N � 1 and dimension N .

Uniqueness

Define V� = Span{v, F (v), F 2(v), . . . , F�(v)} to be the representation constructed in the pre-

vious section with highest weight �, generated by a highest weight vector v. Let W be an

irreducible representation of sl
2

(C) with highest weight k 2 N. This is possible since we showed
in section 1.1 that all finite dimensional representations have highest weights in N. Thus there
exists some non-zero vector w in W such that H(w) = kw.

I claim that W is isomorphic to to Vk. Define the homomorphism � : V ! W by �(v) = w. By

the requirement that � commute with the action of sl
2

, �(F k(v)) = F k(w). Then � is a non-zero

homomorphism of irreducible representations, so by Schur’s lemma, � is an isomorphism.

In section ??, we show that this classification of irreducible representations in fact determines

all finite-dimensional representations of sl
2

C, since all finite-dimensional representations de-

compose into a direct sum of irreducibles.
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1.9.3 Notation

In our classification of the irreducible representations of sl
2

C we called highest weight the

largest eigenvalue of H. To make this concept more general for later use, we make the following

definition:

Definition Let V be a finite-dimensional representation of sl
2

C. A highest weight vector v 2 V

is an eigenvector forH that is sent to zero under the action of E. The eigenvalue ofH associated

to v is called highest weight of the representation.

In the following section, we will see that such a highest weight always exists, and is unique for

an irreducible representation.

1.9.4 Complete reducibility of representations

A representation V can in fact be decomposed into eigenspaces of H, not just generalised

eigenspaces. We first show that H is diagonalisable on its highest weight space. Recall some

notation from the previous section: V is a finite dimensional representation of sl
2

C, � is the

highest weight of V (based on our original definition of highest weight) with associated gen-

eralised eigenspace V (�) and Vµ is the unique irreducible representation with highest weight

µ.

Diagonalisability of H on V (�)

Claim 1.9.4. Let v be some vector in V (�). Then for each k 2 N, there exists a polynomial

Pk of degree k, such that

EkF kv = Pk(H)v

where

Pk(x) = k!
k�1Y

j=0

(x� j)

Proof. From the sl
2

relations and the fact that Ev = 0, the claim holds for k = 1. A simple

induction argument shows that HF j = F j(H � 2jI). Recall that

EF k = F kE + k(H + (k � 1)I)F k�1

Ek+1F k+1v = Ek(EF k + 1)v

= Ek(F k+1Ev + (k + 1)(H + kI)F kv)

= (k + 1)EkF k(H + kI � 2kI)v

= (k + 1)k!
k�1Y

j=0

(H � jI)(H � kI)

By induction, the claim holds for all k 2 N.
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Taking N large enough that FNv = 0 for all v 2 V (�) (this is possible by the previous section),

0 = ENFNv = PN (H)v = N !
N�1Y

j=0

(H � j)v

This holds for any v 2 V (�) so that PN (H) is identically zero on V (�). Thus the minimal

polynomial of H must divide PN (H). Since PN (H) splits into a product of linear factors, the

minimal polynomial of H also splits on V (�) and consequently H is diagonalisable on V (�).

1.9.5 The Casimir operator

Definition The Casimir operator acting on a representation V of sl
2

C is given by C = EF +

FE + 1

2

H2 where E,F and H are the standard operators in a representation of sl
2

C.

Lemma 1.9.5. The Casimir operator has the following properties:

(i) C commutes with the operators E,Fand H.

(ii) On V�, C acts as �(�+2)

2

Id on V�.

Proof. (i)

CE = EFE + FE2 + 1

2

H2E

= E(EF �H) + (EF �H)E + 1

2

H(EH + 2E)

= E(EF )� EH + E(FE) + 1

2

(EH + 2E)H

= EC

CH = EFH + FEH + 1

2

H3

= E(HF + 2F ) + F (HE � 2E) +H( 1
2

H2)

= (HE � 2E)F + 2H + (HF + 2F )E +H( 1
2

H2)

= HC

The calculation for CF is nearly identical to that of CE.

ii) Let {v, F (v), . . . , F�(v)} be a basis for V�, where v is a highest weight vector in V�. Then

any element of V� is of the form w =
P�

i=0

aiF i(v) for complex constants ai. Then

C(w) =
P�

i=0

aiF iC(v)

=
P�

i=0

aiF i(EF (v) + FE(v) + 1

2

H2(v))

=
P�

i=0

aiF i((FE(v) +H(v)) + 0 + 1

2

�2 · v)
=

P�
i=0

aiF i �(�+2)

2

v

= �(�+2)

2

w

Note that since C commutes with the action of sl
2

C, it is a homomorphism of representations

from V to itself. Since V is irreducible, C must act as a scalar operator by Schur’s lemma for

algebraically closed fields.
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Proof of complete reducibility

To derive a contradiction, suppose that W is a reducible, indecomposable representation of

smallest dimension. The Casimir operator is an intertwining map on W so that the decompo-

sition of W into a direct sum of C-eigenspaces becomes a decomposition of W into subrepre-

sentations since each C-eigenspace is invariant under E,F and H. Thus, C can have only one

eigenvalue on W denoted µ.

The representation W is reducible and finite-dimensional, so W must contain a submodule of

the form V� where � is the highest weight of W . As seen in the previous lemma, the operator

C acts on V� as �(�+2)

2

Id. Hence, µ = �(�+2)

2

.

Furthermore, W/V� is also a representation of sl
2

C and C again must act on W/V� with only

one eigenvalue, namely �(�+2)

2

. There are two possibilities:

If W/V� is irreducible, then by uniqueness of the eigenvalue of C, we must have W/V�
⇠= V�.

If W/V� is reducible, we have that dim(W/V�) < dimW , and by our assumption on the mini-

mality of W , W/V� must be decomposable, and furthermore the summands must be irreducible.

Again by the fact that C has only one eigenvalue on the quotient space, all the summands must

just be copies of V�. Therefore there exists some positive integer n such that W/V�
⇠= nV�.

Thus the first case is simply a special case of the second, with n = 1.

LetW (�) ⇢ W be the eigenspace associated to the highest weight �. For each V�, the eigenspace

associated to � is one-dimensional by irreducibility of V�, and H is diagonalisable on V (�)

for any finite-dimensional representation V . Hence H is diagonalisable on W (�) and on its

quotient by V�. From the decomposition of W/V�, (W/V�)(�) is n-dimensional, and since H is

diagonalisable on W (�), the eigenspace W (�) splits into n+1 copies of V�(�), and is therefore

(n+ 1)-dimensional.

Let {v
1

, v
2

, . . . , vn+1

} be a basis for W (�). Then the set {F j(vi)}, such that 1  i  n +

1, 0  j  � is linearly independent. We have shown that for fixed i, the F j(vi) are linearly

independent, so it remains to show that

Claim 1.9.6. For fixed j the set {F j(vi)}, 1  i  n+ 1 is a linearly independent set.

Proof. {v
1

, . . . , vn+1

} is a basis for W (�) so the claim holds for j = 0.

Now let j � 1. Suppose we have
Pn+1

i=1

ciF j(vi) = 0. Then

0 = E(
Pn+1

i=1

ciF j(vi))

=
Pn+1

i=1

ciEF j(vi)

=
Pn+1

i=1

cij(�� j + 1)F j�1(vi)

since E(vi) = 0 for all 1  i  n+ 1, given that the vi are in W (�).

For each j = 1, . . . ,�, j(� � j + 1) is non-zero, so
Pn+1

i=1

ciF j�1(vi) = 0, and by the inductive

step, c
1

= c
2

= . . . = cn+1

= 0.
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Thus, for fixed i and fixed j respectively, the set {F j(vi)} is linearly independent, so for

1  i  n + 1 and 0  j  � the F j(vi) are linearly independent. Furthermore, they span W

since the highest weight vectors completely determine the space W . Therefore, {F j(vi)} forms

a basis of W .

Define Wi = Span{vi, F (vi), . . . , F�(vi)} for each i = 1, . . . , n + 1. Then each Wi forms an

irreducible representation of sl
2

C and is thus a subrepresentation ofW . But thenW = �n+1

i=1

Wi,

which contradicts the assumption that W is indecomposable. Therefore, all indecomposable

representations are irreducible and the representations of sl
2

C are completely reducible.

1.10 Semisimple Lie algebras

We use the example of sl
2

to give a classification of the finite-dimensional irreducible represen-

tations of semisimple complex Lie algebras and introduce the terminology of Lie theory, as seen

in [FH91], which will be used extensively in the following chapters.

Let g be a Lie algebra.

Definition 1. The derived series of g is a descending chain of subalgebras {Dkg]} of g

defined inductively by:

D1g = [g, g] Dkg = [Dk�1g,Dk�1g] for k � 1

2. A Lie subalgebra h ⇢ g of g is an ideal if [X,Y ] 2 h for all X 2 h, and all Y 2 g.

3. g is semisimple if for all ideals h ⇢ g, Dkh = 0 for some k implies that h is the zero ideal

in g.

The most significant property of semisimple Lie algebras that will be used here is the complete

reducibility of their finite-dimensional representations:

Proposition 1.10.1. Let g be a semisimple Lie algebra and let V be a finite-dimensional

representation with W ⇢ V a g-submodule. Then there exists a submodule W 0 ⇢ V such that

V = W �W 0 as representations of g.

Equivalently, any finite-dimensional representation of a semisimple Lie algebra g decomposes

into a direct sum of irreducible representations of g.

For the remainder of this section, let g be a semisimple Lie algebra. Consider the adjoint

representation, wherein g acts on itself under the following map:

ad(x)(y) = [x, y]
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for all x and y in g. From here, we hope to find an analogue of the action of the element H in

sl
2

. It will no longer be possible to find a single such element, but the generalisation of H for

a semisimple Lie algebra is given by the following definition:

Definition A Cartan subalgebra h of a semisimple Lie algebra g is an abelian subalgebra of g

that acts diagonally under the adjoint representation.

More generally, a Cartan subalgebra acts diagonally on any representation of g.

Example. In the case of sln, a choice of Cartan subalgebra is the subalgebra of diagonal ma-

trices. Letting Hi = Ei,i be the elementary matrix with a 1 in the i-th position on the diagonal

and zeros elsewhere. This Cartan subalgebra for sln is given by:

h = {a
1

H
1

+ a
2

H
2

+ . . .+ anHn | ai 2 C, a
1

+ . . . an = 0}

It is necessary to generalise the notion of eigenvectors and eigenvalues to subalgebras h, rather

than just for single elements. An eigenvector for h acting on a vector space V is an element v

of V that is an eigenvector for each H 2 h. Therefore an eigenvalue for h is a linear functional

↵ : h ! C such that there exists a non-zero eigenvector v 2 V satisfying

H · v = ↵(H) · v

for every H 2 h. In the case of the adjoint representation, eigenvectors x 2 g satisfy ad(H)(x) =

↵(H) · x.

Given a choice of Cartan subalgebra h, let h act on g via the adjoint representation. Since the

Cartan subalgebra acts diagonally, g can be decomposed into a direct sum of weight spaces g↵
consisting of eigenvectors with respect to the eigenvalue ↵ 2 h*.

Definition The set of roots R ⇢ h* of a Lie algebra g with Cartan subalgebra h is the set of

non-zero weights of the adjoint representation. The corresponding weight spaces g↵ are called

root spaces.

We have the following properties for roots and root spaces:

Proposition 1.10.2. 1. The adjoint action of g↵ sends the root space g� to the root space

g↵+�.

2. Each root space g↵ is one-dimensional.

3. R is symmetric in the sense that if ↵ 2 R then �↵ 2 R.

4. R generates a lattice ⇤R ⇢ h*, of rank equal to the dimension of the Cartan subalgebra.

These properties extend to general finite dimensional representations V of g, namely

Proposition 1.10.3. Let V be a representation of g. Then
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1. V decomposes as a direct sum V =
L

↵ V↵, for finitely many elements ↵ 2 h*. The

dimension of V↵ is called the multiplicity of the weight ↵ in V .

2. For any root �, g� : V↵ ! V↵+�.

3. The weights of an irreducible representation are congruent modulo the root lattice ⇤R.

The roots of g allow us to distinguish copies of sl
2

contained in g:

Proposition 1.10.4. For every root ↵ 2 R there exists a subalgebra s↵ = g↵�g�↵� [g↵, g�↵].

Each of the weight spaces g↵ and g�↵ are one-dimensional and the commutator [g↵, g�↵] is a

one-dimensional subspace of h, so that s↵ ⇠= sl
2

C.

Thus to each pair (↵,�↵) of roots of opposite sign, there is a unique element H↵ in the

commutator [g↵, g�↵] with eigenvalues 2 and �2 on the weight spaces g↵ and g�↵ respectively.

Eigenvalues of the H↵ are integral and symmetric about the origin in Z.

To express this symmetry in terms of the totality of the weights of g, we define a subgroup of

the group of isometries of the root system R.

Definition The Weyl group W of a Lie algebra g is the group generated by the involutions

W↵, ↵ 2 R acting on h* by reflecting across the hyperplanes

⌦↵ = {� 2 h* | hH↵,�i = 0}

perpendicular to the line spanned by ↵, so that

W↵(�) = � � �(H↵)↵

Proposition 1.10.5. The weights of a representation of g are invariant under the action of

the Weyl group.

Definition An ordering of the roots of a semisimple Lie algebra g is a choice of linear functional

l on the root lattice that decomposes the set of roots into two disjoint subsets of equal size

R = R+ [R� where R+ = {↵ 2 R | l(↵) > 0} is called the set of positive roots and R� = {↵ 2
R | l(↵) < 0} is called the set of negative roots.

Definition Let V be a finite dimensional representation of a semisimple Lie algebra g. A

highest weight vector for V is a vector v 2 V such that v is an eigenvector for the Cartan sub

algebra h and in the kernel of the action of g� for all � 2 R+.

Theorem 1.10.6. Any finite dimensional representation of a complex semisimple Lie algebra

contains a highest weight vector, which generates an irreducible subrepresentation under succes-

sive applications of roots spaces g� for � 2 R�. For an irreducible representation, the highest

weight vector is unique up to scalars.
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Definition The eigenvalue ↵ associated to a highest weight vector of a finite dimensional

representation is the highest weight of the representation.

A positive root is simple if it cannot be written as a sum of two positive roots. We similarly

define simple negative roots.

Definition The Weyl chamber W of a representation is the locus in the real span of the roots

satisfying the inequality ↵(H�) for all � 2 R+. This is the closure of a connected component

of h* contained in the complement of the union of the hyperplanes ⌦� .

We say that ↵ is a dominant weight of g if ↵ 2 W\⇤W , where ⇤W is the weight lattice. Denote

by ⇤↵
W the subset of ⇤W congruent to ↵ modulo the root lattice ⇤R and by Conv↵W the convex

hull of the points conjugate to ↵ under the action of the Weyl group in ⇤W .

The following theorem classifies all irreducible representations of a semisimple Lie algebra g:

Theorem 1.10.7 (Existence and uniqueness theorem). The isomorphism classes of irreducible

representations of g are parametrised by the dominant weights ↵ of g. The weights of the

representation consist of the elements � 2 ⇤↵
W \ Conv↵W , all occurring with multiplicity one.

Definition The fundamental weights of a representation are the elements !i 2 h* such that

!i(H↵j ) = �i,j where ↵
1

, . . . ,↵n are the simple roots of the Lie algebra.

In the example of the Lie algebra sln, the Cartan subalgebra is the set of diagonal matrices

with zero trace:

h = {diag[a
1

a
2

. . . an] |
nX

i=1

ai = 0}

so that h* = C{L
1

, L
2

, . . . , Ln}/(
P

Li = 0). In this case, the fundamental weights are !i =

L
1

+ . . .+ Li for i = 1, . . . , n� 1.

Proposition 1.10.8. Any highest weight of a representation can be uniquely expressed as a

nonnegative integral linear combination of fundamental weights.

Definition Let g be a Lie algebra. The Killing form on g is a symmetric bilinear form

K( , ) : g⇥ g ! C defined by K(x, y) = tr(ad(x)ad(y)).

We will often want to consider the tensor product of representations of a Lie algebra as a

representation of the Lie algebra itself, particularly in the context of link homology. The ability

to consider such tensor products is due to the following property of the universal enveloping

algebra:

Proposition 1.10.9. Let g be a Lie algebra and U(g) its universal enveloping algebra. Then

U(g) is a cocommutative Hopf algebra.
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Proof. We begin by defining the comultiplication and counit on U(g): let� : U(g) ! U(g)⌦U(g)
be defined by �(x) = x⌦ id+ id⌦x for all x 2 U(g) and let " : U(g) ! k be defined by "(x) = 0

for all x 2 U(g) (we will generally take k = C here). The antipode � : U(g) ! U(g) is defined
by �(x) = �x. These maps are algebra homomorphisms by the universal mapping property of

U(g) and clearly satisfy coassociativity, and the counit and antipode laws. By cocommutative,

we mean that ��� = �, where � : U(g)⌦U(g) ! U(g)⌦U(g) swaps the factors in U(g)⌦U(g):
�(x⌦ y) = (y ⌦ x). Thus cocommutativity follows directly from the definition of �.

1.10.1 Dynkin diagrams

Given a root system R, in particular the root system of a Lie algebra, one can construct a Dynkin

diagram by drawing nodes • for each simple root in R and joining two nodes by a number of

edges depending on the angle between them. Of particular interest in this thesis, specifically in

the categorification of the adjoint representation of quantum groups encountered in section ??

are the simply-laced Dynkin diagrams: those graphs with at most one edge connecting any pair

of nodes. In this case, all roots are of the same length. The simply-laced diagrams are all of

the following form:

• • • • •

• • • •
•

•

• • • • •
•

• • • • • •
•

• • • • • • •
•

An

Dn

E
6

E
7

E
8

Figure 1.1: The simply-laced Dynkin diagrams

The simply-laced Dynkin diagrams play an important classification role in several areas of

mathematics, as demonstrated by a remarkable theorem of Pierre Gabriel [Gab72].

Definition A quiver is of finite type if it has finitely many isomorphism classes of indecom-

posable modules.

Theorem 1.10.10 (Gabriel). A connected quiver is of finite type if and only if its underlying

undirected graph is a simply-laced Dynkin diagram as seen in figure 1.10.1.
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1.11 Quantum groups

Quantum groups, for our purposes, are quantum deformations of semisimple Lie algebras and

have the structure of Hopf algebras. In particular, we can define a comultiplication map on a

quantum group, so that tensor products of representations are themselves representations of

the quantum group. These quantum groups have proven to be very useful in low-dimensional

topology and knot theory. For example, representations of quantum groups have been used to

determine Reshetikhin-Turaev invariants of tangles. In the case where the original Lie algebra

was sl
2

, the Reshetikhin-Turaev invariant of a link is the Jones polynomial. Quantum groups

are also interesting in the field of categorification, where the existence of a quantum deformation

corresponds to the existence of a grading on the lifted structure.

We discuss here the definition of a quantum group and in particular the quantum group Uq(sl2),

and some of the properties of these groups, as well as their representations. Proofs of the

theorems and properties here can be found in [Hum72], [Jan96] and [Lus93].

1.11.1 Definitions

For the remainder of this chapter, let g be a complex semisimple Lie algebra, with a set of roots

R, a set of simple roots ⇧ and Killing form denoted ( , ). We use the following notation: let q

be an element of Q\{�1, 0, 1} and for ↵ 2 ⇧, let q↵ = q
(↵,↵)

2 . For a 2 Z, n 2 N, define

[a]↵ =
qa↵ � q�a

↵

q↵ � q�1

↵

[n]↵! := [1]↵[2]↵ . . . [n]↵ and [0]↵! = 1
"
a

n

#

↵

=
[a]↵!

[n]↵![a� n]↵!
for a � n

and for any ↵,� 2 ⇧, let h↵,�i = 2 (↵,�)
(↵,↵)

Definition The quantum group of g (also called the quantum enveloping algebra of g [Jan96]),

is the Q-algebra with generators E↵, F↵, K↵ and K�1

↵ for all ↵ 2 ⇧ and relations

K↵K
�1

↵ = 1 = K↵K
�1

↵ (1.1)

K↵K� = K�K↵ (1.2)

K↵E� = q(↵,�)E�K↵ (1.3)

K↵F� = q�(↵,�)F�K↵ (1.4)

E↵F� � F�E↵ = �↵,�
K↵ �K�1

↵

q↵ � q�1

↵

(1.5)

1�h↵,�iX

s=0

(�1)s
"
1� h↵,�i

s

#

↵

E1�h↵,�i�s
↵ E�E

s
↵ = 0 (1.6)

1�h↵,�iX

s=0

(�1)s
"
1� h↵,�i

s

#

↵

F 1�h↵,�i�s
↵ F�F

s
↵ = 0 (1.7)
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for all ↵,� 2 ⇧.

Definition We say that g is simply-laced if

1. (↵,↵) = 2 for all ↵ 2 ⇧, and

2. (↵,�) 2 {0,�1} for all ↵ 6= � 2 ⇧.

In the case of a simply-laced Lie algebra g, h↵,�i = 0 or 1 for all ↵,� 2 ⇧. Hence in the

relation 1.5, q↵ = q and the last two relations 1.6 and 1.7 simplify to the following for a

simply-laced Lie algebra:

E↵E� = E�E↵ if (↵,�) = 0 (1.8)

F↵F� = F�F↵ if (↵,�) = 0 (1.9)

E2

↵E� � (q + q�1)E↵E�E↵ + E�E
2

↵ = 0 if (↵,�) = �1 (1.10)

F 2

↵F� � (q + q�1)F↵F�F↵ + F�F
2

↵ = 0 if (↵,�) = �1 (1.11)

The quantum group Uq(g) has the following useful structure:

Theorem 1.11.1. There is a unique Hopf algebra structure (�, ", S) such that for all ↵ 2 ⇧:

�(E↵) = E↵ ⌦ 1 +K↵ ⌦ E↵ "(E↵) = 0 S(E↵) = �K�1

↵ E↵

�(F↵) = F↵ ⌦K�1

↵ + 1⌦ F↵ "(F↵) = 0 S(F↵) = �F↵K↵

�(E↵) = K↵ ⌦K↵ "(K↵) = 1 S(K↵) = �K�1

↵

Uq(g) is equipped with the following involutions:

There is a unique Q(q)-algebra automorphism ! : Uq(g) ! Uq(g) defined by

!(E↵) = F↵ !(F↵) = E↵ !(K↵) = K�1

↵ !(f(q)x) = f(q)!(x)

There is a unique Q-algebra automorphism  : Uq(g) ! Uq(g) defined by

 (E↵) = E↵  (F↵) = F↵  (K↵) = K�1

↵  (f(q)x) = f(q�1) (x)

for all ↵ 2 ⇧ and all f 2 Q(q).

There is an antiautomorphism ⌧ : Uq(g) ! Uop
q (g) defined by

⌧(xy) = ⌧(y)⌧(x) for all x, y 2 Uq(g)

⌧(E↵) = qF↵K
�1

↵ , ⌧(F↵) = qE↵K↵, ⌧(K↵) = K�1

↵

⌧(f(q)x) = f(q�1)⌧(x) for all f 2 Q(q) and x 2 Uq(g)
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For any ↵,� 2 ⇧ and a, b 2 N, we can also consider the divided powers of elements Uq(g)

E(a)
↵ :=

Ea
↵

[a]↵!
F (b)
� :=

F b
�

[b]� !

Products of these elements span a Z[q, q�1]-submodule of Uq(g).

We make a brief digression to the particular case Uq(sl2), which is just as illustrative as the

original sl
2

case was for general semisimple Lie algebras.

1.11.2 Example: Uq(sl2)

In the case g = sl
2

, U := Uq(g) is a Q(q)-algebra with generators E,F,K and K�1, and

relations

KK�1 = 1 = K�1K

KE = q2EK

FK = q�2FK

EF � FE =
K �K�1

q � q�1

When studying representations of U , we proceed in similar manner to the sl
2

case, considering

instead eigenspaces of K. We restrict ourselves to finite-dimensional representations V that

admit a weight space decomposition: V = �n2ZVn where each Vn is an eigenspace of K, and

take q 6= ±1. We have the following theorem for finite-dimensional irreducible representations

of U , which is very similar to the corresponding theorem for sl
2

:

Theorem 1.11.2. For each nonnegative integer n there is an irreducible representation of U

L
+

with basis v
0

, v
1

, . . . , vn and an irreducible representation L� with basis w
0

, w
1

, . . . , wn such

that for all 0  i  n

Kvi = qn�2ivi Kwi = �qn�2iwi

Fvi =

8
<

:
vi+1

if i < n

0 if i = 0
Fwi =

8
<

:
wi+1

if i < n

0 if i = 0

Evi =

8
<

:
0 if i = 0

[i][n+ 1� i]vi�1

if i > 0
Ewi =

8
<

:
0 if i = 0

�[i][n+ 1� i]wi�1

if i > 0

and every irreducible representation of U of dimension n+ 1 is isomorphic to L
+

or L�.

1.11.3 Representations of Uq(g)

Let U := Uq(g) and let ⇤ be the weight lattice of g and � be the root lattice of g. We restrict

ourselves to representations V that admit a weight decomposition, which means here that

V =
M

�2⇤

V� where V� = {v 2 V | Kµ = q(�,µ)v for all µ 2 �}
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As in the Uq(sl2) case, the irreducible representations of Uq(g) are very similar to the irreducible

representations of g (particularly when restricted to the representations above).

Lemma 1.11.3. Let V be a finite-dimensional representation of U with V 6= 0 Then

1. There exist � 2 ⇤ and v 2 V�, v 6= 0 such that E↵v = 0 for all ↵ 2 ⇧ and

2. letting � and v be as in 1, � is a dominant weight and F h�,�i+1

� v = 0 for all � 2 ⇧.

For � 2 ⇤ define the left ideal J� =
P

↵2⇧

UE↵+
P

↵2⇧

U(K↵�q(�,↵)). Then letM(�) := U/J�.

This is a representation of U generated by v� := 1 + J� such that

E↵v� = 0 and K↵v� = q(�,↵)v� for all ↵ 2 ⇧.

Call M(�) the Verma module (or universal highest weight module) of highest weight �. It is

universal in the following sense:

If V is any representation of U with v 2 V� such that E↵v = 0 for all ↵ 2 ⇧, then there is a

unique U -module homomorphism � : M(�) ! V with v� = v. Then we can characterise all

finite-dimensional irreducible representations of U :

Theorem 1.11.4. 1. Let � 2 ⇤. Then the Verma module M(�) has a unique irreducible

quotient representation L(�).

2. For each dominant weight � 2 ⇤, the irreducible representation L(�) is finite-dimensional.

Furthermore, all finite-dimensional irreducible representations of U are isomorphic to

exactly one L(�) with � 2 ⇤ dominant.



Chapter 2

Current algebras

Annular Khovanov homology has rich algebraic structure: its homology groups are modules of

a particular algebra, called sl�
2

(V ) here. This is a particular example of a truncated current

Lie algebra. We introduce some of these modified Lie algebras and study their representations

through the use of quivers.

2.1 Polynomial current algebras

The algebras introduced in this chapter are all built from finite-dimensional semisimple complex

Lie algebras, denoted g. These modified Lie algebras are no longer semisimple and hence have

more complex representations.

Definition A polynomial current algebra associated to a complex semisimple Lie algebra g is

a Lie algebra g[t] := g⌦ C[t] with Lie bracket

[x⌦ tk, y ⌦ tl]g[t] = [x, y]g ⌦ tk+l.

Current algebras have a natural Z�0

-grading given by the powers of the variable t. The pairing

[ , ]g[t] satisfies the Jacobi identity and the alternating property since [ , ]g is a Lie bracket.

For what follows, fix the finite-dimensional semisimple complex Lie algebra g and choose some

Cartan subalgebra h of g with n the rank of h. Denote by R ⇢ h* the set of of roots with

respect to h, P+ the set of positive integral weights (weights in the dominant Weyl chamber

with respect to a choice of ordering) and let ✓ be the highest root. Let g-mod be the category

of finite-dimensional g-modules, with g-module homomorphisms as the morphisms in g-mod.

Then we have seen that the isomorphism classes of irreducible (simple) representations of g are

parametrised by the elements of P+. Given � 2 P+, let V (�) be the irreducible representation

of highest weight �, generated by a highest weight vector v�. Given a representation V of g in

25
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g-mod, decompose V into a direct sum of weight spaces:

V =
M

µ2h*

Vµ

so that h · v = µ(h)v for all v 2 Vµ and h 2 h.

Let U(g[t]) be the universal enveloping algebra of g[t] inheriting the grading from g[t]. This is

a unital associative algebra generated by the elements in g[t], modulo the relation

(x⌦ ti)(y ⌦ tj)� (y ⌦ tj)(x⌦ ti)� [x⌦ ti, y ⌦ tj ] = 0

for all x, y 2 g, and all i, j 2 N. The enveloping algebra U(g[t]) is generated by elements in g

and g⌦ t [CG07]. Then U(g[t]) is a Hopf algebra by proposition 1.10.9, with comultiplication

� : x 7! x⌦ 1+1⌦x for all x 2 g[t] and multiplication map m. Note that the comultiplication

map preserves the grading in U(g[t]). From now on, we write xtk in the place of x ⌦ tk for

elements in g[t]. Let g[t]
+

be the Lie ideal g⌦tC[t]. Then g[t]
+

is also a graded Lie algebra, with

grading given by the powers of t, so that the homogeneous components of g[t]
+

of nonpositive

degree are zero.

Let G be the category of graded g[t]-modules with finite-dimensional homogeneous subspaces

and grading-preserving g[t]-module homomorphisms. Then any representation V of g[t] in ObG
can be decomposed as a direct sum over Z

+

of subspaces V [r]: V = �r2Z+V [r] such that

(xtk)V [r] ⇢ V [r + k] for all x 2 g, and all r, k 2 Z
+

. Thus, each V [r] is a finite-dimensional

representation of g. For a morphism f 2 Homg[t](V,W ), denote by f [r] the restriction of f to

V [r]. In particular, f [r] 2 Homg(V [r],W [r]), since f is grading-preserving.

Let B be the covariant functor from g-mod to G defined by

B(V )[0] = V and B(V )[r] = 0 for all r > 0 and any V 2 Obg-mod.

The g[t] action on B(V ) is given by (xtk) · v = �k,0x · v for all x 2 g, k 2 Z
+

, v 2 V . Similarly,

for any morphism f 2 g-mod, we define B(f)[0] = f and B(f)[r] = 0 for all r > 0, so that

HomG(B(V ),B(W )) = Homg(V,W ). In words, the functor B sends a representation of g to a

representation of g[t] concentrated in degree zero.

Define {j} : G ! G to be the shift functor by j 2 Z
+

:

(V )[k]{j} = V [k + j] for all k 2 Z
+

The irreducible representations of g[t] can be understood from the classification of irreducible

representations of g:

Proposition 2.1.1. Define V (�, j) := (B(V (�))){j} for � 2 P+ and j 2 Z
+

. Then for each

pair (�, j) 2 P+ ⇥ Z
+

, V (�, j) is up to isomorphism the unique irreducible representation of

g[t] in Ob(G) and

HomG(V (�, j), V (µ, k)) = 0 if (�, j) 6= (µ, k)

HomG(V (�, j), V (�, j)) ⇠= C.
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Moreover, if V 2 ObG is concentrated in degree n for some n 2 Z, that is, V = V [n], then V is

completely reducible.

Proof. By definition, V (�, j) = (B(V (�))){j}, which is the irreducible representation V (�) of

g considered as a representation of g[t] with xtk acting trivially for all k > 0 and all x 2 g.

Furthermore, V (�, j) is concentrated in degree j, so that V (�, j) = V (�)[j]. Then V (�, j) is

an irreducible representation of g[t] since V (�) is an irreducible representation of g, and any

subrepresentation of V (�, j) would also have trivial action of xtk for k 6= 0. Since the V (�) are

non-isomorphic as g-modules, V (�, j) and V (µ, k) cannot be isomorphic as representations of

g[t] if � 6= µ. Furthermore, any morphism in G preserves the grading, so V (�, j) and V (�, k)

cannot be isomorphic for j 6= k.

I claim that any irreducible representation of g[t] must be concentrated in a single degree.

Suppose that V is a representation of g[t] such that V [m] and V [m0] are non-zero for some

m < m0 2 Z
+

. The action of g[t] always preserves or raises the degree, so �j>mV [j] is a

proper, non-trivial subrepresentation of V so V is reducible.

Now suppose V is an irreducible representation of g[t], so that there exists some m 2 Z
+

with

V = V [m]. Then by definition of objects in G, V is finite-dimensional. Furthermore, xtk must

act by zero for all k > 0, since (xtk)V [m] ⇢ V [m+ k] = 0. Then V is a representation of g and

must be irreducible as a g-module to be irreducible as a g[t]-module. Therefore V is isomorphic

to V (�) as a g-module for some � 2 P+, and hence is isomorphic to V (�,m) as a g[t]-module.

The statements about the morphism spaces follow from Schur’s lemma for algebraically-closed

fields and the restriction to grading-preserving g[t]-module homomorphisms in G (namely, the

only maps between elements concentrated in distinct degrees must be trivial).

Finally, suppose V = V [n] for some n 2 Z
+

. Then as before, xtk must act trivially for all k > 0

and V is a g-module, so by semisimplicity of g, V is completely reducible as a g-module, and

hence as a g[t]-module.

Since U(g[t]) is a Hopf algebra, the tensor product V ⌦W of representations of g[t] also carries

the structure of a representation of g[t] via the comultiplication map. Let V,W be representa-

tions of g[t], k 2 Z
+

and define

(V ⌦W )[k] =
M

i2Z+

V [i]⌦W [k � i]

with W [j] = 0 for j < 0.

Lemma 2.1.2. (i) V ⌦W =
L

k2Z+
(V ⌦W )[k]

(ii) For all j 2 Z
+

, xtj · ((V ⌦W )[k]) ⇢ (V ⌦W )[k + j]

The lemma in particular shows that G is a tensor category.

Proof. (i) This follows from the distributivity of the tensor product over the direct sum.
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(ii) Using the comultiplication map,

(xtj)((V ⌦W )[k]) =
M

i2Z+

(xtj)V [i]⌦W [k � i] + V [i]⌦ (xtj)W [k � i].

Then (xtj)V [i] ⌦ W [k � i] ⇢ V [i + j] ⌦ W [k � i] = V [i + j] ⌦ W [k + j � (i + j)] and V [i] ⌦
(xtj)W [k � i] ⇢ V [i]⌦W [k + j � i], which are both clearly subsets of

(V ⌦W )[k + j] =
M

i2Z+

V [i]⌦W [k + r � i].

2.2 Taki↵ Lie algebras

Another class of Lie algebras consists of truncated polynomial current algebras, first studied by

Taki↵ [Tak71].

Definition Let g be a complex finite-dimensional semisimple Lie algebra. A Taki↵ Lie algebra

is the truncated current algebra gt := g⌦ C[t]/t2.

More generally, a generalised Taki↵ Lie algebra is the algebra g⌦C[t]/tn for some integer n � 2.

This is a graded Lie algebra with grading given by powers of t and Lie bracket given by

[x ⌦ 1, y ⌦ 1]gt = [x, y]g ⌦ 1, [x ⌦ 1, y ⌦ t]gt = [x, y]g ⌦ t = [x ⌦ t, y ⌦ 1] and [x ⌦ t, y ⌦ t] = 0

for all x, y,2 g. We again omit the tensor product symbol. If the Lie algebra g has dimension

n as a vector space over C and basis {x
1

, x
2

, . . . , xn}, then gt has dimension 2n and basis

{x
1

, . . . , xn, x1

t, . . . , xnt}.

We classify the irreducible and projective indecomposable representations of gt. Let Gt be the

category whose objects are finite-dimensional gt-modules and whose morphisms are gt-module

homomorphisms.

Let P+ be the set of dominant weights of g and let V (�) denote the irreducible representation

of g with highest weight �. Then:

Proposition 2.2.1.

1. The isomorphism classes of finite-dimensional irreducible representations of gt in ObGt

are parametrised by � 2 P+, with gt-action given by xtk · v = �k,0x · v for all x 2 g and

all v 2 V�.

2. Up to isomorphism, there is a unique finite-dimensional projective indecomposable gt-

representation Vt(�) := V (�) ⌦ C[t]/t2 for each � 2 P+, and any finite-dimensional

projective representations are isomorphic to Vt(�) for some �.
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Proof. 1. Let V� be a finite-dimensional gt-module with gt-action as defined in the proposi-

tion statement, and such that V�
⇠= V (�) as representations of g for some � 2 P+. Then V�

is irreducible as a representation of gt: xtk would act trivially on any gt-subrepresentation

of V� for k > 0. Thus, a subrepresentation of V� as a gt-module is a g-submodule of V (�),

and must therefore be trivial.

Suppose that V is an irreducible representation of gt. Then xtk must act trivially for

k > 0. If not, then consider the subspace W of V spanned by (xt) · v for all v 2 V .

Then by assumption W is a proper, non-trivial subspace of V . It is proper because if

every element of v could be expressed as xt · w for some x 2 g and some w 2 V , then

yt(v) = (yt)(xt)w = 0 for all v, contradicting the assumption. But then g(W ) ⇢ W , and

xt · W = 0 for all x 2 g, and W is a proper subrepresentation of V , contradicting the

irreducibility of V . Thus V is an irreducible representation of g, and is isomorphic to

V (�) for some � 2 P+.

2. We omit the proof of 2.

2.3 Representation algebras

We consider one final definition of a current algebra. The current algebra appearing in annular

Khovanov homology in chapter 4 is an example of this type of current algebra.

Definition Let g be a Lie algebra as above and let V be some finite-dimensional representation

of g. Then the representation algebra associated to the pair g(V ) is the vector space g(V ) :=

g� V with Lie bracket

[(x, v), (y, w)]g(V )

= ([x, y]g, x · v � y · w) (2.1)

for all x, y 2 g and all v, w 2 V .

A routine calculation shows that this bracket satisfies the Jacobi identity, and is alternating, so

this is well-defined Lie algebra. There is also a Z
2

-graded version of the representation algebra

(a definition of a Lie superalgebra is found in section 1.5.2):

Definition Let g and V be as above. Then the representation superalgebra is the Lie super-

algebra g�(V ) with underlying vector space g � V and Lie bracket as in equation 2.1. The

Z
2

-grading is defined to be: g�(V )[0] = g and g(V )�[1] = V .

While from the definition it may seem as though g(V ) and g�(V ) are indistinguishable, the

Z
2

structure becomes apparent when passing to the universal enveloping algebras of g(V )

and g�(V ), or when studying their representations. For example, in U(g(V )) the equality

[(0, v), (0, v)] = 0 is trivial, whilst in U(g�(V )) this equality is equivalent to v2 = 0 for all
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v 2 V , which is not necessarily true in U(g(V )). Thus, for any v 2 V , v is a nilpotent linear

operator acting on any representation W of g�(V ) is nilpotent, but this does not have to hold

on a representation of g(V ).

2.3.1 Examples

The simplest example of a representation algebra is the Lie algebra sl
2

(V
1

), where V
1

is the

standard representation of sl
2

. This is a five-dimensional Lie algebra with basis {e, f, h, v
1

, v�1

}
and (non-trivial) relations:

1. sl
2

relations as above

2. [e, v
1

] = [f, v�1

] = 0

3. [e, v�1

] = v
1

4. [f, v
1

] = v�1

5. [h, v
1

] = v
1

, [h, v�1

]� v�1

6. [v
1

, v�1

] = 0

We can also consider the dual of this representation algebra, the Lie superalgebra sl�
2

(V
1

), with

the same definition as above, but with a Z
2

-grading, so that we have the addition non-trivial

relations [v
1

, v
1

] = 0 and [v�1

, v�1

] = 0.

While these examples have a simple presentation and are in some sense the smallest non-trivial

extensions of sl
2

by one of its representations, we show in section 2.4.2 that representations of

sl
2

(V
1

) and sl�1

2

(V
1

) are already much more complex structure than the representations of sl
2

itself.

Main example: sl�
2

(V
2

)

A representation superalgebra that is of particular interest in the context of annular Khovanov

homology is the algebra sl�
2

(V
2

), where we recall that V
2

is the three-dimensional irreducible

representation of sl
2

C with highest weight 2. The superalgebra sl�
2

(V
2

) is a six-dimensional

complex vector space, with basis {e, f, h, v�2

, v
0

, v
2

} and relations:

1. sl
2

relations: [h, e] = 2e, [h, f ] = �2f and [e, f ] = h

2. [e, v
2

] = [f, v�2

] = [h, v
0

] = 0

3. [e, v
0

] = �2v
2

4. [f, v
0

] = 2v�2

5. [e, v�2

] = v
0
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6. [f, v
2

] = �v
0

7. [h, v
2

] = 2v
2

, [h, v�2

] = �2v�2

8. [vi, vj ] = 0 for i, j 2 {�2, 0, 2}

Note that the subscripts on basis elements v�2

, v
0

and v
2

indicate the weight spaces that the

basis elements generate. The relations are directly computed from the definition of the Lie

bracket on sl�
2

(V
2

), and constants arise from the choice of basis vectors vi.

2.4 Quiver representations

As noted previously, current algebras g(V ) are not semisimple, so the relations between repre-

sentations are nontrivial. A way to visualise this added complexity and classify representations

is to consider quiver representations, as introduced in section 1.4. Here we demonstrate this

method in some simple examples of current algebras and contrast these to the semisimple Lie

algebra case.

2.4.1 Semisimple Lie algebras

Semisimple Lie algebras have the property that their finite dimensional representations are

completely reducible, from a theorem of Weyl [Wey68]. For this reason, it su�ces to understand

the irreducible representations of a semisimple Lie algebra, and by Schur’s lemma [?], there can

be no non-trivial maps between non-isomorphic irreducible representations. In the case of sl
2

,

where there is exactly one irreducible representation for each highest weight, or equivalently

one of each dimension, this means that there can be no non-trivial maps between di↵erent

Vk. Consequently, the quiver representing the category of finite-dimensional sl
2

-modules is

particularly simple, as demonstrated in the following result, which is a restatement in the

language of quivers of the classification of the irreducible finite-dimensional representations and

complete reducibility of finite-dimensional representations of sl
2

, as seen in section 1.9.

Proposition 2.4.1. The category of finite-dimensional representations of sl
2

is equivalent to

the category of representations of the following quiver Q:

• • • • • . . .0 1 2 3 4

Note that Rep-Q is equivalent to Vect, since there are no arrows between the vertices of Q,

namely a finite-dimensional representation of Q consists of a terminating sequence of vector

spaces.

Proof. We begin by defining a functor F from Rep-sl
2

to Rep-Q. Let M be a representation
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of sl
2

. Then M decomposes into a direct sum of irreducible representations:

M =
M

i�0

V ni
i

where ni is the number of copies of the irreducible representation Vi. Let Ei be the highest

weight space of V ni
i , namely

Ei = {ei 2 Vi | e · ei = 0 and h · ei = iei}.

Since the weight spaces of an irreducible representations are one-dimensional, Ei has dimension

ni. By Schur’s lemma, there are no non-trivial maps between the V ni
i , so in particular no

maps between the highest weight spaces. Then the functor F takes a representation M to the

representation of Q associating the vector space Ei to the ith vertex in Q.

Conversely, let Wi be the vector spaces corresponding to vertices vi in the quiver Q. Then

define a representation V of sl
2

by setting each Wi to be a highest weight space of weight

i in V . Since V decomposes into a direct sum of irreducible representations, each generated

by a single highest weight vector, the definition of the highest weight spaces in V completely

determines V as a sl
2

representation. The number of copies of a given irreducible representation

of highest weight i is determined by the dimension ofWi. These constructions are clearly inverse

to each other.

Proposition 2.4.2. More generally, the category of finite-dimensional representations of a

semisimple Lie algebra g is equivalent to the category of finite-dimensional representations of a

quiver Q with vertex index set I = P+, where P+ is the set of dominant weights of g, and no

edges.

Proof. The proof clearly extends from the sl
2

case. Any finite-dimensional representation V

of g decomposes into a direct sum of irreducible representations, each isomorphic to V (�) for

some � 2 P+, where V (�) is an irreducible representation of highest weight �. The highest

weight spaces for each � determines the representation V and define a representation of Q.

Conversely, a representation of Q consists of vector spaces V� for each � 2 P+, and we define

a representation of g with highest weight spaces V�.

2.4.2 Loupias’ results

We prove the following theorem of Loupias [?, Lou72]emonstrating the complex structure of

sl
2

(V
1

)-rep through the use of quiver representations.

Theorem 2.4.3 (Loupias). The category of finite-dimensional representations of sl
2

(V
1

) is

equivalent to the category of finite-dimensional representations of the quiver:

• • • • • . . .
↵0

�0

↵1

�1

↵2

�2

↵3

�3

0 1 2 3 4
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with relations

�
0

↵
0

= 0

�i+1

↵i+1

= ↵i �i for all i 2 N

Proof. We demonstrate how to construct a representation of the quiver from a representation of

sl
2

(V
1

): let W be a representation of sl
2

(V
1

). Then in particularW is a representation of sl
2

and

we can decompose W into a direct sum of irreducible representations W =
L

i2N W�ni
i . Let Bi

be the highest weight space for each of the Wi, so that Bi = {bi 2 Wi | e ·bi = 0 and h ·bi = ibi}.
The dimension of weight spaces in an irreducible representation is one, so each Bi has dimension

ni. To begin constructing a representation of the quiver, assign the highest weight space Bi to

each vertex i. The vi will determine the linear maps assigned to arrows in the quiver. Define

↵i : Bi ! Bi+1

�i : Bi+1

! Bi

bi 7! v
1

· bi bi+1

7! (i+ 2)v�1

· bi+1

� fv
1

· bi+1

for all i 2 N. The definition of �i consists of applying v�1

to a vector in Bi+1

then projecting

onto Bi, since v�1

· bi+1

is not necessarily a highest weight vector in Wi. Then the claim is

that these ↵i and �i satisfy the quiver relations. We first check that ↵i and �i are indeed maps

on the Bi, using the relations defined in section 2.3.1 and noting that the Lie bracket on the

algebra becomes the commutator in End(W ).

Let bi 2 Bi. Then ev
1

· bi = v
1

e · bi = 0 since [e, v
1

] = ev
1

� v
1

e = 0 and bi is a highest weight

vector, so e · bi = 0. Also, hv
1

· bi = v
1

h · bi + v
1

· bi = (i+ 1)v
1

· bi. From these two equalities,

it can be seen that v
1

· bi 2 Bi+1

. Similarly,

e · �i(bi+1

) = e · [(i+ 2)v�1

· bi+1

� fv
1

· bi+1

]

= (i+ 2)v�1

e · bi+1

+ (i+ 2)v
1

· bi+1

� fev
1

· bi+1

� hv
1

· bi+1

= (i+ 2)v
1

· bi+1

� (i+ 2)v
1

· bi+1

= 0

and

h · �i(bi+1

) = h · [(i+ 2)v�1

· bi+1

� fv
1

· bi+1

]

= (i+ 2)(i+ 1)v�1

· bi+1

� (i+ 2)v�1

· bi+1

� fhv
1

· bi+1

+ 2fv
1

· bi+1

= i[(i+ 2)v�1

· bi+1

� fv
1

· bi+1

]

so �(bi+1

) 2 Bi for all bi+1

2 Bi+1

.

For the quiver relations, since v
1

and v�1

commute, fv2
1

= v2
1

f + 2v�1

v
1

:

�
0

↵
0

(b
0

) = �
0

(v
1

· b
0

)

= 2v�1

v
1

· b
1

� fv2
1

· b
0

= 2v�1

v
1

· b
1

� v2
1

f · b
0

� 2v�1

v
1

= 0
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since b
0

2 B
0

, where B
0

is a direct sum of copies of the trivial representation.

�i+1

↵i+1

(bi+1

) = �i+1

(v
1

· bi+1

)

= (i+ 3)v�1

v
1

· bi+1

� fv2
1

· bi+1

= (i+ 3)v�1

v
1

· bi+1

� v2
1

f · bi+1

� 2v�1

v
1

· bi+1

= (i+ 1)v�1

v
1

· bi+1

� vf
1

· bi+1

↵i�i(bi+1

) = ↵i[(i+ 2)v�1

· bi+1

� fv
1

· bi+1

]

= (i+ 2)v
1

v�1

· bi+1

� v
1

fv
1

· bi+1

= (i+ 2)v
1

v�1

· bi+1

� v2
1

f · bi+1

� v
1

v�1

· bi+1

= �i+!

↵i+1

(bi+1

).

This is a representation of the quiver constructed from the representation of sl
2

(V
1

). The

inverse process consists of defining each vector space Vi assigned to the vertices i in the quiver

to be the highest weight space of the direct sum of irreducible representations Wi of highest

weight i. This determines the sl
2

-action on the representation V =
L

i2N Wi, with Vi ⇢ Wi

is the highest weight space of Wi. Then define the action of the vi by v
1

· bi = ↵i(bi) and

v�1

· bi+1

= 1

i+2

(�i(bi+1

) + f↵i+1

(bi+1

)) and extending this action to the whole representation

using the commutation relations. Then these constructions are inverse to each other, so any

map of sl
2

(V
1

) representations induces a map of quiver representations and vice versa.

A similar result holds for the Lie superalgebra sl�
2

(V
1

) [HK01]:

Proposition 2.4.4. The category of finite-dimensional representations of sl�
2

(V
1

) is equivalent

to the category of finite-dimensional representations of the quiver:

• • • • • . . .
↵0

�0

↵1

�1

↵2

�2

↵3

�3

0 1 2 3 4

with relations

↵i+1

↵i = �i �i+1

= 0 for all i 2 N
�i+1

↵i+1

= ↵i �i for all i 2 N.

The proof of this proposition is entirely similar to that of the previous theorem, though noting

that there is a further non-trivial relation in the superalgebra sl�
2

(V
1

), namely [vi, vi] = 0 for

i = ±1, which leads to the first set of relations on the quiver.

Note that this quiver together with the relations above has path algebra Z which is an example

of a zigzag algebra, in particular the zigzag algebra of the chain

• • • • •

Zigzag algebras will play an essential role in the categorification of the adjoint representation

seen in section 3.2.
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2.4.3 The representation superalgebra sl�2 (V2)

We now give an extension of Loupias’ results to describe the finite-dimensional representations of

the superalgebra sl�
2

(V
2

). The quiver corresponding to sl�
2

(V
2

) is now disconnected, a property

that holds for all sl±
2

(Vn) for even n.

Theorem 2.4.5. The category of finite-dimensional representations of the algebra sl�
2

(V
2

) is

equivalent to the category of finite-dimensional representations of the quiver

• • • • • . . .
↵0

�0

↵2

�2

↵4

�4

↵6

�6
0 2 4 6 8

�0 �2 �4 �6 �8

• • • • • . . .
↵1

�1

↵3

�3

↵5

�5

↵7

�7
1 3 5 7 9

�1 �3 �5 �7 �9

with relations:

�i+2

↵i + ↵i �i = 0

�i �i+2

+ �i �i = 0

↵i+2

↵i = 0

�i �i+2

= 0

�i+2

↵i+2

+ ↵i �i = 0

�2i = 4(i+ 2)�i ↵i

for all i 2 N.

Proof. The proof proceeds as for Loupias’ theorem. Let the highest weight spaces Bi of the

copies of irreducible sl
2

representations be the vector spaces corresponding to each vertex in

the quiver. Define

↵i : Bi ! Bi+2

�i : Bi+2

! Bi �i : Bi ! Bi

bi 7! v
2

· bi bi+2

7! yi · bi+2

bi 7! xi · bi

where xi = (i + 2)v
0

� 2fv
2

and yi = v�2

� 1

(i+2)(i+4)

fxi+2

� 2

(i+2)(i+4)

f2v
2

. Thus, the maps

�i and �i are projections onto the spaces Bi of v�2

and v
0

respectively.

Using the relations on the Lie algebra, we get the relations on the quiver. Note that we are

only interested in maps on the Bi, so in all the following computations, we implicitly apply

the projection map onto Bi, under which any term of the form fA is sent to zero, for A any

composition of elements in sl�
2

(V
2

).

1. Immediately from v2
2

= 0, we must have ↵i+2

↵i = 0 for all i.
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2. v2�2

= 0:

0 = v2�2

· bi+4

= v�2

(�(i+ 2)yi+2

· bi+4

+  (i+ 2)fxi+4

· bi+4

� ⌘(i+ 2)f2v
2

· bi+4

)

= �(i)�(i+ 2)yiyi+2

· bi+4

+  (i+ 2)v�2

fxi+4

· bi+4

+ ⌘(i+ 2)v�2

f2v
2

· bi+4

= �(i)�(i+ 2)iiyi+2

bi+4

since v�2

f = fv�2

.

for all i 2 N and all bi+4

2 Bi+4

. Thus, �i�i+2

= 0 for all i 2 N.

3. v
0

v
2

+ v
2

v
0

= 0:

v
2

v
0

· bi =
1

i+ 4
xi+2

v
2

· bi +
2f

i+ 4
v2
2

· bi

=
1

i+ 4
xi+2

v
2

· bi

v
0

v
2

· bi = v
2

(
1

i+ 2
xi · bi +

2

i+ 2
fv

2

· bi)

=
1

i+ 2
v
2

xi · bi +
2

i+ 2
v
2

fv
2

· bi

=
1

i+ 2
v
2

xi · bi +
2

i+ 2
v
0

v
2

· bi

Hence, 0 = (v
2

v
0

+ v
0

v
2

) · bi

=
1

i+ 2
v
2

xi · bi +
2 + i+ 2

(i+ 2)(i+ 4)
xi+2

v
2

· bi

for all i 2 N and all bi 2 Bi. This implies the relation �i+2

↵i = ↵i�i for all i 2 N.

4. v�2

v
0

+ v
0

v�2

= 0:

v�2

v
0

· bi+2

= v�2

(
1

i+ 4
xi+2

· bi+2

+
2

i+ 4
fv

2

· bi+2

=
1

i+ 4
yixi+2

· bi+2

+
2

i+ 4
v�2

fv
2

· bi+2

=
1

i+ 4
yixi+2

· bi+2

v
0

v�2

· bi+2

= v
0

(yibi+2

� 1

(i+ 2)(i+ 4)
fxi+2

· bi+2

� 2

(i+ 2)(i+ 4)
f2v

2

· bi+2

)

=
1

i+ 2
xiyi · bi+2

� 1

(i+ 2)(i+ 4)
v
0

fxi+2

bi+2

� 2

(i+ 2)(i+ 4)
v
0

f2v
2

· bi+2

=
1

i+ 2
xiyi · bi+2

+
2

(i+ 2)(i+ 4)
v�2

xi+2

· bi+2

=
1

i+ 2
xiyi · bi+2

+
2

(i+ 2)(i+ 4)
yixi+2

· bi+2

Hence, 0 =
1

i+ 4
yixi+2

· bi+2

+
1

i+ 2
xiyi · bi+2

+
2

(i+ 2)(i+ 4)
yixi+2

· bi+2

=
1

i+ 2
(yixi+2

· bi+2

+ xiyi · bi+2

)

for all ı 2 N and bi+2

2 Bi+2

. Thus, �i�i+2

+ �i�i = 0 for all ı 2 N.
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5. v2
0

= 0:

v2
0

· bi = v
0

(
1

i+ 2
xi · bi +

2

i+ 2
fv

2

· bi

=
1

(i+ 2)2
x2

i · bi +
2

i+ 2
v
0

fv
2

· bi

=
1

(i+ 2)2
x2

i · bi �
4

i+ 2
v�2

v
2

· bi

Hence, x2

i · bi = 4(i+ 2)v�2

v
2

· bi

for all bi 2 Bi.

6. v�2

v
2

+ v
2

v�2

= 0:

v�2

v
2

· bi+2

= yi+2

v
2

· bi+2

after projecting onto Bi+2

Hence, x2

i+2

· bi+2

= 4(i+ 4)yi+2

v
2

· bi+2

for all bi+2

2 Bi+2

, so �i�i+2

+ �i�i = 0 for all i 2 N.

v
2

v�2

· bi+2

= v
2

(yi · bi+2

� 1

(i+ 2)(i+ 4)
fxi+2

· bi+2

� 2

(i+ 2)(i+ 4)
f2v

2

· bi+2

)

= v
2

yi · bi+2

� 1

(i+ 2)(i+ 4)
v
0

xi+2

· bi+2

+
4

(i+ 2)(i+ 4)
v�2

v
2

· bi+2

= v
2

yi · bi+2

� 1

(i+ 2)(i+ 4)2
x2

i+2

· bi+2

+
4

(i+ 2)(i+ 4)
yi+2

v
2

· bi+2

= v
2

yi · bi+2

Hence 0 = v�2

v
2

· bi+2

+ v
2

v�2

· bi+2

= yi+2

v
2

· bi+2

+ v
2

yi · bi+2

for all bi+2

2 Bi+2

. Thus, �i+2

↵i+2

+ ↵i�i = 0 for all i 2 N.

For the inverse construction, define each vector space associated to the vertex i to be the highest

weight space as in the sl
2

case. Then the action of sl
2

is determined on each Bi by

v
2

· bi = ↵ibi

v
0

· bi =
1

i+ 2
(�i + 2f↵i) · bi

v�2

· bi = �i +
1

(i+ 2)(i+ 4)
(f�i � 2f2↵i)

on the basis vectors of the highest weight spaces, and extend to the total representation by the

commutation relations.
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Chapter 3

Categorification

In this chapter we categorify certain irreducible representations of quantum groups. In par-

ticular we construct a category C such that the Grothendieck group K(C) of the category is

isomorphic to a chosen representation of the quantum group of a semisimple Lie algebra. More

explicitly, given a semisimple Lie algebra g with quantum enveloping algebra (quantum group)

Uq(g), and a representation V� of Uq(g) with highest weight �, we construct categories Cµ for

each weight µ appearing in the decomposition V� = �µV�(µ) into weight spaces such that the

Grothendieck group of Cµ is isomorphic to V�(µ). Furthermore, we lift the action of the gener-

ators of Uq(g) to functors acting between the categories Cµ. We also demonstrate how further

structure of the quantum group and its representation can be lifted to the categorical level.

In the first example, g = sln and the lifted representation has highest weight 2!k where !k is

a fundamental weight of sln. Since in this case the dimension of the weight spaces V�(µ) are

Catalan numbers, this is an example of a “bicategorification”, that is, replace a number to a

vector space and then replace the vector space by a category:

number vector space category
categorification

dimension

categorification

Grothendieck group

More specifically, in this example the number is the mth catalan number cm = 1

m+1

 
2m

m

!
,

the vector space is a weight space V� of a particular representation V of Uq(sln), and there is

a category C� corresponding to each weight space V�:

1

m+1

 
2m

m

!

V� C�
categorification

dimension

categorification

Grothendieck group

Furthermore, the quantum group Uq(sln) acts on the representation V =
L

�, and this action

lifts to a categorical action on the category C :=
L

� V�C�, with functors lifting the generators

of Uq(sln) mapping between the categories C�, so that the picture becomes:

39
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(
1

m(�)+1

 
2m(�)

m(�)

!)
L

� V�

L
� C�

categorification

dimension

categorification

Grothendieck group

Uq(sln) UQ(sln)

Both examples of categorified representations considered here do not just lift the basic structure

of the original representation, but lift further structures on both the representation and the

quantum group, satisfying another of the main objectives of categorification.

3.1 Categorifying some level-2 representations of Uq(sln)

Definition A level two representation of a quantum group Uq(g) is an irreducible representa-

tion of highest weight q(!j + !k), where !j and !k are fundamental weights of g.

We give an exposition of the work of Khovanov and Huerfano in [HK06]. Note that a cate-

gorification of the corresponding level-two representation of the Lie algebra sln is obtained by

forgetting the grading in the constructed category.

Let !
1

, . . . ,!n�1

be the fundamental dominant weights of the Lie algebra sln, and let V be

the irreducible representation of the associated quantum group Uq(sln) with highest weight

q2!k , for some 0  k  n � 1. As seen in chapter 1, any highest weight can be represented

by a sequence of n integers, determined by coe�cients of fundamental weights. In this case,

the highest weight is 2!k = (0, . . . , 0, 2, 0, . . . , 0), where the 2 occurs in the kth position in the

sequence.

Decompose the representation V into a direct sum of weight spaces V�. A weight � is called

admissible if V� 6= 0. Then the admissible weights for this representation are represented by

sequences of n integers satisfying

� = (�
1

,�
2

, . . . ,�n) such that
nX

i=1

�i = 2k and 0  �i  2

Let m(�) be half the number of 1s that appear in the sequence �. For example, if we are

considering sl
5

, and k = 3, then an admissible weight is � = (1, 1, 2, 1, 1), corresponding to the

weight (0,�1, 1, 0) and m(�) = 2.

The requirement that
P
�i = 2k, with �i  2, ensures that 0  m(�)  min{k, n � k}: there

can be at most 2k 1s in the sequence, so that
P
�i  2k, and the requirement m(�)  n � k

ensures
P

�i
� 2k. It is also clear from the requirement that the sum be even that m(�) is an

integer.

Lemma 3.1.1. The dimension of the weight space for admissible � is dependent only on m :=

m(�), and is equal to the m-th Catalan number cm = 1

m+1

 
2m

m

!
.
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Proof. By Schur-Weyl duality, the multiplicities of weight spaces V� are given by the Kostka

numbers, the number of semistandard Young tableaux of a given shape and content. More

specifically, given a weight space V�, we have dim(V�) = K⌫� where K⌫� is the Kostka number

associated to the shape ⌫, and content �. Here ⌫ is the partition ⌫ = (2, 2, . . . , 2, 0, . . . , 0)

consisting of k 2s and n � k 0s. This is the sequence corresponding to the highest weight 2!k

of the representation V .

It is known that the m-th Catalan number is the number of standard Young tableaux of shape

2 ⇥m. The highest weight 2!k given by the partition ⌫ = (2, . . . , 2, 0, . . . , 0) as above, corre-

sponds to the Young tableau of shape 2⇥k. Admissible weights µ consist of ordered n-tuples of

integers 0,1, and 2, such that the sum is 2k. This defines a weight of the tableau by setting the

ith coe�cient in the sequence to be the number of is in the weight of the tableau. Returning

to the previous example for n = 5, k = 3, let � = (1, 1, 2, 1, 1). This defines the content of the

Young tableau to be one 1, one 2, two 3s, one 4 and one 5, so an example of a semistandard

Young tableau of shape ⌫ and weight � is:

1 2
3 3
4 5

To construct a semistandard tableau, any pair of integers corresponding to a 2 in the sequence

µ must occur in the same row. Deleting any row consisting of the same number, the Kostka

number K⌫� is equal to the simplified Kostka number K⌫0,�0 where ⌫0 is a 2⇥m rectangle and

m is half the number of 1s in the sequence � and �0 is derived from � by taking �i mod 2 for all

elements �i in the sequence �. For example, with � as above, �0 = (1, 1, 0, 1, 1). Therefore there

are 2m non-zero elements in �0, all equal to 1, so K⌫0�0 is exactly the m-th Catalan number.

As in chapter 1, denote the generators of Uq(sln) by Ei, Fi,Ki and K�1

i .

Let "i = (0, . . . , 0, 1,�1, 0, . . . , 0) be the sequence of n integers with ith entry equal to 1 and

i + 1th entry equal to �1. Then Ei · V� ⇢ V�+"i , and Ei · V� = 0 if � + "i is not admissible.

Similarly, Fi · V� ⇢ V��"i , and Fi acts trivially on V� if �� "i is not admissible.

The aim is now to construct a categorification of the level two representation V using a geometric

context in which the Catalan numbers arise. As a point of reference, we will construct an abelian

category C =
L

C(�) where � ranges over the admissible weights for V and each of the C(�)
are categories of finitely-generated graded H� modules, with the action of Uq(sln) on V lifting

to an action on C. Our first step is to construct the H�. We will then describe the action of

Uq(sln) on C and look into some of the structure of this category.
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The rings H�

Let � be an admissible weight and let s = (s
1

, s
2

, . . . , s
2m) be the sequence of integers describing

the positions of the 1s in � in order (so that s
1

< s
2

< . . . < s
2m): for example, if � =

(1, 2, 1, 1, 2, 2, 1, 1, 1, 0, 2) then s(�) = (1, 3, 4, 7, 8, 9). Place marked points on the horizontal

axis at each si.

Define Bs to be the set of matchings of the si with no quadruple si < sj < sk < sl such

that i is matched with k and j is matched with l. Then we can visualise Bs as the set of

crossingless matchings of the 2m points si, and the size of Bs is precisely the m-th Catalan

number. For simplicity, all figures depict the case where the si are the integers 1, 2, . . . , 2m,

with corresponding set of crossingless matchings denoted Bm.

For example, the set B3 is:

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

Let a and b be elements in Bm and denote by R(b) the reflection of b about the horizontal axis.

Then we can form a closed 1-manifold, denoted R(b)a, by gluing together R(b) and a at the

endpoints si as shown below. Our convention is to read all diagrams from bottom to top.

Let a be

• • • • • •

and let b be

• • • • • •

So that R(b) is

• • • • • •

Resulting in the closed 1-manifold R(b)a:

a

R(b)

For any pairs (a, b) 2 Bm ⇥ Bm, R(b)a is a closed one-manifold. To obtain the rings H�,

we apply a functor Q, more specifically a two-dimensional topological quantum field theory

(TQFT) from the category
1

Cob of closed 1-manifolds and oriented (1+1)-cobordisms to the

category of abelian groups Ab. This method of applying a TQFT will reappear in chapter
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5, when discussing the construction of Khovanov homology. The main building block for this

functor is the following Frobenius ring A:

Let A be the cohomology ring H⇤(S2,Z) of the 2-sphere, so that A ⇠= Z[X]/(X2) (where X is

a generator for H2(S2,Z)). Then the nondegenerate trace form tr : A ! Z on A is given by:

tr(1) = 0 tr(X) = 1

and the unit map " : Z ! A is defined by "(1) = 0 and "(X) = 1. Define a grading on A by

setting deg(1) = �1 and deg(X) = +1. Then the multiplication map m : A ⌦ A ! A and

comultiplication map � : A ! A⌦A are degree 1 maps defined as follows:

m :

8
>>><

>>>:

1⌦ 1 7! 1

1⌦X 7! X

X ⌦ 1 7! X

X ⌦X 7! 0

� :

(
1 7! 1⌦X +X ⌦ 1

X 7! X ⌦X

The TQFT Q is given by the following:

Given a disjoint union Oi of i circles, Q(Oi) = A⌦i.

Viewing the three-holed sphere S2

1,2 as a cobordism from one circle to two circles,

Q(S2

2,1) = � : A ! A⌦A.

Viewing the three-holed sphere S2

2,1 as a cobordism from two circles to one,

Q(S2

1,2) = m : A⌦A ! A.

Viewing the disc D2

1,0 as a cobordism from one circle to the empty manifold,

Q(D2

1,0) = tr : A ! Z.

Viewing the disc D2

0,1 as a cobordism from the empty manifold to one circle,

Q(D2

0,1) = " : Z ! A,

where " is the unit of A and tr is the trace of A.

R(b)a is a disjoint union of cycles, hence an object of
1

Cob, so we apply the functor Q to it,

obtaining Q(R(b)a) ⇠= A⌦i where i is the number of circles in R(b)a.

Define the ring

H� :=
M

a,b2Bs

(H�)b a where (H�)b a := Q(R(b)a){m(�)}
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Contraction

Isotopy

Figure 3.1: Contraction from R(c)bR(b)a to R(c)a

and {m(�)} denotes an upwards grading shift by m(�). To define multiplication in the ring

H�, note that for all a, b and c in Bs, there is a canonical cobordism form R(c)bR(b)a to R(c)a

given by contracting b with R(b) as shown below:

The contraction cobordism is in fact a surface in R⇥ [0, 1]⇥ [0, 1], see [Kho02]. This cobordism

induces a group homomorphism Q(R(c)b)⌦Q(R(b)a) ! F(R(c)a). Thus, multiplication in the

ring H� (H�)d c⌦ (H�)b a ! (H�)d a is defined to be the homomorphism Q(R(d)c)⌦Q(R(b)a) !
Q(R(d)a) induced by the contraction of c with R(b) if b = c and 0 if b 6= c, over all a, b, c, d 2 Bs.

This multiplication is associative and grading-preserving after applying the shift {m(�)}, where
associativity follows from the fact that the one-manifolds corresponding to products (xy)z and

x(yz) are isotopic for all x, y, z 2 Ob
1

Cob, and the TQFT Q is a functor from
1

Cob, hence

isotopies in
1

Cob induce isomorphisms in Ab.

Furthermore, (H�)a a is a subring of H� isomorphic to A⌦m(�), since each matching in a defines

a circle in R(a)a and each of these cycles is disjoint by definition of Bs. Define 1a := 1⌦m(�) 2
A⌦m(�). Then 1a is an idempotent in H�, and

P
a2Bs 1a is the unit element in H�, with

(H�)b a = 1bH�1a. The reason for studying the rings H� is in the categorification of weight

spaces V� for admissible �: these will lift to categories of modules over the rings H�. Thus,

functors between these categories will consist of tensoring with bimodules of the rings, more

specifically, (H�, Hµ)-bimodules for admissible weights � and µ.

Let � and µ be admissible weights, with m(�) = m and m(µ) = l, with associated position

vectors given by s(�) = (s
1

, s
2

, . . . , s
2m) and t(µ) = (t

1

, t
2

, . . . , t
2l). Arrange the points si

along the horizontal axis and the points tj along the horizontal line at height 1 in R⇥ [0, 1]. A

cobordism between the set of points si and the set of points tj is a disjoint union of arcs and

circles (copies of the unit interval and S1 embedded into R⇥ [0, 1]) such that the endpoints of

the arcs have horizontal coordinates si and ti, and all these points are the endpoint of an arc.

To ensure that concatenation is smooth, we require the arcs to meet horizontal lines vertically

at their endpoints. A cobordism of this form is called a flat tangle T . A flat tangle with

2m bottom endpoints given by the position vector s for an admissible weight � and 2l top

endpoints given by the position vector t for admissible weight µ is called a flat (l,m)-tangle, or

a flat (µ,�)-tangle if we want to make explicit reference to the sln weights associated to T .
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Figure 3.2: A flat (3,2)-tangle

From flat (⌫, µ) tangles one defines an (H⌫ , Hµ)-bimodule given by

Q(T ) =
M

a2Bs

b2Bt

Q(R(b)Ta){m(µ)}

where R(b)Ta is the closed 1-manifold obtained by gluing R(b) and a to the flat tangle T by

identifying endpoints.

Note that Q(T ) is well-defined, since each summand consists of a disjoint union of cycles. A

(⌫, µ) tangle T
1

can be composed with an (⌘, ⌫) tangle T
2

by identifying the top endpoints of

T
1

with the bottom endpoints of T
2

to form an (⌘, µ) tangle T
1

T
2

.

Proposition 3.1.2. [Kho02] There is a canonical isomorphism of (H⌘, Hµ)-bimodules F(T
1

T
2

) ⇠=
F(T

1

)⌦H⌫ F(T
2

).

The functors between categorified weight spaces will lift the action of the elements Ei and Fi,

which take weight spaces Vµ to weight spaces Vµ±"(i) when these are admissible. The tangles in

figures 3.1 and 3.1 demonstrate the action of elementary bimodules on admissible weight spaces

that will be used to define the categorical action of Ei and Fi:

i

i+1

i+1

i

Figure 3.3: The flat tangles Idi+1

i and Idii+1

To simplify notation, define S to be an integer that is either 0 or 2. The tangles in figures 3.1

and 3.1 above are (⌫, µ)-tangles, where µ and ⌫ di↵er at only two positions, so that µj = ⌫j for

all j 6= i, i + 1. In the case of Idi+1

i , µi = 1, µi+1

= S, ⌫i = S and ⌫i+1

= 1. Equivalently, i is

an element in the sequence s(µ) and i + 1 is an element in the sequence t(⌫), so that a (⌫, µ)

tangle between s(µ) and t(⌫) must contain an arc from i as a bottom endpoint to i + 1 as a

top endpoint. There is no 1 at the i+ 1-th position of µ or equivalently s(µ) does not contain
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i i+1

i+1

i

Figure 3.4: The flat tangles
T

i,i+1

and
Si,i+1

i+ 1, hence the gap at i+ 1 on the bottom line. The vertical lines in the tangles above signify

a 1 in µ and ⌫ at the same position. The roles of µi and ⌫i are reversed for Idii+1

.

For
T

i,i+1

, µi = µi+1

= 1, while ⌫i = ⌫i+1

= S. Thus the points i and i+1 are not included in

t(⌫) and do not form endpoints for any of the tangles considered here. We therefore require a

(m(µ),m(µ) � 1)-tangle, the simplest of which is
T

i,i+1

. Again, reverse the roles of µi and ⌫i
to obtain

Si,i+1.

The category C

Having defined the rings H� for admissible weights �, we now construct categories C(�) and

functors between them that categorify the action of U on V . Recall that the decategorification

process here consists of taking the Grothendieck group of the constructed category, so we

must show that, up to tensoring with the field Q(q), the Grothendieck group of our category is

isomorphic to V , and that the action of functors Ei and Fi between the categories C(µ) descends
to the Uq(sln) action on the Grothendieck group.

For each admissible weight �, define C(�) := H�-mod, the category of graded, finitely-generated

H� modules. Note that if s(�) is empty then H� is simply the ground ring Z, so that C(�) =g

Ab, the category of graded finitely-generated abelian groups. Then the categorification of the

total vector space V is defined to be

C :=
M

�

C(�)

with � ranging over all admissible weights in V .

To obtain a categorical action of U on C, we must also define functors Ei,Fi : C ! C that lift

the action of Ei and Fi on V . Let Ei be the sum over all admissible � in V of the following

functors E�
i : C(�) ! C(�+ "i):

• If �+ "i is not admissible, E�
i is the zero functor.

• If (�i,�i+1

) = (1, 2), then ((�+ "i)i, (�+ "i)i+1

) = (2, 1) and E�
i = Q(Idi+1

i ).

• If (�i,�i+1

) = (0, 1) then ((�+ "i)i, (�+ "i)i+1

) = (1, 0) and E�
i = Q(Idii+1

).
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• If (�i,�i+1

) = (1, 1) then ((�+ "i)i, (�+ "i)i+1

) = (2, 0) and E�
i = Q(

T
i,i+1

).

• If (�i,�i+1

) = (0, 2) then ((�+ "i)i, (�+ "i)i+1

) = (1, 1) and E�
i = Q(

Si,i+1).

Similarly, let the functor Fi be the sum over all admissible � of the functors F�
i : C(�) !

C(�� "i):

• If �� "i is not admissible, F�
i is the zero functor.

• If (�i,�i+1

) = (1, 0), then ((�� "i)i, (�� "i)i+1

) = (0, 1) and F�
i = Q(Idi+1

i ).

• If (�i,�i+1

) = (2, 1) then ((�� "i)i, (�� "i)i+1

) = (1, 2) and F�
i = Q(Idii+1

).

• If (�i,�i+1

) = (1, 1) then ((�� "i)i, (�� "i)i+1

) = (0, 2) and F�
i = Q(

T
i,i+1

).

• If (�i,�i+1

) = (2, 0) then ((�� "i)i, (�� "i)i+1

) = (1, 1) and F�
i = Q(

Si,i+1).

It remains to lift the generators Ki of U to functors from C to itself. To this end, define the

functor Ki : C ! C to be the sum over admissible � of functors that shift the gradings of objects

in C(�) up by �i � �i+1

:

K(M) = M{�i � �i+1

} for M 2 Ob(C(�).

This functor is clearly invertible, with inverse functor K�1

i shifting down by �i � �i+1

(or

equivalently, shifting up by �i+1

� �i.

Note that the functors map between categories in the same way that the generators of Uq(sln)

map between weight spaces. The following propositions show that the functors Ei,Fi and

Ki have the same relations up to natural isomorphism as the generators Ei, Fi and Ki (see

section ?? for these relations), so that the action of U on V is indeed lifted to a categorical

action on C.

Proposition 3.1.3. There are natural isomorphisms between the following functors:

(i) KiK�1

i
⇠= Id ⇠= K�1

i Ki

(ii) KiKj
⇠= KjKi

(iii) KiEj ⇠= EjKi{cij}

(iv) KiFj
⇠= EjKi{�cij}

(v) EiFj
⇠= FjEi if i 6= j

(vi) EiEj ⇠= EjEi if |i� j| > 1

(vii) FiFj
⇠= FjFi if |i� j| > 1

(viii) E2

i Ej � EjE2

i
⇠= EiEjEi{1}� EiEjEi{�1} if j = i± 1

(ix) F2

i Fj � FjF2

i
⇠= FiFjFi{1}� FjFiFj{�1} if j = i± 1
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where cij =

8
>><

>>:

2 if i = j

�1 if |i� j| = 1

0 if |i� j| > 1

Proof. (i) and (ii) are in fact equalities, since the shift functor {1} is an automorphism of the

category C, with inverse functor {�1}, and with composition given by

M{i}{j} = M{i+ j} for all i, j 2 Z

and furthermore M{0} = M .

(iii) In the case i = j, let M 2 C(�) for some admissible weight �. Suppose �+ "i is admissible,

otherwise the equality is trivial. Then Ei(M) 2 C(�), say Ei(M) = M 0. Then Ki(M 0) =

M 0{(�+ "i)i � (�+ "i)i+1

} = M 0{�i + 1 � (�i+1

� 1)} = M 0{�i � �i+1

}{2} = EiKi(M){2}.
The other cases and (iv) are similar.

When |i� j| > 1, (v), (vi) and (vii) follow from the fact that the functors Ei and Fj correspond

to tangles involving disjoint strands if i 6= ±1. Thus the tangles associated to EiFj and FjEi
are isotopic and induce naturally isomorphic functors.

(v) Suppose j = i+ 1. Then consider the three adjacent elements of some admissible � about

�i+1

: (�i,�i+1

,�i+2

). Under the action of Fi+1

Ei, we are sent to weight spaces with weights

that locally are given by

(�i,�i+1

,�i+2

) (�i + 1,�i+1

� 1,�i+2

) (�i + 1,�i+1

� 2,�i+2

+ 1)
Ei Fi+1

and similarly,

(�i,�i+1

,�i+2

) (�i + 1,�i+1

� 1,�i+2

) (�i + 1,�i+1

� 2,�i+2

+ 1)
Fi+1 Ei

so that the only weight � such that the final weight is admissible has �i < 2, �i+2

< 2

and �i+1

= 2. There are four possibilities: (�i,�i+1

,�i+2

) = (1, 2, 1), (1, 2, 0), (0, 2, 1) and

(0, 2, 0). The following figure 3.5 shows the flat tangles associated to Fi+1

Ei and EiFi+1

for

(�i,�i+1

,�i+2

) = (1, 2, 1).

1 2 1

2 0 2

Ei

Fi+1

1 2 1

2 0 2

Fi+1

Ei

Figure 3.5: The flat tangles corresponding to Fi+1

Ei and EiFi+1

for (�i,�i+1

,�i+2

) = (1, 2, 1)

The flat tangles are isotopic in the plane and thus induce a natural isomorphism of functors.
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The other admissible weights and the case j = i� 1 are shown in the same way.

(viii) Let j = i+1. By a similar argument to part (v), the only admissible weights � such that

at least one of E2

i Ei+1

or Ei+1

E2

i sends � to an admissible weight have �i = 0,�i+1

,�i+2

> 0.

The only possibilities are (�i,�i+1

,�i+2

) = (0, 1, 2), (0, 1, 1), (0, 2, 2) and (0, 2, 1). We consider

the case (0, 1, 2). Under E2

i Ei+1

, (0, 1, 2) 7! (0, 2, 1) 7! (1, 1, 1) 7! (2, 0, 1). Under the action

of Ei+1

E2

i , (0, 1, 2) gets sent to a weight that is not admissible, so we disregard this action, as

the associated functor is zero. Under the action of EiEi+1

Ei, (0, 1, 2) 7! (1, 0, 2) 7! (1, 1, 1) 7!
(2, 0, 1). The tangles associated to these maps are:

0 1 2

2 0 1

Ei+1

Ei

Ei

0 1 2

2 0 1

Ei

Ei+1

Ei

Figure 3.6: The flat tangles associated to E2

i Ei+1

and EiEi+1

Ei

The flat tangle T
1

associated to E2

i Ei+1

is obtained from the flat tangle T
2

associated to EiEi+1

Ei
by planar isotopy and adding in a circle, so F(T

1

) ⇠= F(T
2

)⌦A. A is generated by an element

in degree �1 and an element in degree 1. Thus F(T
1

) ⇠= F(T
2

){1} � F(T
2

){�1}, so in terms

of the given functors, we have a natural isomorphism

E2

i Ei+1

� Ei+1

E2

i
⇠= EiEi+1

Ei{1}� EiEi+1

Ei{�1}

as required. The other cases and (ix) are similar.

Proposition 3.1.4. For any admissible weight �, there are natural isomorphisms between

functors acting on the category C(�)

(i) EiFi
⇠= FiEi � Id{1}� Id{�1} if (�i,�i+1

) = (2, 0)

(ii) EiFi
⇠= FiEi � Id if �i � �i+1

= 0

(iii) EiFi
⇠= FiEi if �i = �i+1

(iv) EiFi � Id ⇠= FiEi if �i � �i+1

= �1

(v) EiFi � Id{1}� Id{�1} ⇠= FiEi if (�i,�i+1

) = (0, 2)
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This proposition in particular shows that the relation EiFi � FiEi =
Ki�K�1

i
q�q�1

in U is lifted to

the same relation up to natural isomorphism at the categorical level.

Proof. (i) Let (�i,�i+1

) = (2, 0). Then under the action of EiFi, (�i,�i+1

) 7! (1, 1) 7! (2, 0).

The tangle associated to EiFi is a single circle in the plane, while under the action of Ei,

(�i,�i) 7! (3,�1), which is not admissible so FiEi is associated to the empty tangle and is thus

isomorphic to the ground ring Z. Tensoring with the ground ring is equivalent to applying the

identity functor. The tangle associated to EiFi is obtained from the tangle associated to FiEi
by adding in a circle, so as before EiFi

⇠= A⌦Id ⇠= Id{1}�Id{�1}. The proof of (v) is identical
after swapping Ei and Fi.

(ii) Let (�i,�i+1

) = (1, 0). EiFi : (1, 0) 7! (1, 0) and Ei(1, 0) is not admissible, so FiEi is

associated to the empty tangle. The tangle associated to EiFi is shown below in figure 3.7:

1 0

1 0

Fi

Ei

Figure 3.7: The tangle associated to EiFi, (�i,�i+1

) = (1, 0)

This tangle is isotopic to the identity (a vertical line), so induces a natural isomorphism from

EiFi to the identity functor. The case (�i,�i+1

) = (2, 1) and the proof of (iv) are shown in the

same manner. (iii) Let (�i,�i+1

) = (1, 1). Then (�i,�i+1

) (2, 0) (1, 1)
Ei Fi Similarly,

(�i,�i+1

) (0, 2) (1, 1)
Fi Ei

so that the tangles associated to EiFi and FiEi are identical (figure 3.8:

1 1

1 1

Fi (Ei)

Ei (Fi)

Figure 3.8: The tangle associated to EiFi and FiEi

The cases (�i,�i+1

) = (0, 0) and (2, 2) are trivial since neither is sent to an admissible weight

by either Ei or Fi.
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We may also categorify the quantum divided powers

E(a)
i =

Ea
i

[a]!
F (b)
i =

F b
i

[b]!

for positive integers a and b where [a]! = [a][a�1] . . . [1] and [a] = qa�q�a

q�q�1 . These divided powers

are the generators of the integral form of U , the Z[q, q�1]-submodule of U . Note that in the

representation V , all weights have coe�cients less than or equal to 2, so all the Ea
i and F a

i are

trivial for a > 2, and E2

i is non-trivial if and only if (�i,�i+1

) = (0, 2) (otherwise �+2"i is not

an admissible weight). If this condition is satisfied, the rings H� and H�+2"i are canonically

isomorphic, so we define the functors E(2)

i : C(�) ! C(� + "i) and F (2)

i : C(� + 2"i) ! C(�) to
be the mutually inverse equivalent functors induced by the isomorphism on rings. The functors

E(2)

i and F (2)

i are defined to be trivial if the condition on � is not satisfied. The following

proposition shows that the relations between divided powers and regular powers such as the

relation E2

i = (q + q�1)E(2)

i are preserved at the categorified level.

Proposition 3.1.5. There are natural isomorphisms

(i) E2

i
⇠= E(2)

i {1}� E(2)

i {�1}

(ii) F2

i
⇠= F (2)

i {1}� F (2)

i {�1}

(iii) EiEjEi ⇠= E(2)

i Ej � EjE(2)

i if |i� j| = 1

(iv) FiFjFi
⇠= F (2)

i Fj � FjF (2)

i if |i� j| = 1

Proof. We give a proof of (i). The remaining parts follow since the associated flat tangles are

isotopic, up to adding a circle. (i) The flat tangle associated to E2

i when (�i,�i+1

) = (0, 2) is:

0 2

2 0

Ei

Ei

Figure 3.9: The flat tangle associated to EiEi, (�i,�i+1

) = (0, 2)

The functor E(2)

i is an equivalence of categories, and E2

i is associated to a flat tangle T that is

obtained from the empty tangle by adding a circle, so Ei ⇠= A⌦E(2)

i
⇠= E(2)

i {1}�E(2)

i {�1}. Note

that since we are not mapping from a category to itself as in previous proofs, the empty tangle is

no longer associated to the identity map, rather it is associated to the equivalence of categories

induced by the canonical isomorphism of the rings H� and H�+2"i , when (�i,�i+1

) = (0, 2).

Thus, the generators and relations of U are lifted to functors and natural isomorphisms on the

category C. However, to show that this is indeed a correct categorification of the representation
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V , we must show that the decategorification of C, after tensoring with the ground field Q(q), is

isomorphic to V .

Decategorification

Proposition 3.1.6. The Grothendieck group K of the category C is isomorphic to the irre-

ducible representation V of U with highest weight 2!k:

M

�

K(C�) ⇠= K(C)⌦Z[q,q�1
]

Q(q) ⇠= V ⇠=
M

�

V�

where � ranges over the admissible weights of the representation V .

Proof. Let {1} denote the shift functor from C to itself that shifts the grading of elements in

C up by 1. Then, since the functors Ei and Fi do not depend on or modify the grading, they

commute with the shift functor. By the equality M{i}{j} = M{i+j}, the functor Ki commutes

with the shift functor.

The functors Ei and Fi are defined by tensoring with a projective (and hence flat) module, and

are therefore exact functors. It is clear that Ki is also exact. Therefore these functors induce

induce well-defined Z[q, q�1]-linear maps [Ei], [Fi] and [Ki] on the Grothendieck group of C. By
the functor isomorphisms in propositions 3.1.3 and 3.1.4, these maps satisfy the quantum group

relations. K(C) inherits a U -module structure after tensoring with the ground field Q(q) since

the action of Ei, Fi and Ki lifted the action of the generators of the quantum group on the

representation V .

The weight spaces for K(C) are determined by the elements in ObC that are all shifted by

the same amount by each of the functors Ki. Recall that these functors shift elements of C
by �i � �i+1

, where � is an admissible weight. Thus the weight spaces of K(C) are exactly

the Grothendieck groups of the categories C(�) for admissible �, and K(C) =
L

� K(C(�)).
The dimensions of these weight spaces are precisely the m(�) Catalan numbers, since these

enumerate the non-isotopic (m(�),m(�))-tangles with no circles, and thus the isomorphism

classes of H�-modules [Kho02]. Therefore the weight spaces of K(C) have the same dimension

as the weight spaces of V , and the representations are isomorphic.

Structure of the category

Generally, one aims to categorify in a way that lifts as much structure from the original object.

This particular categorification lifts several structures from the original representation and

quantum group that we will discuss here.

Biadjoint functors

Recall from section ??, that the algebra U is equipped with an antilinear antiautomorphism
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⌧ : U ! Uop defined by

⌧(Ei) = qFiK
�1

i , ⌧(Fi) = qEiKi, ⌧(Ki) = K�1

i

⌧(f(q)x) = f(q�1)⌧(x) for all f 2 Q(q) and x 2 U

⌧(xy) = ⌧(y)⌧(x) for all x, y 2 U

The following proposition shows that the categorification of V lifts the antiautomorphism ⌧ to

an operation that sends a functor to its right adjoint functor, if this exists.

Proposition 3.1.7. The functor Ei is left adjoint to FiKi{1}, Fi is left adjoint to EiKi{1} and

Ki is left adjoint to K�1

i .

Proof. The proposition states that, up to grading shifts, the functors Ei and Fi are biadjoint. To

show this, we find cobordisms between the tangles associated to EiFi and FiEi and the identity

tangle. These cobordisms involve only two-stranded tangles. First exclude the admissible

weights � such that � + "i is not admissible. For an admissible weight �, � + "i is admissible

only when (�i,�i+1

) = (1, 1), (0, 1), (0, 2) or (1, 2).

1. Let (�i,�i+1

) = (0, 1). Then ((�+ "i)i, (�+ "i)i+1

) = (1, 0) and the tangle associated

to FiEi is the mirror image (about the vertical axis) of the tangle in figure 3.7. There

is an obvious planar isotopy f : R ⇥ [0, 1] ⇥ [0, 1] ! R ⇥ [0, 1] from this tangle to the

identity tangle, which consists here of a single vertical line. This isotopy defines a surface

cobordism from the tangle to the identity tangle that induces a natural isomorphism from

FiEi to the identity functor on C(�). There is a similar cobordism from the identity

functor on C(� + "i) to EiFi. These cobordisms do not introduce any circles into the

diagrams so there is no grading shift.

2. Let (�i,�i+1

) = (1, 1). Then the tangle associated to FiEi is the tangle given in figure 3.8.

There is a cobordism from this tangle to the identity tangle, which consists here of two

vertical lines. This cobordism induces the multiplication map on H�, which increases the

degree by one. This shift corresponds to the total shift given by Ki{1}.

3. Let (�,�i+1

) = (0, 2). Then the tangle associated to FiEi is a single circle, as in figure 3.9.

The empty tangle, associated to the identity on C(�+ "i) is obtained from this circle by

taking the trace map, which has degree �1, agreeing with the total degree shift of Ki{1}.

The final case is similar. The cobordisms showing the inverse adjunction are the same as in the

first case, taken in reverse.

Semilinear form

Given a Q(q)-vector space V , a form h , i : V ⇥V ! Q(q) is called semilinear, if it is q-antilinear

in the first variable and q-linear in the second: if f is a rational function in q with coe�cients

in Q, then hf(q)v, wi = f(q�1)hv, wi = hv, f(q�1)wi for all v, w 2 V .
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Let ⌘ be a highest weight vector in the representation V (recall that the weight of ⌘ is therefore

2!k). Then there exists a unique semilinear form on V such that

h⌘, ⌘i = 1 (3.1)

hxv,wi = hx, ⌧(x)wi for all v, w 2 V, x 2 U (3.2)

Now consider the form ( , ) : KP (C) ⇥K(C) ! Z[q, q�1], where KP (C), called the projective

Grothendieck group, is the subgroup of K(C) generated by all isomorphism classes [P ] of pro-

jective objects in C. The form ( , , ) is defined by taking the graded dimension of the Hom

space from a projective module P to a general module M :

([P ], [M ]) := qdimHOMC(P,M) =
X

k2Z
qkdimHomC(P{k},M).

This is a semilinear form on Z[q, q�1]: applying the shift functor to P a positive number n

times induces a multiplication by q�n in qdimHomC(P,M), while shifting M up by n induces

a multiplication by qn. Tensoring with Q(q), ( , ) becomes a semilinear form on Q(q). The

isomorphism K(C) ⌦Z[q,q�1
]

Q(q) ⇠= V can be chosen such that the object P (2!k) in C(2!k)

isomorphic to Z concentrated in to degree zero is sent to ⌘. Then P (2!k) is projective, and

([P ], [P ]) = 1.

Furthermore, lifting the antiautomorphism ⌧ to the operation taking the right adjoint functor,

the second relation for the semilinear form in equation 3.1 also holds for ( , ). For example:

HomC(FiP,M) = HomC(P, EiKi{1}M)

HomC(KiP,M) = HomC(P,K�1

i M)

Under the isomorphism between K(C) ⌦Z[q,q�1
]

Q(q) and V , these relations descend to the

semilinear form h , i on V ⇥ V .

This categorification also lifts other structures on the representation V , such as a unique sym-

metric bilinear form associated to the same highest weight vector ⌘ and the Lusztig canonical

basis of V . For further details, see [HK06].

3.2 Categorifying the adjoint representation

Just as we could categorify certain representations of sln, we can also categorify the adjoint

representation of any simple, simply-laced Lie algebra g of finite type. This again follows the

work of Khovanov and Huerfano, as seen in [HK01].

Let g be a simple Lie algebra and let Uq(g) be the quantum group deformation of g. Let V be the

quantum deformation of the adjoint representation of g. Then V is an irreducible representation

that decomposes as a direct sum of the Cartan subalgebra h and one-dimensional vector spaces

corresponding to the roots of g. Decategorification here consists of taking the Grothendieck

group of a category to return a vector space isomorphic as a Uq(g) representation to the adjoint
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representation V . Our aim is therefore to lift the weight spaces of V to abelian categories, with

the quantum group generators lifting to functors between the categories in a way that preserves

the structure on the quantum group, thus satisfying the decategorification condition. As in the

case of level-two representations, one of the categories will be the category of modules over a

particular algebra, in this case an algebra constructed from the Dynkin diagram of g.

Let R be the root system of g, ⇧ a set of simple roots, W the Weyl group of g and ( , ) the

unique W -invariant bilinear form on the real vector space spanned by the roots in R such that

(↵,↵) = 2) for all roots ↵ 2 R determined by the Killing form.

3.2.1 The adjoint representation

As noted above, the adjoint representation V is an irreducible representation of Uq(g) with

highest weight the root of g lying in the dominant Weyl chamber. It has a canonical basis

{xµ, h↵} with µ 2 R and ↵ 2 ⇧, with corresponding one-dimensional weight space Rµ for all

roots µ 2 R and with weight space R
0

of dimension the rank of g (the dimension of the Cartan

subalgebra), spanned by the h↵. The action of the quantum group on V is given by

K↵xµ = q(↵,µ)xµ K↵h� = h� for all ↵,� 2 ⇧, µ 2 R

E↵xµ = 0 F↵xµ = 0 if (µ,↵) = 0

E↵xµ = 0 F↵xµ = xµ�↵ if (µ,↵) = 1

E↵xµ = xµ+↵ F↵xµ = 0 if (µ,↵) = �1

E↵x↵ = 0 F↵x↵ = h↵

E↵x�↵ = h↵ F↵x↵ = 0

for all ↵ 2 ⇧ and µ 2 R.

E↵h� =

8
>><

>>:

(q + q�1)x↵ if ↵ = �

x↵ if (�,↵) = �1

0 otherwise

F↵h� =

8
>><

>>:

(q + q�1)x�↵ if ↵ = �

x�↵ if (�,↵) = �1

0 otherwise

for all ↵,� 2 ⇧. Note that this action is analogous to the action of the Lie algebra g on itself

under the adjoint representation: adX(Y ) = [X,Y ] for allX,Y 2 g. As in the previous example,

the adjoint representation has certain structures that will be lifted by the categorification of V :
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Semilinear form

Recall that the quantum group has an antilinear antiautomorphism ⌧ : Uq(g) ! Uq(g)op. There

is a q-semilinear form on the adjoint representation: h , i : V ⇥ V ! Q(q) that is ⌧ -invariant

in the following sense:

hxv,wi = hv, ⌧(x)wi for all x 2 Uq(g), v, w 2 V.

In the canonical basis of V , this semilinear form is defined by:

hxµ, xµi = 1 µ 2 R

hxµ, x⌫i = 0 µ 6= ⌫ 2 R

hxµ, h↵i = 0 µ 2 R,↵ 2 ⇧

hh↵, h↵i = 1 + q2 ↵ 2 ⇧

hh↵, h�i = q (↵,�) = ±1, ↵,� 2 ⇧

hh↵, h�i = 0 (↵,�) = 0, ↵,� 2 ⇧

Thus all weight spaces are orthogonal under this semilinear form.

Involutions on V

There are Q-linear involutions  V and !V on V :

 V (xµ) = xµ  V (h↵) = h↵  V (f(q)v) = f(q�1) V (v)

!V (xµ) = x�µ !V (h↵) = h↵ !V (f(q)v) = f(q)!V (v)

for all µ 2 R, ↵ 2 ⇧, f 2 Q(q), v 2 V .

Claim 3.2.1. 1. The involutions  V and !V reverse and preserve the semilinear form on

V respectively: hv, wi = h V (w), V (v)i and hv, wi = h!V (v),!V (w)i for all v, w 2 V .

2.  V (xv) =  (x) V (v) and !V (xv) = !(x)!V (v) for all x 2 Uq(g) and v 2 V , where  is

a Q-linear involution on Uq(g) and ! is a Q(q)-linear involution on Uq(g) defined by:

 (E↵) = E↵  (F↵) = F↵  (K↵) = K�1

↵  (f(q)x) = f(q�1) (x)

!(E↵) = F↵ !(F↵) = E↵ !(K↵) = K�1

↵ !(f(q)x) = f(q)!(x)

for all x 2 Uq(g), ↵ 2 R, f 2 Q(q).

Proof. 1. The involution  V preserves the canonical basis of V , and since the semilinear form

is symmetric in the basis vectors (swapping basis vectors does not a↵ect the semilinear

form), the only requirement for such an involution to reverse the semilinear form is that

it is q-anitlinear, which is satisfied by  V .

Similarly, !V simply swaps the basis vectors xµ and x�µ, which does not a↵ect the

semilinear form since the basis vectors are orthogonal with respect to h , i. Furthermore,

!V is q-linear, so it preserves the semilinear form.
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2. This is clear from the action of the generators of Uq(g) on the basis vectors of V .

Dual canonical basis

From the previously defined semilinear form, one can construct the dual canonical basis, which is

dual to the canonical basis with respect to the semilinear form h , i: define `↵ 2 R
0

by hh↵, `�i =
�↵,� . Then the dual canonical basis is {xµ, `↵}. Define I to be the Z[q, q�1]-submodule of V

generated by the canonical basis vectors and I 0 the Z[q, q�1]-submodule generated by the dual

canonical basis vectors.

Claim 3.2.2. 1. I is a Z[q, q�1]-submodule of I 0.

2. The involutions  V and !V preserve the Z[q, q�1]-submodule I 0.

Proof. 1. From the semilinear form, and in particular the definition hh↵, `�i = �↵,� , we can

determine show that each h↵ is a linear combination of the `� with coe�cients in Z[q, q�1].

Explicitly:

h↵ = (1 + q2)`↵ + q
X

�2⇧

(↵,�)=±1

`� .

Thus, I is a Z[q, q�1]-submodule of I 0.

2. This follows from the previous claims.

3.2.2 Building a categorical representation: zigzag algebras

As in the case of level two representations of sln, the categorification of the adjoint repre-

sentation arises as a direct sum of categories of modules over a particular algebra. Rather

than the closed 1-manifolds used to construct the rings H�, the object used here to construct

the categorification of weight spaces of the adjoint representation is the Dynkin diagram of g.

Specifically, the category associated to the Cartan subalgebra will be the category of modules

over the zigzag algebra of the Dynkin diagram. The remaining root spaces will be lifted to

copies of the category of graded vector spaces and grading-preserving linear maps. We define

the zigzag algebra of a general connected, simply laced graph � with no loops and study some

of its properties. Note that an example of a zigzag algebra already arose in section ?? as the

path algebra of the quiver with relations associated to the Lie algebra sl�
2

(V
1

).

Definition A graph � is simply-laced if it has no multiple edges.

Let � be a finite simply-laced (undirected) tree.
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Definition The double of the graph � is the directed graph D� with the same vertex set I as

� and with each edge e↵ of � replaced by two directed edges with opposite source and target.

Example. Examples of a graph � and its double D� are found in figures 3.10 and 3.11.

• • • •

•

•

•

Figure 3.10: Graph �

• • • •

•

•

•

Figure 3.11: Double D�

Let P (D�) be the path algebra of D� so that the generators of P (D�) are paths in D�, with

multiplication in P (D�) given by concatenation of paths, read from left to right. If the target

of a path p
1

is not equal to the source of the path p
2

, then the product p
1

p
2

is zero. For each

i in the vertex set I of �, let ei be the length zero path that starts and ends at the vertex

vi. It is clear that in P (D�) the ei form a complete set of minimal orthogonal idempotents:

eiej = �i,jei for all i, j 2 I, and minimality is due to the minimal length of the paths ei.

Between any two vertices of D� there are at most two edges, and these edges have opposite

orientation. Thus, any edge is completely determined by its source and target, and any path

can be uniquely labelled by the vertices through which it passes in order (and for a vertex vi,

we simply write i). For example, the length two loop at vi passing only through vj is written

(i|j|i).

Definition The zigzag algebra A(�) of a finite, simply-laced tree � is a C-algebra defined as

follows:

1. If � consists of a single vertex, A(�) = C[X]/X2.

2. If � = • • , then A(�) = P (D�)/J where J is the two-sided ideal generated by all

paths of length greater than two.

3. If � has more than two vertices, then A(�) = P (D�)/J where J is the two-sided ideal

generated by paths
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• (i|j|k) if i and j are connected by an edge, j and k are connected by an edge and

i 6= k, and

• (i|j|i)� (i|k|i) if i is connected by an edge to both j and k in �.

Thus, if � has more than two vertices, then paths of the form • • •i

j

k

are zero and any

vertex has a single equivalence class of length two loops starting and ending at that vertex.

We can define a grading on A(�) from the length k of paths in P (D�) if � has more than one

vertex, and by defining X to be in degree two if � has only one vertex. Let I be the vertex set

of � and J the edge set of �.

Claim 3.2.3. A(�) = A(�)
0

�A(�)
1

�A(�)
2

and

dim(A(�)
0

) = |I|

dim(A(�)
1

) = 2|J |

dim(A(�)
2

) = |I|

Proof. Any path of length three in D� is in the form of one of the following:

1. • • • •i

j

k l

2. • • •i

j

k

3. • •i

j

Case 1 is zero in A(�) since it contains a length two path with distinct start and endpoints.

Case 2 is zero for the same reason. If � consists of only two vertices, then case 3 is zero by

definition of A(�). If � has more than two vertices, then the path in case 3 is equivalent to a

path of the same form as case 2 (by equivalence of loops at the same vertex) and is thus also

zero. Any longer path must contain a path of length 3 and is hence zero.

The length zero paths in A(�) are precisely the ei for i 2 I and there are no relations between

them, showing a correspondence between I and the generators of A(�)
0

. The length one paths

correspond to edges in D�, which has two edges for each edge in �, and there are no relations

on single edges. The length two paths consist exclusively of length two loops at vertices. Since

all such loops at a given vertex are equivalent, there is exactly one equivalence class of loops in

A(�) for each vertex in � since � is connected.

Definition A symmetric C-algebra is an algebra A that possesses a symmetric non-degenerate

trace map, namely a map tr : A ! C satisfying the following:

tr(xy) = tr(yx) for all x, y 2 A

and for all x 2 A\{0} there exists some y 2 A such that tr(xy) 6= 0
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Proposition 3.2.4. A(�) is a graded symmetric algebra.

Proof. Define the map tr : A(�) ! C by sending a path of length two to 1 in C and all other

paths to zero. The only paths not sent to zero under the trace map consist of length 2 loops at

some vertex vi of �:
• •i

j

x

y

The path xy is a loop at i and yx is a length two loop at j, so that tr(xy) = tr(yx) = 1. The

only non-trivial product of xy with other paths in A(�) is with the length zero path at i. Since

xy is a loop, it is clear that ixy = xyi = xy. All other paths are sent to zero, so the relation

tr(xy) = tr(yx) holds trivially for these paths and the trace map is symmetric.

Given a length two path (i|j|i), then tr((i|j|i)i) = tr((i|j|i)) = 1. For a length one path (i|j),
tr((i|j)(j|i)) = tr(i|j|i) = 1. For a length zero path i, if � has more than one vertex, then there

is a length two loop p at i that is sent to 1 under the trace map. Then tr(ip) = tr(p) = 1.

These are all the non-zero paths in A(�), so the trace map is non-degenerate.

Let A(�)-mod denote the abelian category of finite-dimensional graded left A(�)-modules and

grading-preserving module homomorphisms. Let gVect denote the category of graded finite-

dimensional C-vector spaces and grading-preserving linear maps. Recall that {k} denotes the

shift functor on a category of graded algebra modules that shifts the grading of a module up

by k: for M =
L

n Mn, M{k}n = Mn�k.

Let vi be a vertex in � and ei the minimal idempotent consisting of the length zero path at vi.

Then define the A(�)-modules Pi := A(�)i and iP := iA(�).

Lemma 3.2.5. Pi is a left projective indecomposable A(�)-module spanned by paths ending at

vi. Furthermore, any indecomposable graded projective left A(�)-module is isomorphic, up to a

grading shift, to Pi for some i 2 I.

An analogous statement holds for right A(�)-modules and iP .

Proof. All non-zero paths in Pi must end at vi, since the product of any other path with i is

zero, and for paths p ending at vi, pi = p. Since � is finite, the identity element in A(�) is

given by 1A(�)

=
P

i2I i and hence A(�) =
L

i2I Pi so the Pi are projective.

By minimality of the idempotents i, the Pi are indecomposable. The uniqueness statement

follows from the Krull-Schmidt theorem and the decomposition A(�) =
L

i2I Pi.

Lemma 3.2.6.

iP ⌦A(�)

Pj
⇠=

8
>><

>>:

C� C{2} if i = j

C{1} if vi and vj are connected by an edge

0 otherwise
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Proof. iP ⌦A(�)

Pj is spanned by paths starting at vi and ending at vj . If i = j there are two

independent paths starting and ending at vi: the length zero path ei and the equivalence class

of length two loops at vi, which accounts for the grading shift in the second summand.

If vi and vj are connected by an edge then there is a path starting at vi and ending at vj
(multiplication by the length zero paths ei and ej gives an equivalent path in the path algebra

P (D�)), namely (i|j), and the length of the path is one, accounting for the grading shift.

If vi and vj are not connected by an edge, there is no path from vi to vj in A(�).

Let i be an element of the vertex index set I of � and define functors

Ti : A(�)-mod ! gVect

M 7! iP ⌦A(�)

M

Si : gVect ! A(�)-mod

V 7! Pi ⌦C V

Lemma 3.2.7. Ti is right adjoint to Si and left-adjoint to Si{�2}.

Proof. We define natural transformations ⌘ : SiTi ) Id
A(�)-Mod

and " : IdgVect ) TiSi. The

functor SiTi : A(�)-Mod ! A(�)-Mod is defined by M 7! Pi⌦C Pi ⌦A(�)

M and we can write

the identity map on A(�)-Mod as tensoring with A(�) over itself: IdA(�)

(M) = A(�)⌦A(�)

M .

Thus the natural transformation ⌘ consists of defining a map of A(�)-bimodules, that will

abusively also denote ⌘ : Pi ⌦C Pi ! A(�). Define ⌘(xei ⌦A(�)

eiy) = xy, namely ⌘ is the

multiplication map in A(�) that concatenates suitable paths in D� for any paths x ending at

vi (hence xei is nonzero) and all paths y starting at vi.

Similarly, TiSi(W ) = Pi ⌦A(�)

Pi ⌦C W for all objects W in gVect and IdC(W ) = C ⌦C W .

Thus we define the map " : C ! Pi ⌦A(�)

Pi of gVect-bimodules by "(1) = ei ⌦A(�)

ei. Then

(⌘ ⌦ 1Pi) � (1Pi ⌦ ") : Pi ! Pi ⌦A(�)

Pi ⌦A(�)

Pi ! Pi

xei 7! xei ⌦A(�)

ei ⌦A(�)

ei 7! xeiei ⌦A(�)

ei ⇠= xei

(1iP ⌦ ⌘) � ("⌦ 1iP ) :i P !i P ⌦A(�)

Pi ⌦A(�)

Pi ! Pi

eix 7! ei ⌦A(�)

ei ⌦A(�)

eix 7! ei ⌦A(�)

eix ⇠= eix

The bimodule homomorphisms ⌘ and " induce natural transformations of functors and hence

Ti is right adjoint to Si.

To show that Ti is left adjoint to Si{�2}, we proceed in a similar manner: define natu-

ral transformations ⌘0 : TiSi{�2} ) IdgVect and "0 : Id
A(�)-Mod

) Si{�2}Ti. We have

TiSi(W ) =i P ⌦A(�)

Pi ⌦C W for all objects W in gVect so we define ⌘0 :i P ⌦A(�)

Pi ! C to

be the trace map of A(�): ⌘0(eix⌦ yei) = tr(yx). We also have SiTi(M) = Pi ⌦C Pi ⌦A(�)

M

for all objects M 2 A(�)-Mod, so we define "0 : A(�) ! Pi ⌦C Pi by setting

"0(1) = li ⌦C ei + ei ⌦C li +
X

j2I
j$i

(j|i)⌦C (i|j)
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where li denotes the equivalence class of length two loops at the vertex vi and j $ i signifies “vj
is connected to vi by an edge”. Thus, for right A(�)-modules, "0(ei) = li⌦C ei, "0(li) = ei⌦C (li)

and "0((i|k)) = (k|i)⌦C (i|k) for any vk connected to vi by an edge. Then

(⌘0 ⌦C 1iP ) � (1iP⌦A(�)

) : Pi ! Pi ⌦A(�)

Pi ⌦C Pi !i P

ei 7! ei ⌦A(�)

li ⌦C ei 7! tr(li)⌦C ei = 1⌦C ei

(i|k) 7! (i|k)⌦A(�)

(k|i)⌦C (i|k) 7! tr((k|i)(i|k))⌦C (i|k) = 1⌦C (i|k)

li 7! li ⌦A(�)

ei ⌦C li 7! tr(li)⌦C li = 1⌦C li

(1Pi ⌦A(�)

⌘0) � ("0 ⌦C 1Pi) : Pi ! Pi ⌦C Pi ⌦A(�)

Pi ! Pi

ei 7! ei ⌦C li ⌦A(�)

ei 7! ei ⌦C tr(li) = ei ⌦C 1

(k|i) 7! (k|i)⌦C (i|k)⌦A(�)

(k|i) 7! (k|i)⌦C tr((k|i)(i|k)) = (k|i)⌦C 1

li 7! li ⌦C ei ⌦A(�)

li 7! li ⌦C 1

3.2.3 Constructing the category C

To categorify the adjoint representation, we proceed in a similar manner to the case of level

two representations, namely to each weight µ of the adjoint representation we assign an abelian

category Cµ and define functors between the categories Cµ that lift the action of the quantum

group Uq(g) on the adjoint representation V . Let g be a simple, simply-laced Lie algebra, with

simply-laced Dynkin diagram as found in figure 1.10.1, R a root system of g, and ⇧ a set of

simple roots of g. Let � be the Dynkin diagram of g. Then � is simply-laced and of finite type

and the Killing form on roots takes values in {�1, 0, 1} for distinct roots and (µ,↵) = 2 for all

µ 2 R. For every root µ 2 R, let Cµ := gVect and let Cµ 2 Cµ be a one-dimensional vector

space concentrated in degree 0. Define C
0

:= A(�)-mod and define the category C to be the

direct sum over the weights of the adjoint representation:

C :=
M

�2R
S
{0}

C�

The vertices of the Dynkin diagram � of g correspond to the simple roots of g, so from our

previous analysis of A(�), there is a single projective indecomposable left A(�)-module P↵ for

each simple root ↵ of g. A(�) is a finite-dimensional C-vector space and hence an artinian ring,

so P↵ has a unique simple quotient, denoted L↵.

Define the functors E↵ and F↵ for all ↵ 2 ⇧ by:

E↵(M) = (↵P ⌦A(�)

M)⌦C C↵

F↵(M) = (↵P ⌦A(�)

M)⌦C C�↵
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for all M 2 C
0

. For what follows, M 2 Cµ for µ 6= 0 and tensor products are taken over C.

E↵(M) = 0 F↵(M) = 0 if (µ,↵) = 0

E↵(M) = 0 F↵(M) = M ⌦ Cµ�↵ if (µ,↵) = 1

E↵(M) = M ⌦ Cµ+↵ F↵(M) = 0 if (µ,↵) = �1

E↵(M) = 0 F↵(M) = P↵ ⌦M{�1} if µ = ↵

E↵(M) = P↵ ⌦M{�1} F↵(M) = 0 if µ = �↵

Define the invertible functor K↵ : C ! C to be the shift functor

K↵(M) = M{(µ,↵)} for M 2 Cµ

with inverse functor K�1

↵ (M) = M{�(µ,↵)} for M 2 Cµ. These functors lift the relations

between the generators of the quantum group Uq(g), as seen in section ??, in the sense of the

following:

Proposition 3.2.8. There are natural isomorphisms for ↵,� 2 ⇧:

1. K↵K�1

↵
⇠= Id ⇠= K�1

↵ K↵

2. K↵K�
⇠= K�K↵

3. K↵E� ⇠= E�K↵{(�,↵)}

4. K↵F�
⇠= F�K↵{�(�,↵)}

5. E↵F�
⇠= F�E↵ if ↵ 6= �

6. E↵E� ⇠= E�E↵ if (↵,�) = 0

7. F↵F�
⇠= F�F↵ if (↵,�) = 0

8. E2

↵E� � E�E2

↵
⇠= (Id{1}� Id{�1})E↵E�E↵ if (�,↵) = �1

9. F2

↵F� � F�F2

↵
⇠= (Id{1}� Id{�1})F↵F�F↵ if (�,↵) = �1

Proof. We give only the proof of 5, 8 and 9. The remaining isomorphisms follow from the

definition of the functors E↵, F↵ and K↵ and are similar to the previous section on level two

representations. Note first that E↵(Cµ) ⇢ Cµ+↵ when µ+ ↵ 2 R [ {0} otherwise E↵ is the zero

functor. Similarly F↵(Cµ) ⇢ Cµ�↵ if µ� ↵ 2 R [ {0}, otherwise F↵ is the zero functor.

In the case where the source and target categories Cµ and C⌫ are associated to non-zero weights

and the case where the source category is C
0

, 5 follows from the identification of categories Cµ
and C⌫ for all roots µ and ⌫ and the canonical isomorphism (A ⌦ B) ⌦ C ⇠= A ⌦ (B ⌦ C) for

any objects in gVect. When the target category is C
0

, the source category is C�↵+� . Neither

E↵ and F↵ can act non-trivially on this category as this would imply (�↵ + �,↵) = �1, and

hence (↵,�) = 1, which contradicts the fact that ↵ and � are simple roots.
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The only case in which the functors in 8 can act non-trivially when the source category is C�↵.

In this case, E2

↵E� is the zero functor and for M 2 Ob(C�↵),

E�E2

↵(M) = E�E↵(P↵ ⌦C M�1)

= E�(↵P ⌦A(�)

P↵ ⌦C M{�1}⌦C C↵)

= ↵P ⌦A(�)

P↵ ⌦C M{�1}⌦C C↵ ⌦C C↵+�

⇠= (C� C{2})⌦C M{�1}
⇠= M{�1}�M{1}

Furthermore, (↵,�) = �1, hence the vertices corresponding to ↵ and � in the Dynkin diagram of

g are connected by an edge and by lemma 3.2.6, �P ⌦A(�)

P↵
⇠= C{1}. Thus, for M 2 Ob(C�↵),

E↵E�E↵(M) = E↵E�(P↵ ⌦C M{�1})

= E↵(�P ⌦A(�)

P↵ ⌦C M{�1}⌦C C�)

= �P ⌦A(�)

P↵ ⌦C M{�1}⌦C C� ⌦ C↵+�

⇠= C{1}⌦C M{�1}
⇠= M

This shows 8 in the only non-trivial case. The proof for 9 is similar, with the only non-trivial

case having source category C↵.

There is a further relation on the quantum group: for any ↵ 2 ⇧

E↵F↵ � F↵E↵ =
K↵ �K�1

↵

q � q�1

The only structure that can be lifted to the category C is positive and integral, so we consider

the action of K↵�K�1
↵

q�q�1 on individual weight spaces Vµ: K↵ acts on Vµ by multiplication by q(↵,µ)

and K�1

↵ is multiplication by q�(↵,µ). Thus, K↵�K�1
↵

q�q�1 acts by multiplication by q(↵,µ)�q�(↵,µ)

q�q�1 .

Let k = (↵, µ) 2 Z. Then, for k � 0, we have

[k] :=
qk � q�k

q � q�1

=
1

q
(qk � q�k)(1 + q�2 + q�4 + . . .) = qk�1 + qk�3 + . . .+ q1�k

and for k < 0, qk � q�k = �(qk
0 � q�k0

), where k0 = �k > 0, so qk�q�k

q�q�1 = �[�k]. Thus, we can

rewrite the sl
2

relation in an integral positive form:

If (↵, µ) � 0, E↵F↵ = F↵E↵ + [(µ,↵)] on Vµ.

If (↵, µ) < 0, E↵F↵ + [�(↵, µ)] = F↵E↵ on Vµ.

Define the functor Id[k] = Id{k � 1}� Id{k � 3}� . . .� Id{1� k} for any nonnegative integer

k from Cµ to itself. Then we can lift the sl
2

relation as follows:

Proposition 3.2.9. For � 2 R [ {0} there are natural isomorphisms in the category Cµ

E↵F↵
⇠= F↵E↵ � Id[(µ,↵)] if (µ,↵) � 0

E↵F↵ � Id[�(µ,↵)] ⇠= F↵E↵ if (µ,↵) < 0
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Proof. Let M be an object in C
0

. Then

E↵F↵(M) = E↵(↵P ⌦A(�)

M)⌦C C�↵

= P↵ ⌦C (↵P ⌦A(�)

M)⌦C C�↵{�1}

F↵E↵(M) = F↵(↵P ⌦A(�)

M)⌦ C↵

= P↵ ⌦C (↵P ⌦A(�)

M)⌦C C↵{�1}

These objects are isomorphic as A(�)-modules, identifying the categories C↵ and C�↵ with

gVect. We also have [(0,↵)] = [0] = 0 for all simple roots ↵.

Let M be an object in C↵. Then

E↵F↵(M) = E↵(P↵ ⌦C M{�1})

=↵ P ⌦A(�)

P↵ ⌦C M{�1}⌦C C↵

⇠= (C� C{2})⌦C M{�1}⌦C C↵

⇠= M{�1}�M{1}

F↵E↵(M) = 0

where some of the isomorphisms follow from claim 3.2.6. For µ = ↵, [(µ,↵)] = [2], so Id[2] =

Id{�1}� Id{1}.

Let M be an object in Cµ with (µ,↵) = �1. Then

E↵F↵(M) = 0

F↵E↵(M) = F↵(M ⌦C Cµ+↵)

= M ⌦C Cµ+↵ ⌦C Cµ�↵

⇠= M

and [(µ,↵)] = [1] = 1.

The remaining cases are similar.

3.2.4 Decategorification

Proposition 3.2.10. The Grothendieck group K(C) of C is isomorphic to the Z[q, q�1]-submodule

I 0 of V generated by the dual canonical basis {xµ, l↵}. This isomorphism restricts to an iso-

morphism between the projective Grothendieck group KP (C) of C and the Z[q, q�1]-submodule I

of V generated by the canonical basis {xµ, h↵}.

Proof. Define ◆ : K(C) ! I 0 by ◆([Cµ]) = xµ and ◆([L↵]) = q`↵. This map identifies isomorphism

classes of simple objects in C with the elements of the dual canonical basis. The subcatetogory

C 6=0

:=
L

µ2R Cµ is a semisimple category (as a direct sum of copies of gVect), hence any object

in C 6=0

decomposes into a sum of copies of the Cµ, up to shifts. The following lemma shows that

the simple objects L↵ are su�cient to generate the Grothendieck group of the category C. Note
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that the lemma holds more generally for a finite-dimensional k-algebra A with complete set

of orthogonal idempotents {e
1

, . . . , en} and corresponding set of simple modules {L
1

, . . . , Ln}
such that eiA 6= ejA for i 6= j.

Lemma 3.2.11. The Grothendieck group K(C
0

) is a free Z[q, q�1]=module with basis the set

of isomorphism classes of simple modules {[L↵]| ↵ 2 ⇧}.

Proof. Let M be an object in C
0

. Then M is a finite-dimensional graded A(�)-module, and

A(�) is in particular an Artinian ring, so M has a finite Jordan Hölder series

0 = M
0

⇢ M
1

⇢ . . . ⇢ Mn = M.

Then we have short exact sequences

0 Mk�1

Mk Mk/Mk�1

0

for 1  k  n. In particular, for k = n,

0 Mn�1

M M/Mk�1

0

Thus, in the Grothendieck group,

[M ] = [M/Mn�1

] + [Mn�1

] = [M/Mn�1

] + [Mn�1

/Mn�2

] + [Mn�2

] =
n�1X

k=0

[Mn�k/Mn�k�1

].

Each of the summands are isomorphism classes of simple A(�)-modules up to some shift, hence

equal to qm↵ [L↵] for some ↵ 2 ⇧ and some m↵ 2 Z. Therefore [M ] =
P

↵2Pi n↵f(q)[L↵],

where the n↵ 2 N are the multiplicities of the simple modules [L↵] in the Jordan Hölder series

and f(q) 2 Z[q, q�1].

The simple modules generate the Grothendieck group of C as a Z[q, q�1]-module, hence under

the map ◆, K(C) is isomorphic to I 0.

The map ◆ sends isomorphism classes of projectives [P↵] to qh↵, so that restricting the identifi-

cation between K(C) and I 0 to the projective Grothendieck group KP (C) gives an isomorphism

between KP (C) and the submodule I.

C is a categorification of the adjoint representation in the sense of the following:

Corollary 3.2.12. After tensoring with the ground field Q(q), the Grothendieck group of C is

isomorphic to the adjoint representation V of Uq(g):

K(C
0

)� (
M

µ

K(Cµ) ⇠= K(C)⌦Z[q,q�1
]

Q(q) ⇠= V ⇠= V
0

� (
M

µ

Vµ)
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Proof. The functors E↵ and F↵ consist of tensoring with projective modules, and are hence

exact. The shift functor is also clearly exact, so K↵ is exact. Furthermore the functors E↵,F↵

and K↵ all commute with the shift functor {1}, and thus induce well-defined Z[q, q�1]-linear

maps on the Grothendieck group of C. The source and target categories of each of the functors

Ei,Fi and Ki ensure that the functors descend to maps acting as the generators of the quantum

group on the Grothendieck group. The natural isomorphisms in propositions 3.2.8 and 3.2.9

therefore descend to the Uq(g) relations between the induced maps. The identification of images

of simple objects in C with elements of the dual canonical basis of V shows that the induced

maps act as the generators for Uq(g) on the adjoint representation.

For example: given M an object in Cµ, K↵(M) = M{(µ,↵)}, which descends to [K↵]([M ]) =

[M{(µ,↵)}] = q(µ,↵)[M ] in the Grothendieck group.

If M = C�↵, then E↵(M) = P↵ ⌦C C�↵{�1}, which descends to

[E↵]([C�↵]) = [P↵ ⌦C C�↵{�1}]

= q�1[P↵]

= q�1qh↵

after identifying [P↵] with h↵ under the isomorphism ◆.

Finally, by the previous proposition, the Grothendieck group of C, after tensoring with the

ground field, and V are isomorphic as vector spaces, and hence isomorphic as Uq(g) represen-

tations.

3.2.5 Further lifted structure

The structure on the adjoint representation described in section 3.2.1 is lifted to the category

C.

Semilinear form

The semilinear form h , i on V can be considered as the shadow of higher structure on the

category C, namely the graded dimension of homomorphism spaces in C:

h[P ], [M ]i = gdimHOMC(P,M) =
X

i2Z
qidimHomC(P{i},M)

for any projective object in C and any module M in C, where HomC(�,�) is the space of

grading-preserving morphisms between pairs of objects, and HOMC(�,�) is the graded vector

space of all morphisms between objects in C.

Adjointness

The antiautomorphism ⌧ on Uq(g) lifts to an operation on functors acting on the categories Cµ:
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Proposition 3.2.13. The functor E↵ is left adjoint to F↵K�1

↵ {1}, the functor F↵ is left adjoint

to E↵K↵{1} and K↵ is left adjoint to K�1

↵ .

Proof. In the cases where µ and µ + ↵ are non-zero, the statement is clear, since E↵ and F↵

consist of tensoring with a simple module. In the case where either µ or µ + ↵ is zero, the

functors consist of tensoring with projective A(�)-modules, and this reduces to the statement

of lemma 3.2.7.

Thus, the action of ⌧ at the level of Uq(g) lifts to an operation at the categorical level of sending

a functor to its right adjoint functor. Let T be a product of the functors E↵,F↵,K↵,K�1

↵ and the

shift functors, and T ad the adjoint functor of T if it exists and let P and M be any objects in C.
Then there is an isomorphism of graded vector spaces HOMC(T (P ),M) ⇠= HOMC(P, T ad(M)),

where T (P ) is projective because the functors generating T are exact and P is projective. In

particular this holds if T = E↵,F↵ or K±1

↵ , so that this isomorphism descends to the ⌧ -invariance

of the semilinear form on V .

The antilinear involution  V

Let � : A(�) ! A(�) be the antiinvolution sending a path (i
1

|i
2

| . . . |ij) in A(�) to the path in

the opposite direction (ij | . . . |i2|i1). Then we can define the following functors:

⇤ : gVect ! gVect

W 7! W* = Hom(W,C)
 : C ! C

M 7! M* if M 2 Ob(Cµ) with µ 2 R

M 7! �(M*) if M 2 Ob(C
0

)

where by �(M*), we mean consider the right A(�)-module M* as a left A(�)-module by ap-

plying the antiinvolution to A(�) acting on M*. Thus, M* can be considered as an object in

C
0

. Note that the functors ⇤ and  are contravariant.

Proposition 3.2.14. 1. There are natural isomorphisms

 E↵ ⇠= E↵  F↵
⇠= F↵  K↵

⇠= K�1

↵   {i} ⇠= {�i} 

2. The functor  induces a well-defined involution on the Grothendieck group K(C), acting
as the map  V on V .

3. There is a natural isomorphism  2 ⇠= Id, namely  is an involution.

Proof. 1. This follows from the isomorphism between W and W* for any finite-dimensional

(graded) vector space W . Note that (C{k})* ⇠= C{�k} since Hom(C{k},C must consist

of homomorphisms that have degree {�k}. This fact ensures the existence of natural

isomorphisms  K↵
⇠= K�1

↵  and  {k} ⇠= {�1} .
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2.  sends objects to isomorphic objects, so it is an exact functor, and induces a well-

defined map on the Grothendieck group. From the relation  {k} ⇠= {�k} , this map

is q-antilinear. For µ 6= 0,  (Cµ) = Cµ* ⇠= Cµ, which descends to [ ][Cµ] = [Cµ], or

under the isomorphism ◆, [ ](xµ) = xµ. Similarly,  (P↵) = �(↵P ) ⇠= P op
↵ , where P op

↵

denotes P↵ with inverse grading. After applying the isomorphism ◆, this descends to

[ ](qh↵) = q�1h↵ and simplifies to [ ](h↵) = h↵. Therefore  induces a map acting on

the Grothendieck group of C as the involution  V , with the isomorphisms in 1 descending

to relations at the decategorified level ensuring [ ](ax) =  (a)[ ](x) for all a 2 Uq(g)

and all x 2 K(C).

3. This is clear from the definition of  .

Furthermore, 3 implies that  is an autoequivalence of C, and we have

HOMC( (M), (N)) ⇠= HOMC( 
2(N),M) ⇠= HOMC(N,M)

for all objects M and N in C. This descends to the equation h V [M ], V [N ]i = h[N ], [M ]i on
the Grothendieck group.

The linear involution !V

Define the following autoequivalence ⌦ : C ! C by setting ⌦ to be the identity functor on C
0

and for any µ 2 R, setting ⌦ to be the equivalence of categories from Cµ to C�µ obtained by

identifying each of the categories with gVect.

Proposition 3.2.15. 1. There are natural isomorphisms

⌦E↵ ⇠= F↵⌦ ⌦F↵
⇠= E↵⌦ ⌦K↵

⇠= K�1

↵ ⌦

2. The functor ⌦ induces a well-defined involution of the Grothendieck group of C, acting as

the involution !V does on V .

3. There is a natural isomorphism ⌦2 ⇠= Id.

Proof. 1. This proof is similar to the previous proposition 3.2.14

2. ⌦ is clearly an exact functor and since it commutes with the shift functor, it descends to a

well-defined q-linear map on the Grothendieck group. ⌦ preserves the projective objects

in C
0

and sends the simple objects Cµ to simple objects C�µ, so under the isomorphism

◆, [⌦] acts as the involution !V on the Grothendieck group.

3. This is clear from the definition of ⌦.



70 CHAPTER 3. CATEGORIFICATION

As for the functor  , the functor ⌦ is an equivalence, so that by 3, there is an isomorphism

HOMC(⌦M,⌦N) ⇠= HOMC(M,⌦2N) ⇠= HOMC(M,N)

which descends to the equation h!V [M ],!V [N ]i = h[M ], [N ]i on the Grothendieck group of C
for all objects M,N 2 C.

Therefore this is a categorification of the adjoint representation of Uq(g) that lifts the structure

of V to the category C.

The categorical action of quantum groups Uq(g) suggests that the quantum group itself can be

categorified. Further evidence of the existence of categorifications of quantum groups is given

by the structures on Uq(g) itself, such as the semilinear form h , i, or the Beilinson-Lusztig-

Macpherson idempotented modifications of quantum groups [BLM90]. Indeed, categorified

quantum groups have since been constructed, most notably by Rouquier-Chuang for sl
2

[CR08],

Khovanov-Lauda for sln [KL09] and Rouquier for symmetrisable Kac-Moody algebras [Rou08].



Chapter 4

Annular Khovanov homology

We construct a modification of Khovanov homology for links contained in the solid torus from

the perspective of representation theory. This is a particular example of a homology of links in I-

bundles over surfaces defined by Asaeda, PRzytycki and Sikora [APS04]. We then demonstrate

some of the rich structure underlying this annular homology. The main result of this chapter

is theorem 4.4.1, which states that the current algebra sl�
2

(V
2

) acts on the annular Khovanov

homology of a link.

To discuss link homologies, we use the following definitions and theorem.

Definition A knot is a smooth embedding of the circle S1 into R3 (or alternatively into S3).

A link is a disjoint union of knots.

Knots and links are distinguished up to isotopy, where

Definition Let K
1

and K
2

be links given by the respective embeddings f and g from S1 to

R3. K
1

and K
2

are said to be isotopic if there exists a homotopy H : S1 ⇥ [0, 1] ! R3 from f

to g such that H(x, t) is an embedding for all fixed t 2 [0, 1].

A simpler method of studying links or knots is to consider link diagrams, wherein we project

a link onto the plane, taking note of the bottom and top strands at any double points in this

projection. This projection is not canonical, and a single link has many di↵erent diagrams, so it

would seem that the question of whether two link diagrams are obtained from the same link is

a very complex one. However, the following theorem of Reidemeister [Rei27] shows that there

are in fact only three ways in which two link diagrams of a given link can di↵er, up to planar

isotopies:

Theorem 4.0.16 (Reidemeister). Two link diagrams D
1

and D
2

correspond to the same link

up to isotopy if D
2

can be obtained from D
1

be a sequence of moves of the following types (called

Reidemeister moves) and planar isotopies:

71
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(R1)

(R2)

(R3)

One aim in knot theory is to define properties of links using link diagrams that are intrinsic to

the link, namely this property does not depend on the choice of projection. Such a property is

called an invariant of links, and by the Reidemeister theorem, to check that an object is a link

invariant, it is su�cient to prove that it is invariant under Reidemeister moves.

4.1 Khovanov’s categorification of the Jones polynomial

First, we provide a construction of Khovanov’s link invariant ??, which will be later modified

to suit the annular case. The main objective is to construct a cochain complex C(L) of graded
vector spaces from an oriented link L such that the cohomology groups of C(L) are link in-

variants, and the graded Euler characteristic of C(L) is the unnormalised Jones polynomial.

This is another example of categorification, where the decategorified object, a polynomial, is

somewhat more complex to the example encountered in chapter 3, where a number was lifted

to a vector space. The additional complexity of a polynomial lifts to additional structure at

the categorified level, namely a sequence of vector spaces.

Let L be an oriented knot or link in R3 and choose a projection of L onto the plane, noting the

relative heights of strands at double points. We call such a projection a link diagram, denoted

D, or D(L) if there is some ambiguity. The choice of projection is restricted so that D has only

a finite number n of double points, no triple intersection points, no tangencies and no cusps. We

generally follow the notation used by Bar-Natan in his exposition of Khovanov’s work [BN02],

in particular in our presentation of the Jones polynomial.
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4.1.1 The Jones polynomial

The definition of the Jones polynomial here uses the skein relations of the Kau↵man brace,

a Laurent polynomial with coe�cients in Z, permitting a simple construction of the Jones

polynomial from a given link diagram D.

The Kau↵man bracket is defined axiomatically:

1. The bracket of the constant polynomial 1: h;i = 1

2. The bracket of a closed loop with no crossings is the polynomial q + q�1, and disjoint

diagrams multiply:for any link diagram D, h�Di = (q + q�1)hDi

3. The bracket for a double point is given by a linear combination of its two resolutions:

h i = h i � qh i

where is called a 0-resolution and is called a 1-resolution.

The Jones polynomial is a renormalisation of the Kau↵man bracket: for a link L with some

projectionD, the Jones polynomial is obtained from the Kau↵man bracket ofD by the following

relation

J(D) =
(�1)n�qn+�2n�

q + q�1

hDi

Note that while the Jones polynomial is defined for oriented knots and links, the Kau↵man

bracket does not see this orientation. The relation above reintroduces the orientation to the

Jones polynomial. The following theorem shows that the Jones polynomial is an invariant of

oriented knots and links [Jon85].

Theorem 4.1.1. The Jones polynomial is invariant under Reidemeister moves.

Consequently, for a link or knot L and any choice of projection D of L, we may define the Jones

polynomial unambiguously for an isotopy class of links L, denoted J(L), where J(L) = J(D).

4.1.2 Resolution of a knot or link diagram

Given an oriented knot or link L and a choice of link diagram D, assign an ordering to the

set X of crossings. The orientation of L is carried over to D and determines the parity of a

crossing:
??__
is a positive crossing

??__
is a negative crossing

Let n
+

and n� be the number of positive and negative crossings respectively. As in the cate-

gorification of level two representations of sln, the construction of Khovanov homology consists

of applying a functor from
1

Cob to gVect. To apply this functor, each double point of D must
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be resolved as either a 0-resolution or a 1-resolution. A complete resolution is a diagram with

all double points resolved. There are 2n di↵erent possible complete resolutions of a diagram D

with n double points, and these complete resolutions bijectively correspond to the elements of

the set of ordered sequences {0, 1}X . Fix an ordering of X and label each complete resolution

by the element ↵ 2 {0, 1}X corresponding to the choice of resolution at each crossing in this

order. Each complete resolution consists of a disjoint union of copies of S1 embedded in R2,

and we can apply a TQFT as in section 3.1. The height h(↵) of a complete resolution is the

number of 1-resolutions in ↵: h(↵) =
P|X|

i=1

↵i where ↵i denotes the ith element of the sequence

↵, with respect to the choice of ordering on X.

To organise the set of complete resolutions of a diagram D, define the n-dimensional cube of

resolutions of D as follows: the 2n vertices of the cube consist of distinct resolution ↵ 2 {0, 1}X ,

arranged into columns such that each column consists of resolutions of the same height h, and

arrange the columns in ascending order of height, namely, there will be n + 1 columns, from

height 0 to height n. Two vertices are connected by an edge if their resolutions ↵ and � di↵er

at a single position i 2 {1, . . . , n}:

|↵j � �j | =

8
<

:
1 if j = i

0 otherwise

Edges in the cube of resolution are drawn as arrows from ↵ to � for h(↵) = h(�)�1. This edge

is labelled by d⇠ where ⇠ 2 {0, 1, ?}X is a sequence with a single ? such that sending ? ! 0

takes ⇠ to ↵ and sending ? ! 1 takes ⇠ to �. A thorough discussion of edges can be found in

section ??.

4.1.3 Chain groups

The aim is to obtain a homology theory for links from link diagrams, so the main step in the

construction of Khovanov homology is to define a chain complex from a given link diagram D.

To construct a cochain complex we must now associate a chain group to the resolutions. This

is achieved through the use of a topological quantum field theory (TQFT), a functor Q from

the cobordism category
1

Cob of closed 1-manifolds to the category gVect of finite-dimensional

graded vector spaces over C. A more complete description of a similar TQFT is given in

section 3.1.

This TQFT sends a disjoint union of cycles (copies of S1) to a tensor power of a graded vector

space W . More concretely, let ↵ be a complete resolution of a diagram D and let k↵ be the

number of cycles in ↵. To a single cycle, the functor Q associates a q-graded vector space W ,

with basis {w
+

, w�}, where deg(w
+

) = q and deg(w�) = q�1, so that qdimW = q + q�1. To a

union of k disjoint cycles, Q associates W⌦k. Hence, to a resolution ↵, Q associates the vector

space W⌦k↵ .

Let JDK be a chain complex with chain groups consisting of direct sums over ↵ of equal height
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of Q(↵), where ↵ is a complete resolution of D shifted by the common height:

JDKr =
M

↵:h(↵)=r

W⌦k↵{r},

for r 2 {0, 1, . . . n}, otherwise JDKr = 0. This is obtained by taking the direct sum over all

resolutions in a column of the cube of resolutions after applying the TQFT and shifting up

by the height of resolutions in a given column. To ensure JDK is an honest to goodness chain

complex, it remains to define boundary maps between the chain groups JDKr.

4.1.4 Boundary maps

The TQFT Q is a functor from
1

Cob to gVect, so grading-preserving linear maps between the

chain groups arise from cobordisms between one-manifolds.

Recall that the edges of the cube of resolutions are labelled by d⇠ for ⇠ 2 {0, 1, ?}X . Each edge

of the cube of resolutions corresponds to a change of a single resolution, from a zero-resolution

to a one-resolution. This change of a single resolution consists either of two cycles fusing into a

single cycle, or a cycle splitting into exactly two distinct cycles, while all other cycles remain the

same. In either case, the cobordism consists of a three-holed sphere and a copy of a cylinder for

each unchanged cycle. Under the TQFT Q, the three-holed sphere corresponds to one of two

types of linear maps at the chain level: a multiplication map m : W ⌦W ! W corresponding

to a fusing of two cycles and a comultiplication map � : W ! W ⌦ W corresponding to a

splitting of a single cycle. There is no canonical ordering of the cycles in each resolution, so m

and � must be commutative and cocommutative respectively. Furthermore, the maps must be

associative and coassociative respectively and satisfy the following identity:

� �m = (m⌦ id) � (id⌦�).

Thus we define m : W ⌦W ! W by

m :

8
>>><

>>>:

w
+

⌦ w
+

7! w
+

w
+

⌦ w� 7! w�

w� ⌦ w
+

7! w�

w� ⌦ w� 7! 0

and � : W ! W ⌦W by

� :

(
w

+

7! w
+

⌦ w� + w� ⌦ w
+

w� 7! w� ⌦ w�

The maps m and � shift the q-grading down by one, so in fact we have m : W ⌦W ! W{�1}
and � : W ! W ⌦W{�1}. For example, in the mapping m(w

+

⌦w�) = w�, deg(w+

⌦w�) =

1 + (�1) = 0 while deg(w�) = �1. In the category gVect, morphisms are grading-preserving,

so this shift must be counteracted in the definition of chain groups of JDK.
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The edges d⇠ of the cube are defined in terms of m and �. If the edge ⇠ corresponds to a

cobordism from two cycles to one, let d⇠ := m⌦Idj⇠ , where j⇠ is the number of unchanged cycles.

Similarly, if the edge ⇠ corresponds to a cobordism from one cycle to two, then d⇠ := �⌦ Idj⇠ .

Each boundary map of the chain complex is defined to be the sum over edge maps between

two fixed columns of the cube of resolutions. However, the definition of the maps m and �

ensures that each square of the cube of resolutions commutes, so that the map defined above

will not be a boundary map for chain complexes. It is therefore necessary to add in signs to

the edge maps so that each square of the cube of resolutions anticommutes. This is achieved

by flipping signs of odd numbers of edge maps on each square. A systematic way of doing this

is by multiplying each d⇠ by the factor (�1)⇠ := (�1)
P

i<j ⇠i where j is the position of the ? in

⇠ and ⇠i is the ith element in the sequence ⇠. More concretely, we add up the number of 1s in

the sequence that occur before the ?.

Define the boundary maps on JDK by

dr :=
X

h(⇠)=r

(�1)⇠d⇠.

Thus, to preserve the q-grading over each boundary map, we must shift up by one degree at

each successive chain group JDKr to counteract the shift down by one occurring once in each

d⇠ and consequently in each dr, as seen in the definition of the chain groups.

4.1.5 Final adjustments

The last step is to apply shifts to the homological and q-gradings to obtain a homological link

invariant. The resulting chain complex C(D) is defined by

C(D) = JDK[�n�]{n+

� 2n�}.

Note that these shifts are reflected in the normalisation factors in the Jones polynomial.

4.1.6 Khovanov homology

Khovanov homology of a link diagram D is defined by

Kh(D) =
M

i,j2Z
Hi,j(C(D)),

where i denotes the homological grading (the grading inherited from the degree of the chain

group), and j denotes the degree of the q-grading, and �j2ZHi,j(C(D)) = ker di/im di�1.

Theorem 4.1.2 ( [Kho00]). Khovanov homology Kh(D) is a link invariant. That is, if D and

D0 are diagrams of inks that are isotopic in S3, then Kh(D) ⇠= Kh(D0).

We express this theorem by writing Kh(L) in the place of Kh(D) whenever D is a link diagram

for a link L, and call Kh(L) the Khovanov invariant.
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The proof that Khovanov cohomology is a link invariant consists of showing that it is invariant

under Reidemeister moves. A clear proof of this invariance can be found in [BN02].

4.1.7 Recovering the Jones polynomial

In the case of a chain complex of graded vector spaces, decategorification consists of taking the

graded Euler characteristic of that chain complex.

Bar-Natan [BN02] defines the Khovanov polynomial in variables t and q as follows:

Kh(L)(t, q) =
X

i,j2Z
tiqjdimHi,j(C(L)).

The graded Euler characteristic �q of the chain complex C(L) is obtained by setting t = �1:

�q(C(L)) = Kh(L)(�1, q)

It is clear from the construction of C(L) that the graded Euler characteristic of the Khovanov

invariant of a link L is the unnormalised Jones polynomial of L:

Kh(L)(�1, q) = (q + q�1)J(L)

Hence, Khovanov homology categorifies the Jones polynomial. The construction of annular

Khovanov is very similar to the construction of Kh(L), and is illustrated by the example in

section 4.3.

4.2 Lee’s variant of Khovanov homology

Eun Soo Lee defined a deformation of Khovanov homology for links by introducing a new

di↵erential, denoted dL here. This variant of Khovanov homology plays an important role

in defining the current algebra action on annular Khovanov homology in section ??. This

di↵erential induces a degree (1, 4) map on Khovanov cohomology, pairing o↵ certain terms in

Kh(L). The original purpose of defining dL was to prove the following theorem:

Theorem 4.2.1 ( [Lee05]). For an alternating knot L, its Khovanov invariants Hi,j(C(L))
of degree di↵erence (1,4) are paired except in the 0th cohomology group. More precisely, the

equality

Kh(L)(t, q) = q�s(q + q�1) + (q�1 + tq2 · q)P (t, q)

holds for some integer s and some polynomial P .

where an alternating link is a link that admits a diagram whose crossings are alternatively

positive and negative when traveling along any component of the link.
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4.2.1 Defining a new di↵erential

Lee homology retains the chain groups from Khovanov homology, so that boundary maps are

again defined in terms of multiplication and comultiplication, corresponding to splits and merges

of cycles in resolutions of links. The Lee boundary map has multiplication mLee : W ⌦W !
W{1} and comultiplication �L : W ! (W ⌦W ){1} given by:

mL :

8
>>><

>>>:

w
+

⌦ w
+

7! 0

w
+

⌦ w� 7! 0

w� ⌦ w
+

7! 0

w� ⌦ w� 7! w
+

�L :

(
w

+

7! 0

w� 7! w
+

⌦ w
+

From this definition, mL and �L are (co)associative and (co)commutative, and satisfy the

relation

�L �mL = (mL ⌦ id) � (id⌦�L)

These identities follow from the fact the mL and �L act trivially on most basis elements.

From this new definition of multiplication and comultiplication in Lee cohomology define the

boundary maps dL for the resulting chain complex exactly as for Khovanov cohomology, taking

dL to be the sum down a column of mL and �Lee, up to tensoring with the identity as necessary,

for merge and splits respectively when each 0 resolution is changed to a 1-resolution. Signs are

added following the same rule as previously to ensure that d2L = 0. Lee homology is hence

defined to be the cohomology of the chain complex (C•), (dL + d)•), where d is the Khovanov

di↵erential and the Cr are the chain groups from Khovanov homology. This is a well-defined

chain complex, since dL and d anti commute, and d2L = d2 = 0, so (d+ dL)2 = 0.

Furthermore, d and dL are compatible in the sense of the following:

1. m � (mL ⌦ id) +mL � (m⌦ id) = m � (id⌦mL) +mL � (id⌦m)

2. (�⌦ id) ��L + (�L ⌦ id)� = (id⌦�) ��L + (id⌦�L)⌦�

3. � �mL +�L �m = (m⌦ id) � (id⌦�L) + (mL ⌦ id) � (id⌦�)

4.2.2 Properties of Lee’s modified cohomology

Lee’s cohomology is particularly simple to compute: its total dimension is dependent only on

the number of components of the link in question and the homological degree of the non-zero

cohomology groups are given by linking numbers of components of the link, where the linking

number of two components of a link.
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We consider the chain complex (C•, (d+dL)•), where the Cr are again unchanged. To facilitate

the computation of homology, Lee forms a new basis (that does not preserve the q-grading),

consisting of

a = x+ 1 b = x� 1

The multiplication and comultiplication maps for d+ dL become:

md+dL :

8
>>><

>>>:

a⌦ a 7! 2a

a⌦ b 7! 0

b⌦ a 7! 0

b⌦ b 7! �2b

�d+dL :

(
a 7! a⌦ a

b 7! b⌦ b

This chain complex also gives a new cohomology theory that is a link invariant, called the Lee

invariant.

The following theorem of Lee follows from a useful result from Hodge theory. We can define

an inner product on the chain complex produced when constructing the Lee invariant such

that monomials a and b form an orthonormal basis, so that there exists a well-defined adjoint

(d+ dL)* of the sum of the Khovanov and Lee di↵erentials d+ dL. The adjoint is defined by:

m
(d+dL)* :

8
>>><

>>>:

a⌦ a 7! a

a⌦ b 7! 0

b⌦ a 7! 0

b⌦ b 7! b

�
(d+dL)* :

(
a 7! 2a⌦ a

b 7! �2b⌦ b

This adjoint di↵erential facilitates the description of Lee homology:

Theorem 4.2.2. Let (d+ dL)* be the adjoint of d+ dL. Then

Hi(D) ⇠= ker(d+ dL : Ci(D) ! Ci+1

(D)) \ ker(d+ dL* : Ci(D) ! Ci�1

(D)).

Proof. We have by definition

Hi(D) =
ker((d+ dL) : Ci(D) ! Ci+1(D))

im((d+ dL) : Ci�1 ! Ci(D))

We use the inner product, denoted ( , ), on the chain complex C•(D) to decompose Ci into

Ci(D) = im(d+ dL)� (im(d+ dL))?.

(im(d+dL))? = ker(d+dL)* since (d+dL)*(↵) = 0 () 0 = ((d+dL)*(↵),�) = (↵, (d+dL)(�))

for all � 2 Ci, so ↵ ? im(d+ dL).

LetK = ker((d+dL) : Ci(D) ! Ci+1

(D))\ker((d+dL)* : Ci(D) ! Ci�1

(D)) andK 0 = Hi(D).

Since K ⇢ ker(d+ dL) we can define the map � : K ! K 0 by �(↵) = ↵+ im(d+ dL).

Then � is injective: let c 2 K \ im(d + dL) ⇢ ker(d + dL)* \ im(d + dL). Then we have seen

that c = 0 in K.

� is surjective: let � = ↵ + im(d + dL) 2 K 0. If ↵ 2 ker(d + dL)* then � = �(↵) and we are

done. If not, then ↵ 2 (ker(d+ dL)*)? = im(d+ dL) (since Ci is finite-dimensional), so ↵ = 0,

and � = �(0).



80 CHAPTER 4. ANNULAR KHOVANOV HOMOLOGY

The linking number `
12

of two knots S
1

and S
2

is an invariant of links given by the following

formula:

`
12

=
n
+

� n�
2

where n
+

and n� are the total numbers of positive and negative crossings between S
1

and S
2

respectively, defined in section 4.1.2

Theorem 4.2.3 (Lee). The Lee homology ring H(L) = �i2ZHi(L) for an oriented link L with

n components S
1

, . . . , Sn has dimension 2n. If the linking number of Sj and Sk is `jk, then

dimHi(L) = 2 · |{E ⇢ {2, . . . , n} : (
X

j2E,k 62E

2`jk) = i}|

Lee’s proof [Lee05] consists of distinguishing the 2n�1 orientation-preserving resolutions of all

choices of relative orientation on the diagram D, showing that these contribute exactly two

basis vectors to Lee homology and showing that these are the only contributiona using the long

exact sequence on homology:

. . . ! Hi�1(D(?0)) ! Hi�1(D(?1)) ! Hi(D) ! Hi(D ? 0)) ! Hi(D(?1)) ! . . .

where D(?0) is a link diagram D of L with the last crossing resolved to a 0-resolution and

D(?1) is D with the last crossing resolved to a 1-resolution.

4.3 The annular case

Asaeda, Przytycki and Sikora defined a variant of Khovanov homology, wherein knots and links

are contained within I-bundles M over surfaces F 6= RP2 [APS04]. A specific case of this

variant considers annular knots and links: knots and links restricted to the thickened annulus

A ⇥ I, where A is a closed, oriented annulus and I is the closed interval [0, 1]. In particular,

we consider annular braid closures. Annular links are isotopic if and only if their link diagrams

di↵er by a sequence of annular Reidemeister moves and isotopies, namely isotopies that do not

pass through the boundaries of the thickened annulus. The thickened annulus is parametrised

by the following:

A⇥ I = {(r, ✓, z) : r 2 [1, 2], ✓ 2 [0, 2⇡], z 2 [0, 1]} ⇢ S3 = R3 [1

and annular links admit link diagrams D(L) by projecting any representative of the isotopy

class of L onto A⇥ { 1

2

}. From such a projection one constructs a triply-graded chain complex

CKh in a similar way to regular Khovanov homology.

Regard the link diagrams D(L) as being contained within S2\{x
0

, x1} where x
0

and x1 are

considered to be basepoints corresponding to the inner and outer bounding circles of the annulus

A respectively. In general the second basepoint x1 will be excluded or implicit in what follows.

An example of an annular link diagram with a choice of ordering on crossings is given below

in figure 4.1. Crossings are labeled by (n, en), where n 2 N is the number of the crossing in

the order chosen, and en 2 {+,�} is the parity of that crossing. The basepoint x
0

is denoted

by a ⇤ in each link diagram. To return to regular Khovanov homology, we simply forget the

basepoint.
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*

(1,+)

(2,�)

(3,+)

(4,�)

Figure 4.1: The annular link diagram of the figure-eight knot

4.3.1 Chain groups

Let D be a link diagram for an annular link L. The cube of resolutions of D as in regular

Khovanov homology, noting the location of the basepoint in each of the resolutions. Thus there

are three types of cycles in the resolutions of D: those that do not enclose the basepoint, called

trivial cycles, and positive and negative cycles that do enclose the basepoint, called non-trivial

cycles. The sign of non-trivial cycles is determined by the following process:

1. Construct a line ` between the basepoints x
0

and x1.

2. Starting from x
0

enumerate the crossings between ` and the cycles of the resolution.

3. A non-trivial cycle is positive if its crossing number is even and negative if its crossing

number is odd. Note that a non-trivial cycle can only have an odd number of crossings

with `. If the number of crossings between a non-trivial cycle and ` is greater than one,

the parity of the crossing number is the parity of the first crossing number.

This sign allocation clearly involves making several choices (the basepoints x
0

and x1, the

direction of `, and associating positive cycles to even crossing numbers), and is thus non-

canonical - isotopic diagrams can have di↵erent choices of positive and negative non-trivial

cycles. However this choice does not carry down to the level of homology.

As in regular Khovanov homology, chain groups are obtained from resolutions by applying a

TQFT from Cob

1

to gVectC. Here the vector spaces are two-dimensional and bigraded, where

the first grading is the usual q-grading that returns the Jones polynomial, and the second

s-grading relates to a Lie algebra-module structure defined shortly.

• To trivial cycles associate the vector space W with basis {w
+

, w�}, such that deg(w
+

) =

(1, 0) and deg(w�) = (�1, 0). This vector space is precisely the one defined in regular

annular Khovanov homology.

• To positive non-trivial cycles associate the vector space V with basis {v
1

, v�1

} such that

deg(v
1

) = (1, 1) and deg(v�1

) = (�1,�1).
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• To negative non-trivial cycles associate the dual V * of V , with basis {v
1

, v�1

} such that

deg(v
1

) = (1, 1) and deg(v�1

) = (�1,�1).

Note that for this grading to be consistent on V *, the natural pairing h , i on V ⇥V * determines

the basis of V * by

hv
1

, v
1

i = 0 hv
1

, v�1

i = 1

hv�1

, v
1

i = 1 hv�1

, v�1

i = 0

Let ↵ be a complete resolution of the link diagram D. Define k↵ to be the number of trivial

cycles in ↵, l↵ to be the number of positive non-trivial cycles and m↵ to be the number of

negative non-trivial cycles. Then we define the chain groups in the chain complex (CKh•, d•)

to be

CKhi(D) =
M

↵:h(↵)=i

W⌦k↵ ⌦ V ⌦l↵ ⌦ V *m↵{(i, 0)}

and it remains to define the boundary map d.

For example, consider the annular knot in figure 4.2.

*

(1,+)

(2,+)

(3,+)

Figure 4.2: The annular link diagram for the positive trefoil

Then the cube of resolutions for the trefoil is shown in figure ??, with the corresponding chain

groups underneath.

The only modification here from the regular case is in homological degree zero. To pass from

the annular case to the regular case, we replace each of the representations V and V * by the

trivial representation W .

4.3.2 Boundary maps

To define the boundary maps on CKh, one first distinguishes the multiplication and comulti-

plication maps found on individual edges of the cube of resolutions. We first note that the only

types of splits and merges that are possible between two resolutions are:

1. Two trivial cycles merging into a single trivial cycle and a trivial cycle splitting into two

trivial cycles: W ⌦W $ W ,
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*

*

*

*

*

*

*

*

V ⌦ V *
L

3

i=1

W
L

3

i=1

W ⌦W W ⌦W ⌦W

Figure 4.3: Cube of resolutions for the trefoil

2. A trivial and a non-trivial cycle merging to form a non-trivial cycle of the same sign and

vice versa: V ⌦W $ V or V *⌦W $ V *,

3. Two non-trivial cycles of opposite sign merging to form a trivial cycle and vice versa:

V ⌦ V *$ W .

The first case corresponds to regular Khovanov homology: when there is no interaction with

the basepoint, annular Khovanov homology reduces to the usual form. The second case reflects

the fact that (up to isotopy, so that no cycle lies tangent to the line `) a trivial cycle will always

have an even number of crossings with ` or no crossings with `, so the non-trivial cycles formed

must always be of the same type as the original cycles. Note that there cannot be a merging

of two non-trivial cycles of the same type: by the definition of sign on cycles two adjacent

non-trivial cycles will always have opposing signs.

The relevant multiplication and comultiplication maps are defined from regular Khovanov edge

maps, with terms deleted if they do not preserve the second s-grading. We will take note of

these deleted terms for later use. Case 1 is trivially the same as the regular case, since the

s-grading is always zero.
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d V ⌦W $ V V *⌦W $ V * V ⌦ V * $ W

m

v
1

⌦ w
+

7! v
1

v
1

⌦ w
+

7! v
1

v
1

⌦ v
1

7! 0

v
1

⌦ w� 7! 0 v
1

⌦ w� 7! 0 v
1

⌦ v�1

7! w�

v�1

⌦ w
+

7! v�1

v�1

⌦ w
+

7! v�1

v�1

⌦ v
1

7! w�

v�1

⌦ w� 7! 0 v�1

⌦ w� 7! 0 v�1

⌦ v�1

7! 0

�
v
1

7! v
1

⌦ w� v
1

7! v
1

⌦ w� w
+

7! v
1

⌦ v�1

+ v�1

⌦ v
1

v�1

7! v�1

⌦ w� v�1

7! v�1

⌦ w� w� 7! 0

The deleted terms are

mdel(v1 ⌦ w�) = v�1

mdel(v1 ⌦ w�) = v�1

mdel(v1 ⌦ v
1

) = w
+

�del(v1) = v�1

⌦ w
+

�del(v1) = v�1

⌦ w
+

�del(w�) = v�1

⌦ v�1

Each edge of the cube of resolutions will be assigned one of the multiplication or comultiplication

maps tensored with copies of the identity map for each unchanged cycle and with signs flipped

following the same process as in the regular case. Then the di↵erential for (CKh•, d•) is the

sum of each edge map down columns between vertices ↵ with the same height h(↵).

Returning to the example of the trefoil, the cube of resolutions with relevant edge maps is given

in figure 4.4.

*

*

*

*

*

*

*

*

m

m

m

��

�

��

�

�

V ⌦ V *
L

3

i=1

W
L

3

i=1

W ⌦W W ⌦W ⌦W
d0 d1 d2

��

�

��

�

Figure 4.4: Boundary maps for the trefoil

The annular Khovanov homology of the trefoil can be found in section 4.5.
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We finally add in the grading shifts, following the convention of Bar-Natan, so that the final

chain complex is given by:

CKh(D) = CKh(D)[�n�]{(n+

� 2n�, 0)}

with di↵erential d defined above. Let AKhi(D) = ker(di)/im(di�1) be the ith cohomology

group of CKh. Then Akhi is in fact independent of the link diagram D chosen:

Theorem 4.3.1 ( [Rob13]). The tri-graded annular Khovanov cohomology AKh(L) = �i2ZAKhi(L)

of an oriented knot or link L with the di↵erential defined above is an invariant of annular knots

and links.

4.3.3 An sl2 action on CKh

One aspect of interest in studying annular Khovanov homology comes from a representation

theoretic perspective. There is a rich and beautiful structure on this homology that is partially

described by the following preliminary result:

Theorem 4.3.2. There is an sl
2

C action on CKh and thus on annular Khovanov homology.

This means that there is a natural way of viewing the chain groups CKhi as representations

of sl
2

C and the di↵erentials di as sl
2

C-module homomorphisms, so that by definition of co-

homology groups (using the fact that the kernel and image of a module homomorphism are

sub-modules), these can also be naturally viewed as sl
2

C representations.

Proof. We first define each of the two-dimensional bi-graded vector spaces W,V and V * as

sl
2

representations. Define W to be the direct sum of two copies of the trivial representation

V
0

⇠= C so that W = V
0

{(1, 0)}� V
0

{(�1, 0)} ⇠= C{(1, 0)}�C{(�1, 0)}. Let V be the standard

representation, with v
1

a highest weight vector, and v�1

a weight vector associated to the

weight �1. Finally, let V * be the dual representation of V . While V and V * are isomorphic as

representations of sl
2

, the isomorphism is non-trivial, and introduces signs that will be used in

further results. The action of sl
2

on V * is therefore:

e · v
1

= 0 f · v
1

= �v�1

h · v
1

= v
1

e · v�1

= �v
1

f · v�1

= 0 h · v�1

= �v�1

Using this definition, it is possible to interpret the s-grading as the weight-space grading of

representations of sl
2

: all elements in W have s-grading 0, reflecting the fact that W is the

trivial representation, so x · W = 0 for all x 2 sl
2

. Furthermore, the s-grading of 1 for both

v
1

and v
1

is consistent with the fact that these are both highest weight vectors for the two-

dimensional representation. Finally, the s-grading of �1 for v�1

and v�1

is also consistent with

their associated weights. Note that as a particular case of annular Khovanov homology, regular

Khovanov homology also has a natural sl
2

action, but since all cycles are trivial in this case, it

consists exclusively of the trivial representation. Chain groups consist of direct sums of tensor

products of the sl
2

representations V, V * and W , and since U(sl
2

) is a Hopf algebra, the chain

groups are themselves sl
2

representations.
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The boundary maps di consist of sums of tensor products of m and � with the identity map.

Hence to show that the di are sl
2

-intertwining maps, it su�ces to show that m and � commute

with the sl
2

action on chain groups.

We consider the multiplication and comultiplication maps between W and V ⌦ V *. For � :

W ! V ⌦V *, it is clear that the � �x = 0 for all x 2 sl
2

, since W is the trivial representation.

We must therefore check that x �� = 0 for all x. This verification is taken on the basis vectors

of W and generators of sl
2

. Note that � is trivial on w�, so commutativity automatically holds

on Span{w�}.

e ��(w
+

) = e(v
1

⌦ v�1

+ v�1

⌦ v
1

)

= e · v
1

⌦ v�1

+ v
1

⌦ e · v�1

+ e · v�1

⌦ v
1

+ v�1

⌦ e · v
1

= 0� v
1

⌦ v
1

+ v
1

⌦ v
1

+ 0

= 0

f ��(w
+

) = f(v
1

⌦ v�1

+ v�1

⌦ v
1

)

= v�1

⌦ v�1

+ 0 + 0� v�1

⌦ v�1

= 0

h ��(w
+

) = h(v
1

⌦ v�1

+ v�1

⌦ v
1

)

= v
1

⌦ v�1

� v
1

⌦ v�1

� v�1

⌦ v
1

+ v�1

⌦ v
1

= 0

Thus � commutes with the sl
2

action. One similarly checks that the multiplication commutes

with the sl
2

action. Since m(v
1

⌦ v
1

) = m(v�1

⌦ v�1

) = 0, the composition x �m is zero for

any x 2 sl
2

. Furthermore, by definition of the weights associated to each of the vi and vi,

e(v
1

⌦ v
1

) = f(v�1

⌦ v�1

) = 0.

m � f(v
1

⌦ v
1

) = m(v�1

⌦ v
1

)�m(v
1

⌦ v�1

) m � e(v�1

⌦ v�1

) = m(v
1

⌦ v�1

)�m(v�1

⌦ v
1

)

= w� � w� = 0 = w� � w� = 0

m � h(v
1

⌦ v
1

) = 2m(v
1

⌦ v
1

) = 0 m � h(v�1

⌦ v�1

) = �2m(v�1

⌦ v�1

) = 0

Hence m � x(v
1

⌦ v
1

) = x �m(v
1

⌦ v
1

) = 0 and m � x(v�1

⌦ v�1

) = x �m(v�1

⌦ v�1

) = 0 and

m commutes with the sl
2

action on Span{v
1

⌦ v
1

, v�1

⌦ v�1

}. For the remaining basis vectors,

it is also clear that x � m will always be the zero map, since m : V ⌦ V *! W and W is the

trivial representation.

m � e(v
1

⌦ v�1

) = �m(v
1

⌦ v
1

) = 0 m � e(v�1

⌦ v
1

) = m(v
1

⌦ v
1

) = 0

m � f(v
1

⌦ v�1

) = m(v�1

⌦ v�1

) = 0 m � f(v�1

⌦ v
1

) = �m(v�1

⌦ v�1

) = 0

Furthermore, h(v
1

⌦ v�1

) = h(v�1

⌦ v
1

) = 0, so m � x is the zero map on V ⌦ V * and hence m

commutes with the sl
2

action on V ⌦ V *.
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For the edge maps between V ⌦ W and V , we note that since the action of sl
2

is trivial on

W , and that m|V⌦Span(w+)

is an isomorphism of sl
2

representations, commutativity of the

multiplication map and the sl
2

action holds on this subspace. On the subspace V ⌦ Span(w�),

m � x is also trivial for all x 2 sl
2

, since x · (V ⌦ Span(w�) ✓ V ⌦ Span(w�), which is in

the kernel of m. Therefore m commutes with the sl
2

action on V ⌦ W . Similarly, � is an

isomorphism between V and V ⌦ Span(w�), and by the trivial action of sl
2

on W , � is also a

map of representations.

The proof that the sl
2

action commutes with the edge maps m and � on V *⌦W $ V * follows

by the same reasoning.

Therefore there is a natural way of viewing the chain groups as representations of the Lie algebra

sl
2

and the boundary maps as intertwining maps. This carries naturally down to an action on

cohomology AKh, since both ker(di) and im(di�1) are subrepresentations of CKhi for all i 2 Z,
so their quotient inherits an action of sl

2

as well.

Remark. The sl
2

-action on homology is an annular link invariant: any annular isotopy or

Reidemeister move will induce an isomorphism of sl
2

-modules on homology.

The sl
2

action on annular Khovanov homology is not however the only underlying structure.

In the following section, we demonstrate a much richer structure, given by the current algebra

sl�
2

(V
2

).

4.4 A current algebra action on annular Khovanov homol-

ogy

The aim of this section is to give a proof of the following theorem:

Theorem 4.4.1 (Grigsby-Licata-Wehrli). There is an sl�
2

(V
2

) action on annular Khovanov

homology.

We begin by defining a current algebra action on individual cohomology groups then demon-

strate that this definition is compatible with the previous structure.

We have seen that the chain complex CKh is a triply-graded vector space, consisting of the

homological grading, the usual Khovanov q-grading and the sl
2

weight space s-grading. We fix

the following notation: an element v in CKh has degree (a, b, c), where a is the homological

degree, b is the q-grading and c is the s-grading.

4.4.1 Decomposing the annular Khovanov and Lee di↵erentials

Just as the Khovanov di↵erential was modified in the annular case to preserve the s-grading

at the chain level, one can also define an annular variant of Lee homology that preserves
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the s-grading using individual edge maps. We denote the s-grading preserving annular Lee

multiplication and comultiplication edge maps by mLee and �Lee respectively. The s-grading

preserving annular Lee di↵erential is denoted dLee. As before, the case where trivial cycles split

or merge to form other trivial cycles corresponds exactly to the regular Lee homology case.

Note that in the non-trivial case, none of the multiplication and comultiplication maps for Lee

homology preserve the sl
2

-weight grading, so all terms are deleted. These deleted terms are:

mLee,del(v�1

⌦ w�) = v
1

�Lee,del(v1) = v
1

⌦ w
+

mLee,del(v�1

⌦ v�1

) = w
+

�Lee,del(v1) = v
1

⌦ w
+

�Lee,del(v�1

) = v
1

⌦ w
+

�Lee,del(w�) = v
1

⌦ v
1

The s-grading is shifted up by 2 in all the non-trivial cases. We can therefore decompose the

annular Lee di↵erential into two parts:

@Lee = dLee + d+Lee

where @Lee denotes the total annular di↵erential, and d+Lee is the s-grading-lowering component

consisting of those terms that were initially deleted from dLee.

Similarly, we recall the deleted terms from the annular Khovanov di↵erential:

mdel(v+ ⌦ w�) = v� mdel(v+ ⌦ w�) = v� mdel(v+ ⌦ v
+

) = w
+

�del(v+) = v� ⌦ w
+

�del(v+) = v� ⌦ w
+

�del(w�) = v� ⌦ v�

All of the deleted terms have s-grading shifts that lower the degree by 2, so we may also

decompose the annular Khovanov di↵erential as:

@ = d+ d�

where @ is the total annular Khovanov di↵erential, d is the grading-preserving component and

d� is the s-grading-lowering component.

As seen previously, the Lee di↵erential @Lee anticommutes with the Khovanov di↵erential,

though each pair of the components may not strictly commute at the chain level.

The aim is to determine the current algebra action on homology using the components d� and

d+Lee. To this end we define the action at the chain level, and show that up to homotopy, this

definition is compatible with the s-grading-preserving Khovanov di↵erential, which is simply

the annular di↵erential. We have seen that d� is a degree (1,0,-2) map, and that d+Lee is a

degree (1,4,2) map. Thus, these maps behave on the s-grading as one would expect the e and f

elements of sl
2

would on the weight spaces of a representation. Similarly, from our analysis of

the current algebra sl�
2

(V
2

), the vectors v
2

and v�2

have a similar property of shifting between

weight spaces. For this reason we make the following definition of the action of the vectors vi
from sl�

2

(v
2

), noting also that they shift the homological degree by 1. The vectors vi act by

zero on all basis vectors not shown in the following table.
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sl�
2

(V
2

) V ⌦W $ V V *⌦W $ V * V ⌦ V * $ W

v
2

v�1

⌦ w� 7! v
1

v�1

⌦ w� 7! �v
1

v�1

⌦ v�1

7! w
+

v�2

v
1

⌦ w� 7! v�1

v
1

⌦ w� 7! �v�1

v
1

⌦ v
1

7! w
+

v
0

v
1

⌦ w� 7! v
1

v�1

⌦ w� 7! �v�1

v
1

⌦ v�1

7! w
+

v
0

v�1

⌦ w� 7! �v�1

v
1

⌦ w� 7! v
1

v�1

⌦ v
1

7! �w
+

v
2

v�1

7! v
1

⌦ w
+

v�1

7! �v
1

⌦ w
+

w� 7! v
1

⌦ v
1

v�2

v
1

7! v�1

⌦ w
+

v
1

7! �v�1

⌦ w
+

w� 7! v�1

⌦ v�1

v
0

v
1

7! v
1

⌦ w
+

v�1

7! �v�1

⌦ w
+

w� 7! v
1

⌦ v�1

v
0

v�1

7! �v�1

⌦ w
+

v
1

7! v
1

⌦ w
+

�v�1

⌦ v
1

4.4.2 Proof of theorem 4.4.1

Proof. To show that there is a current algebra action, we must show that the maps we have just

defined satisfy the current algebra relations and square to zero, at least up to some chain ho-

motopy. Furthermore, we must show that the di↵erential map d anticommutes with the current

algebra action on individual chain groups so that this action carries down to the cohomology

level. This proof also shows that the s-grading preserving components of the Khovanov and

Lee di↵erentials are themselves di↵erentials on CKh, namely they square to zero.

We can decompose the chain groups CKhi into a direct sum of sl
2

weight spaces:

CKhi =
M

s2Z
CKi(s)

where s is the sl
2

weight.

Denoting the s-degree, the shift in s-grading, of a map by sdeg, we have seen that both @ and

@Lee split into two homogeneous components, where sdeg(d) = sdeg(dLee) = 0, sdeg(d�) = �2,

and sdeg(d+Lee) = 2.

We now use the fact that the total Lee and Khovanov maps are di↵erentials, to obtain:

0 = @2 = (d+ d�)2 = d2 + dd� + d�d+ (d�)2

and

0 = @2Lee = d2Lee + dLeed
+

Lee + d+LeedLee + (d+Lee)
2

Each of these maps can be decomposed into homogeneous s-degree components:

sdeg(d2) = 0 sdeg(d2Lee) = 0

sdeg(dd� + d�d) = �2 sdeg(dLeed
+

Lee + d+LeedLee) = 2

sdeg((d�)2) = �4 sdeg((d+Lee)
2) = 4

From the weight space decomposition of the chain groups, the maps @2 and @Lee2 are both

zero if and only if their homogeneous s-degree components are all zero:
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@2 = 0 ()

8
><

>:

d2 = 0 (4.1a)

dd� + d�d = 0 (4.1b)

(d�)2 = 0 (4.1c)

Similarly,

@2Lee = 0 ()

8
><

>:

d2Lee = 0 (4.2a)

dLeed
+

Lee + d+LeedLee = 0 (4.2b)

(d+Lee)
2 = 0 (4.2c)

We have also seen that the Lee and Khovanov di↵erentials anticommute, so that

0 = @@Lee + @Lee@

= (dd+Lee + d+Leed) + (d�dLee + dLeed
�) + (ddLee + dLeed+ d�d+Leed

+

Leed
�)

where each component in brackets is homogeneous in s-degree, of s-degrees 2, �2 and 0 respec-

tively. As before, we have:

@@Lee + @Lee@ = 0 ()

8
><

>:

dd+Lee + d+Leed = 0 (4.3a)

d�dLee + dLeed
� = 0 (4.3b)

ddLee + dLeed+ d�d+Leed
+

Leed
� = 0 (4.3c)

From (1a) and (2a), we conclude that the s-grading preserving components of the Khovanov

and Lee di↵erentials are themselves di↵erentials. From (1b) and (3a), the annular di↵erential

d anticommutes with the current algebra maps d� and d+Lee, so the current algebra has a well-

defined action on cohomology. (1c) and (2c) consist of current algebra relations: v2
2

= v2�2

= 0.

Equation (3c) shows that v
2

v�2

+ v�2

v
2

' 0, where dLee is considered as a chain homotopy.

It therefore remains to show the final current algebra relation

[e, v�2

] = �[f, v
2

]

and that this matches our definition for v
0

.

For the V ⌦W $ V case:

[e, v�2

](v
1

⌦ w�) = e(v�1

) = v
1

�[f, v
2

](v
1

⌦ w�) = v
2

(v�1

⌦ w�) = v
1

[e, v�2

](v�1

⌦ w�) = �v�2

(v
1

⌦ w�) = �v�1

�[f, v
2

](v�1

⌦ w�) = �f(v
1

) = �v�1

[e, v�2

](v�1

) = �v�2

(v
1

) = �v�1

⌦ w
+

�[f, v
2

](v�1

) = �f(v
1

⌦ w
+

) = �v�1

⌦ w
+

[e, v�2

](v
1

) = e(v�1

⌦ w
+

= v
1

⌦ w
+

�[f, v
2

](v
1

) = v
2

(v�1

) = v
1

⌦ w
+
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For the V ⌦ V * $ W case:

[e, v�2

](v�1

⌦ v�1

) = �v�2

(v
1

⌦ v�1

� v�1

⌦ v
1

) = 0

�[f, v
2

](v�1

⌦ v�1

) = f(w
+

) = 0

[e, v�2

](v�1

⌦ v
1

) = �v�2

(v
1

⌦ v
1

) = �w
+

�[f, v
2

](v�1

⌦ v
1

) = v
2

(v�1

⌦ (�v�1

)) = �w
+

[e, v�2

](v
1

⌦ v�1

) = �v�2

(v
1

⌦ (�v
1

)) = w
+

�[f, v
2

](v
1

⌦ v�1

) = v
2

(v�1

⌦ v�1

) = w
+

[e, v�2

](v
1

⌦ v
1

) = e(w
+

) = 0

�[f, v
2

](v
1

⌦ v
1

) = v
2

(v�1

⌦ v
1

� v
1

⌦ v�1

) = 0

[e, v�2

](w�) = e(v�1

⌦ v�1

) = v
1

⌦ v�1

� v�1

⌦ v
1

�[f, v
2

](w�) = �f(v
1

⌦ v
1

) = �v�1

⌦ v
1

+ v
1

⌦ v�1

4.5 Computing annular Khovanov homology

4.5.1 Stabilised unknots

We compute the annular homology of positively stabilised unknots: we perform a Reidemeister

1 move that interacts with the basepoint x
0

, such that the resulting crossing is positive. In

the regular Khovanov homology case, the resulting link would be isotopic to the unknot, and

hence would have isomorphic homology. In the annular case, a positive stabilisation introduces

a non-trivial modification of the homology groups. Knowledge of the resulting representations

could lead to determining whether a link diagram is minimally presented, since representations

of positive stabilisations may be characterisable. This question is still open.

We compute annular Khovanov homology for the twice-stabilised unknot:

*

Figure 4.5: Twice-stabilised unknot

The corresponding cube of resolutions is:

We determine the kernel and image of each boundary map di.
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*

*

*

*

V ⌦ V *⌦ V (W ⌦ V )� (V ⌦W ) V

For d0 : V ⌦V *⌦V ! (V ⌦W )�(V ⌦W ), we choose a basis for each vector space: for V ⌦V *⌦V ,

choose the basis {v
1

⌦v
1

⌦v
1

, v
1

⌦v
1

⌦v�1

, v
1

⌦v�1

⌦v
1

, v
1

⌦v�1

⌦v�1

, v�1

⌦v
1

⌦v
1

, v�1

⌦v
1

⌦
v�1

, v
1

⌦v�1

⌦v
1

, v�1

⌦v�1

⌦v�1

}. For (V ⌦W )�(V ⌦W ), choose the basis {(v
1

⌦w
+

, 0), (v
1

⌦
w�, 0), (v�1

⌦w
+

, 0), (v�1

⌦w�, 0), (0, v1⌦w
+

), (0, v
1

⌦w�), (0, v�1

⌦w
+

), (0, v�1

⌦w�)}. Then
the first component of d0 corresponds to the multiplication map on the inner two circles tensored

with the identity on the outer circle and the second component is the identity on the inner circle

and the multiplication map on the outer two circles: d0 = (m⌦ Id, Id⌦m). In our chosen basis,

d0 is described by the following matrix:

d0 =

2

66666666666664

0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

3

77777777777775

⇠

2

66666666666664

0 1 0 0 �1 0 0 0

0 0 1 0 1 0 0 0

0 0 0 1 0 0 �1 0

0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3

77777777777775

Hence,

ker d0 = Span{v
1

⌦ v
1

⌦ v
1

,

v
1

⌦ v�1

⌦ v
1

� v
1

⌦ v
1

⌦ v�1

� v�1

⌦ v
1

⌦ v
1

,

v�1

⌦ v
1

⌦ v�1

� v�1

⌦ v�1

⌦ v
1

� v
1

⌦ v�1

⌦ v�1

,

v�1

⌦ v�1

⌦ v�1

}

and

im d0 = Span{(v
1

⌦ w�, 0), (v�1

⌦ w�, 0), (0, v1 ⌦ w�), (0, v�1

⌦ w�)}
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For d1 : (V ⌦W )� (V ⌦W ) ! V , we have

(v
1

⌦ w
+

, 0) 7! �v
1

(v
1

⌦ w�, 0) 7! 0

(v�1

⌦ w
+

, 0) 7! �v�1

(v�1

⌦ w�, 0) 7! 0

(0, v
1

⌦ w
+

) 7! v
1

(0, v
1

⌦ w�) 7! 0

(0, v�1

⌦ w
+

) 7! v�1

(0, v�1

⌦ w�) 7! 0

So that

ker d1 = Span{(v
1

⌦ w
+

, v
1

⌦ w
+

), (v�1

⌦ w
+

, v�1

⌦ w
+

),

(v
1

⌦ w�, 0), (v�1

⌦ w�, 0), (0, v1 ⌦ w�), (0, v�1

⌦ w�)}

and im d1 = V .

Therefore,

AKh0 = ker d0 ⇠= V
3

AKh1 = ker d1/im d0 ⇠= Span{(v
1

⌦ w
+

, v
1

⌦ w
+

), (v�1

⌦ w
+

, v�1

⌦ w
+

)} ⇠= V
1

{(1, 0)}

AKh2 = ker d2/im d1 = V/V = 0

where the isomorphisms AKh0 ⇠= V
3

and AKh1 ⇠= V
1

{(1, 0)} are determined by the sl
2

-weight

gradings on basis elements. Since each weight space is one-dimensional, each of the homology

groups is an irreducible representation of sl
2

, given by the highest sl
2

-weight that appears in

the grading.

The full current algebra action can be described, up to multiplication by scalars, by the following

diagram 4.6:

The nodes of the diagram denote the sl
2

-weight spaces of the homology groups, and the arrows

demonstrate how the elements vi of sl�
2

(V
2

) act on these weight spaces: all the vi raise the

homological degree by one. v
2

raises the sl
2

-grading by two, v
0

maintains the sl
2

-grading and

v�2

lowers the grading by two.

This result for annular homology can be simply contrasted with Khovanov homology: forgetting

the basepoint, the chain complex becomes W⌦3 ! (W ⌦W )� (W ⌦W ) ! W , and since the

stabilised unknot is isotopic to the unknot, its Khovanov homology is given by a copy of the

trivial representation W concentrated in homological degree zero, and this holds for any number

of stabilisations, since they consist of Reidemeister 1 moves.

Note that up to homological and q-gradings, the annular homology of the twice stabilised unknot

is isomorphic as a representation of sl
2

to V
1

⌦ V
1

. In fact, a similar statement holds for an
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•

•

•

•

V3

•

•

V1{(1, 0)}

AKh0 AKh1

3

1

�1

�3

v�2

v2

1

�1

v�2

v2

v0

v0

Figure 4.6: The current algebra action on AKh of the twice-stabilised unknot

n-times stabilised unknot: given an unknot positively stabilised around the basepoint n times,

the resulting annular Khovanov homology is isomorphic, up to shifts in homological degree and

q-grading to Vn ⌦ V
1

⇠= Vn�1

� Vn+1

.

4.5.2 The positive trefoil

To compute the annular homology of the trefoil, we determine the homology groups as in the

previous examples by choosing a basis for each of the vector spaces and computing the boundary

maps in each of these bases, to find:

AKh0 ⇠= V
2

{3}

AKh1 ⇠= V
0

{5}

AKh2 ⇠= V
0

{5}

AKh3 ⇠= V
0

{9}

From the cube of resolutions of the trefoil, it is clear that annular homology reduces to regular

Khovanov homology for homological degrees 2 and 3, since the cycles in each resolution are all

trivial, except in the height zero resolution. Indeed, the Khovanov homology polynomial for

the positive trefoil knot is Kh(trefoil) = q+ q3 + q5t2 + q9t3 [BN02], which agrees with annular

Khovanov homology in homological degrees 2 and 3.
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