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Lecture 13: Asymptotic analysis of SDEs

Readings

Recommended:

• Pavliotis [2014] 5.1

Optional:

• Pavliotis and Stuart [2008] Chapter 11 (homogenization), other chapters for other types of conver-
gence and many applications.

• Pavliotis [2014] (overdamped & underdamped limits of Langevin equation)
• Papanicolaou [1977] – a nice review article covering several aspects of asymptotic analysis, with hints

at some of the more rigorous techniques and results
• Gardiner [2009] Ch 8, 9 (for a slightly different approach)

Sometimes an SDE will contain a parameter which is much smaller or larger than the others, for example
due to widely separate time or space scales. It is often of interest to average over these fast scales to obtain
dynamics on longer scales, which are often simpler to analyze. Today we will consider one technique to do
this, based on performing formal singular perturbation analysis on the generator of the process.

13.1 Limit of non-white noise

Consider the equation
dxε

dt
= h(xε)+

1
ε

f (xε)yε(t), (1)

where yε(t) is a stationary, non-white stochastic process. If the correlation time of yε(t) is very short (i.e.
the covariance function decreases very rapidly), then we might expect it to behave as a white noise, so that
(1) becomes an SDE.

To investigate this, suppose yε is found from changing the timescale of a regular Ornstein-Uhlenbeck pro-
cess, as yε = y(t/ε2), where ε � 1, and y(t) is an OU process:

dy =−αy+σdWt . (2)

Then, using the fact that Wt/ε2
d
= 1

ε
Wt , we obtain

dyε =−α
yε

ε2 dt +
σ

ε
dWt . (3)

The covariance function in steady-state, and corresponding power spectrum, are

Cε(t) =
σ2

2α
e−

α

ε2 |t|, Ĉε(ω) =
σ2

2πα

αε2

(α2 + ε4ω2)
∼ σ2

2πα2 ε
2 as ε → 0.



This covariance function loses “power” as ε → 0, namely
∫

∞

−∞
Cε(t)dt → 0. However, if we re-scale the

process yε so its variance increases as ε2, then we can get something interesting in the limit:1

1
ε2 Cε(t) = E

yε(0)
ε

yε(t)
ε

ε→0−−→ σ2

α2 δ (t).

Therefore, heuristically we would expect yε

ε
to converge in some sense to σ

α
η , where η is a white noise.

However, just substituting this heuristic into (1), to get dXt = h(Xt)dt+ σ

α
f (Xt)dWt , is WRONG! The correct

result is the Stratonovich interpretation:

dXt = h(Xt)+
σ

α
f (Xt)◦dWt . (4)

We will show this using singular perturbation theory.

13.1.1 Limit of (1), (3) as ε → 0

To derive this limit, we consider the generator of the process (xε ,yε), and show that, formally at least,
this converges to the generator of the limit process (4). This is a very weak convergence result: it is a
statement about the asymptotic equivalence of generators, which is not as strong as weak convergence of the
processes (convergence of the transition probabilities), which in turn is not as strong as strong convergence
(convergence of paths.) Nevertheless, this is a very useful technique, frequently used in applications, and
often these results can be strengthened to a stronger form of convergence. See Pavliotis and Stuart [2008],
for a wide range of applications of this technique, as well as stronger convergence results.

The generator of the process (xε(t),yε(t)) is

L ε =
1
ε2 (−αy∂y +

1
2

σ
2
∂yy)+

1
ε

f (x)y∂x +h(x)∂x.

The backward equation is
∂uε

∂ t
=

(
1
ε2 L0 +

1
ε
L1 +L2

)
uε , (5)

where L0 =−αy∂y +
σ2

2 ∂yy, L1 = f (x)y∂x, L2 = h(x)∂x.

Let’s expand uε in an asymptotic expansion, as

uε(x,y, t) = u0(x,y, t)+ εu1(x,y, t)+ ε
2u2(x,y, t)+ · · ·

Now we substitute this ansatz into the backward equation (5), and equate terms of each order:

O( 1
ε2 ) : −L0u0 = 0

O( 1
ε
) : −L0u1 = L1u0

O(1) : −L0u2 = L1u1 +L2u2− ∂u0
∂ t

Now we solve these, order-by-order.
1We are being very heuristic about the use of convergence, but you can define a particular kind of convergence to make these

statements more rigorous.

2



At O( 1
ε2 ), we have

−L0u0 = 0 ⇒ −αy∂yu0 +
σ2

2
∂yyu0 = 0.

This is an operator only in y, the “fast” variable.2 The solution is u0 = constant (in y), so u0 = u0(x, t). This
is the only solution (L0 is ergodic.)

At O( 1
ε
), we have

−L0u1 = L1u0 ⇒ −αy∂yu1 +
σ2

2
∂yyu1 = y f (x)∂xu0.

We can solve this, for example by separation of variables, to get

u1(x,y, t) =
y
ε

f (x)∂xu0 +Ψ1(x, t),

where Ψ1 is some unknown function. Note that we can drop it, since it is in the null space of L0 so we could
absorb it in u0, but we’ll keep it anyways and show it doesn’t matter in the end.

At O(1), we have

−L0u2 = L1u1 +L2u0−
∂u0

∂ t
. (6)

To be able to solve for u2, the RHS must satisfy the Fredholm Alternative: if π is in the null space of L ∗
0 ,

i.e. L ∗
0 π = 0, then 〈π,RHS〉= 0.

To see why, take the inner product of π with (6):

〈π,−L0u2〉= 〈L ∗
0 π,−u2〉= 0 ⇒ 〈π,RHS〉= 0.

Therefore ∫
π(y)

∂u0

∂ t
dy =

∫
π(y)(L1u1 +L2u0)dy,

where π(y) is the stationary distribution for the process with generator L0. Writing this out explicitly, we
have

∂u0

∂ t
=
∫

π(y)
[
y f (x)∂x

( y
α

f (x)∂xu0(x, t)+Ψ1(x, t)
)
+h(x)∂xu0(x, t)

]
dy

=
f (x)
α

∂x( f (x)∂xu0)
∫

y2
π(y)dy︸ ︷︷ ︸
Eπ y2

+ [· · ·Ψ1 · · · ]
∫

yπ(y)dy︸ ︷︷ ︸
Eπ y

+ h(x)∂xu0.

We can solve explicitly for the stationary density, since L0 is just the generator of an Ornstein-Uhlenbeck

process: π(y) = 1√
2πσ2/2α

e
− 1

2
y2

σ2/2α . Therefore Eπ y2 = σ2

2α
, Eπ y = 0. This gives an evolution equation for

u0 as

∂u0

∂ t
=

σ2

2α2 f (x)∂x( f (x)∂xu0)+h(x)∂xu0 =

(
h(x)+

σ2

2α2 f (x)∂x f (x)
)

∂xu0 +
σ2

2α2 f 2(x)∂xxu0.

2 We call y the “fast” variable because it evolves very quickly, whereas x is expected to change on much slower timescales . We are
interested in the dynamics of x, on the slow timescale, so we want to “average over” the fast variables in some way.
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This is the backward equation for the Stratonovich SDE

dXt = h(Xt)+
σ

α
f (Xt)◦dWt .

Notes

• In general, a coloured noise y(t) will converge to the Stratonovich increment when scaled as 1
ε

y(t/ε2),
provided y is scalar.

• In higher dimensions, this will not necessarily converge to the Stratonovich SDE, but rather an extra
drift term could arise – this is called the Levy area correction. See Pavliotis [2014], section 5.1, for a
detailed example. See also Pavliotis and Stuart [2008], section 11.7.7, p. 176.

• The Fokker-Planck operator can also be used to do the asymptotics – see e.g. Gardiner [2009].

• A similar derivation works provided yε(t) is any Markov process – we simply use the generator A of
yε , instead of the OU generator. We still obtain the form L = 1

ε2 L0 +
1
ε
L1 +L2.

• To make these asymptotics work in general, we need the following assumptions Papanicolaou [1977]:

(i) L0 is the generator of a stationary Markov process, and it depends only on the fast variables, y.

(ii) L0 is ergodic: it has only constants in its null space, and the semigroup Tt = eL0t converges (in
some sense) to P= the projection operator onto the null space of L0: eL0t→P, Pu=

∫
u(x,y)dy.

(iii) The Fredholm Alternative holds for L1: PL1P = 0 ⇔ 〈π,L1〉= 0.

(iv) Consistency in the initial condition: Pu|t=0 = u|t=0 (otherwise we must consider the initial layer
problem)

If these hold, we can solve for u0 as

∂u0

∂ t
= (PL2P−PL1L

−1
0 L1P)u0,

where L −1
0 =−

∫
∞

0 (eL0t −P)dt.

• Similar results hold for non-Markov processes y(t). See papers by Papanicolaou, Khasminskii, etc.

13.2 Markov chain→ Diffusion process

Consider the equation
dxε

dt
=

1
ε

yε(t), (7)

where yε = y(t/ε2) is a 2-state continuous-time Markov chain. It takes values y =±α , and jumps between
them with rate β .

This describes a random walk, with exponentially distributed jump times. If the jump times and sizes are
scaled in the right way, then we would expect this to look like a Brownian motion as ε → 0. Let’s make
some estimates.
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• Tme between jumps is ∆t = β−1ε2.
• Size of jumps is ∆x = α

ε
∆t = αβ−1ε .

• Therefore ∆x2

∆t = α2β−1.

This is consistent with the scaling of a Brownian motion, so we would expect the limiting process to behave
as a Brownian motion with diffusivity αβ−1/2 as ε→ 0. Let’s show this using an asymptotic analysis of the
generator.

The generator of the unscaled jump process y(t) is

A =

(
−β β

β −β

)
.

The backward equation for u(x,y, t) = E(x,y) f (x(t),y(t)) is

∂u
∂ t

=
1
ε

y
∂u
∂x

+
1
ε2 Au.

Define
u+(x, t) = u(x,α, t), u−(x, t) = u(x,−α, t).

The backward equation can be written as

∂

∂ t

(
u+
u−

)
=

1
ε

(
α 0
0 −α

)
∂

∂x

(
u+
u−

)
+

1
ε2

(
−β β

β −β

)(
u+
u−

)
, (8)

with initial condition u±(x,0) = f±(x). We could now perform the asymptotic analysis on (8) in exactly
the same way as in section 13.1, see e.g. E et al. [2014]. We won’t do this, but rather pursue an alternative
strategy which is to change variables, to make (8) simpler to analyze. Let

w = u++u−, v = u+−u−.

Take one more time derivative of (8), and substitute the change of variables. The equation for w is

ε
2 ∂ 2w

∂ t2 = α
2 ∂ 2w

∂x2 −2β
∂w
∂ t

, w(x,0) = f+(x)+ f−(x),
∂w
∂ t

(x,0) =
α

ε

∂

∂x
( f+− f−). (9)

This equation is almost decoupled from that of v; the only coupling enters through the initial condition.
Suppose f+ = f− = f (x). Then ∂w

∂ t (x,0) = 0, so there is no initial transient layer; the equations are fully
decoupled.

Now we can consider an asymptotic analysis of (9). Let w = w0 + εw1 + ε2w2 + . . .. Substitute this ansatz
into (9) and equate terms of different orders. At O(1), we get

∂w0

∂ t
=

α2

2β

∂ 2w0

∂x2 , w0(x,0) = 2 f (x). (10)
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This is the generator of the diffusion
dXt =

α√
β

dWt . (11)

Therefore xε(t) behaves asymptotically as the scaled Brownian motion α√
β

Wt . See Papanicolaou [1977], E

et al. [2014].

13.3 “Sticky” boundary condition

We now show how a sticky boundary condition can come from Brownian dynamics, when there is a very
narrow, deep potential near a boundary (based on Holmes-Cerfon et al. [2013].)

Given
dXt =−∇U(Xt)dt +

√
2dWt , Xt ∈ [0,1] (reflecting boundary)

where the potential U(x) is deep near x = 0, but = 0 beyond some cutoff at x = r:

Let’s scale U(x) to be very narrow, and moderately deep:

Uε(x) =CεU(x/ε), ε � 1.

Here the parameter ε scales the width of the potential, and Cε scales the depth. It is chosen so that

e−CεU(0)√
CεU ′′(0)

√
π

2
= κ,

where κ is an O(1) constant. Roughly, it goes as Cε ∼ | logε|. Physically, what this means is the partition
function (integral of the Boltzmann factor) associated with the minimum of the potential is constant.

The Fokker-Planck equation is
∂ p
∂ t

= ∂x(∂xUε(x)p+∂x p). (12)

We will analyze this asymptotically as ε → 0 using boundary-layer theory.

First consider the “outer” solution for x > εr: this solves ∂t p̃ = ∂xx p̃, with a reflecting boundary condition at
x = 1. The boundary condition at x = εr→ 0 will be determined by the matching condition with the solution
near the wall.
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Next consider the “inner” solution, near x = 0. Let X = x/ε describe the variable near the wall. The FP
equation is

∂ p
∂ t

=
1
ε2 ∂X (∂XCεU(X)p+∂X p).

Let pwall = p0(X , t) + ε p1(X , t) + . . .. Substitute the ansatz into the FPE and equate terms of the same
order.

The O(ε−2) equation shows
p0(X , t) = p0(t)e−CεU(X).

The inner solution pwall must be matched to the outer solution p̃. The matching conditions are the same as
those near a discontinuity:

(a) probability is continuous: pwall |X=r = p̃|x=0.
(b) flux is continuous: ε jwall |X=r = j̃|x=0.

Matching condition (a) shows that p̃(0, t) = p0(t).

Applying (b) directly is hard, since it requires evaluate p1, p2. Instead, we use an alternate form: the total
probability is conserved. This requires that

d
dt

∫
εr

0
pwalldx = j̃|x=0 (to leading order in ε)

⇒
∫

εr

0
p′0(t)e

−CεU(x/ε)dx = p̃x|x=0

⇒ κ p′0(t) = p̃x|x=0.

Combining with (a) gives a boundary condition for p̃:

p̃x|x=0 = κ∂t p̃|x=0 ⇔ p̃x|x=0 = κ p̃xx|x=0.

This is the sticky boundary condition j̃ · n̂ = L p̃.
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