
Lecture 11: Some applications of the backward equation

Readings

Recommended:

• Pavliotis [2014] 7.1-7.3 (first-passage times)
• Oksendal [2005] 7.3-7.4 (Dynkin formula), 8.2 (Feynmac-Kac), 9.1 (Boundary-value problems)
• Gardiner [2009] 5.5 (first-passage times), 4.3.5 (Feynman-Kac)

Optional:

• Oksendal [2005] 9.2-9.3 (more on boundary-value problems)
• Koralov and Sinai [2010] 21.3, 21.4
• Pavliotis [2014] p.68 (Feynmac-Kac)

In this lecture we’ll look at some applications of the backward equation. First, we’ll learn how to solve
for first-passage time distributions. In particular, we’ll show how to solve for the mean first passage time
(MFPT) by solving an elliptic equation with Dirichlet boundary conditions. Then, we’ll show how to
solve more general boundary-value elliptic PDEs using stochastic processes. Finally, we’ll learn about
the Feynman-Kac formula, which generalises the backward equation to include a source term.

11.1 First-passage times

Consider a time-homogeneous process

dXt = b(Xt)dt +σ(Xt)dWt , (1)

which lives in a bounded domain Ω⊂ Rd with boundary ∂Ω. How long does it take to reach the boundary?
This question has a number of applications, such as:

– an organism looking for food, where ∂Ω is the boundary of the food source
– in a chemical reaction; where ∂Ω is the boundary of another molecular conformation
– a ligand looking for a binding site at location ∂Ω

– in the stock market, e.g. the time it takes for an investment to double its value
– the time when average sea level has risen by 3 feet

and many others. In these applications we are interested in solving for the first-passage time, the time it
takes a trajectory starting at x to hit ∂Ω for the first time, defined mathematically as

T (x) = inf{t : Xt ∈ ∂Ω|X0 = x}. (2)

We can answer questions about first-passage times with a variant of the backward equation. In this section
we outline how to do this, assuming all functions defined are nice enough that we can differentiate them as
many times as we need and interchange derivatives and integrals; the assumptions required to make this true
are touched upon in the next section.
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We start by putting an absorbing boundary condition at ∂Ω, so that trajectories are removed from the system
as soon as they reach the boundary: p(y, t|x,s) = 0 for x ∈ ∂Ω. Let G(x, t) be the probability that a process
is still in D at time t, given that it started at x at time 0. We can express G in terms of the transition density
as

G(x, t) = P(T (x)≥ t) =
∫

Ω

p(y, t|x,0)dy . (3)

To solve for G(x, t) we need an equation that relates its evolution in t to its evolution in x. The forward equa-
tion gives the evolution of p(y, t|x,s) in (y, t), and the backward equation gives the evolution of p(y, t|x,s) in
(x,s). However, for a time-homogeneous process, p(y, t|x,0) = p(y,0|x,−t), so from the backward equation,
we get

∂t p(y, t|x,0) = Lx p(y, t|x,0) .

Integrate over y to get

∂tG = L G (in Ω), G(x,0) = 1 (x ∈Ω), G(x, t) = 0 (x ∈ ∂Ω). (4)

If we solve this parabolic equation for G, we can recover the full distribution of T , from (3).

To find moments of T , we can solve an elliptic equation instead. Consider the mean first-passage time
(MFPT) T1(x) = ET (x). Since the probability density of T (x) is −∂tG(x, t), we have,

T1(x) = ET (x) =−
∫

∞

0
t∂tG(x, t)dt =

∫
∞

0
G(x, t)dt,

provided tG(x, t)→ 0 as t→ ∞, which is a condition for ET1(x) to exist. Now apply L to both sides of the
equation to get

L T1 =
∫

∞

0
L G(x, t)dt =

∫
∞

0
∂tGdt = −1.

We have just shown that T1, if it exists, solves an elliptic equation

L T1(x) =−1 (x ∈Ω), T1(x) = 0 (x ∈ ∂Ω) . (5)

Example 11.1 (Brownian motion on a line) How long does it take a Brownian motion starting at the origin,
to exit the interval [−R,R]?

The generator of Brownian motion is L = 1
2 ∂xx, so we must solve

1
2

∂xxT1 =−1, T1(−R) = T1(R) = 0 .

You can easily find the solution is T1(x) =−x2 +R2, so the MFPT starting at x = 0 is T1 = R2. Notice that
to find the MFPT from the origin, we have to solve for for all starting points x.

Exercise 11.1. Suppose in the example above that the Brownian motion is reflected at −R. What is the
MFPT for it to reach R?

Example 11.2 (Arrhenius formula for reaction rate) [Gardiner, 2009]; [Pavliotis, 2014, Section 7.3]
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One is often interested in calculating the transition rate be-
tween metastable states; for example, a molecule transitions
from one conformation to another with a given rate, a pro-
tein denatures with some rate, the Ising model at low tem-
perature has rare transitions between the +1 state and the
-1 state. One model to calculate the transition rate between
metastable states is to consider the overdamped Langevin
equation for a process X moving on an energy surface with
two deep minima. We consider here a one-dimensional
equation,

dXt =−U ′(Xt)dt +
√

2DdWt .

Here D is the diffusion coefficient and U(x) is the potential
energy.
Consider a potential U(x) with with two deep wells at x =
a,c, and a saddle point in between at x = b, as shown in the
figure. The stationary distribution is

ρs(x) = Z−1e−U(x)/D.

If D is small enough, then the stationary distribution is concentrated near each of the local minima, and there
is a low probability of being found everywhere else. We expect the system to spend long times near a or c,
and occasionally jump between them. What is the MFPT to go from a to c?

The MFPT from some point x to some point z solves

−U ′∂xT1 +D∂xxT1 =−1, T ′1(−∞) = 0, T1(z) = 0.

Solving the ODE above gives

T1(x) =
1
D

∫ z

x
dy
[

eU(y)/D
∫ y

−∞

e−U(s)/Dds
]
. (6)

We would like to evaluate this expression with x = a, and we choose z to be some point near c but slightly
before it, i.e. such that b < z < c. We don’t put the absorbing point exactly at c, because when the process
gets close to c, it spends a long time wandering around in the flat part of the potential energy landscape
before it actually hits c, and we only care about the time to reach the basin of c, not the point c itself.

Expression (6) is exact, but it is complicated and doesn’t tell us much about how T1 depends on the parame-
ters in the problem. Let’s try to find a simpler expression by approximating it when D is small.

The function e−U(s)/D is only large near s = a; for a < s < c it is close to zero so its contribution to the inner
integral can be neglected. Therefore we can approximate the integral using Laplace asymptotics: Taylor-
expand U(s) near s = a, and then send the limits of integration to ∞:

For y > a:
∫ y

−∞

e−U(s)/Dds≈
∫

∞

−∞

e−
1
D (U(a)+ 1

2U ′′(a)(s−a)2)ds =

√
2πD
|U ′′(a)|

e−U(a)/D.

Now we can pull this factor out of the outer integrand in (6), since it is constant with respect to y. We can
do a similar approximation for the outer integrand, since the first exponential factor is sharply peaked near
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y = b. Therefore we can approximate, for x < b,

∫ z

x
eU(y)/Ddy≈

∫
∞

−∞

e
1
D (U(b)− 1

2U ′′(b)(y−b)2)dy =

√
2πD
|U ′′(b)|

eU(b)/D .

Putting this together gives

ET1(a→ c)∼ 2π√
|U ′′(a)||U ′′(b)|

e(U(b)−U(a))/D as D→ 0. (7)

This is the Arrhenius formula; the rate of the reaction is approximated as 1/T1. The most important feature
is the exponential dependence on the energy barrier, U(b)−U(a), which shows that even a modest change
in energy barrier, such as doubling it, will cause the MFPT to change by orders of magnitude.

11.2 Boundary-value problems

Consider the PDE for a function u : Ω⊂ Rd → R:

L u = f in Ω, u = g on ∂Ω , (8)

with L = b(x) ·∇+ a(x) : ∇2, and Ω ⊂ Rd is open and bounded. This is similar to equation (5) for the
MFPT, but with a more general source term and boundary condition. Can we similarly express its solution
with a stochastic process of the form (1)?

We aim to express the solution to (8) using a stochastic process X that is stopped at the boundary ∂Ω. To
this end, let τΩ be the first passage time to ∂Ω. Our main result is the following.

Theorem (Boundary-value problem). Suppose f ,ai j,bi are bounded and Lipschitz continuous in Ω, g is
continuous on ∂Ω, and ∂Ω is C2. Then the solution to (8) can be written as

u(x) = Ex
(

g(XτΩ
)−

∫
τΩ

0
f (Xt)dt

)
, (9)

where τΩ is the first passage time to Ω, XτΩ
is the first exit point, and where X solves (1).

See e.g. [Koralov and Sinai, 2010, Theorem 21.11], and [Friedman, 2004, Theorem 5.1.1].

Remark. The assumptions in this theorem ensure there is a unique strong solution u ∈C2(Ω)∩C(Ω). Given
slightly stronger conditions we obtain a solution u ∈ C2(Ω). We may weaken the conditions to obtain a
solution that is less smooth. See Appendix, Section 11.4.1, for a summary of the relevant PDE theorems.

Before proving (9) we must first introduce the concept of integrals up to a random time τΩ. This is possible
for random times which are stopping times. The definition of and some properties of stopping times are
reviewed in the Appendix, Section 11.4.3; here, we only need to know that a first-passage time is a stopping
time, and if τ is a stopping time, then so is τ ∧T for any finite T > 0.

Given a stopping time τ , the indicator function 1{t≤τ} is adapted, so we can define a stochastic integral with
τ in the limits of integration as ∫

τ

0
f (t,ω)dWt ≡

∫
∞

0
1{t≤τ} f (t,ω)dWt . (10)

4



Miranda Holmes-Cerfon Applied Stochastic Analysis, Spring 2022

We would like the non-anticipating property to still hold; the following Lemma tells us when it does.

Lemma (Dynkin’s formula). If τ is a stopping time with Exτ < ∞, and f ∈C2 with compact support, then

Ex f (Xτ) = f (x)+Ex
∫

τ

0
L f (Xs)ds. (11)

Proof. Given a function f ∈C2, Itô’s formula in integral form applied to f and then evaluated at τ ∧T (see
(10)) where T > 0 is a fixed time gives

f (Xτ∧T )− f (X0) =
∫

τ∧T

0
L f ds+

∫
τ∧T

0
∇ f a dWs.

Taking the expectation and using the nonanticipating property of the Itô integral shows that

Ex f (Xτ∧T )− f (x) = Ex
∫

τ∧T

0
L f ds.

Now, by assumption, f and its first two derivatives are bounded, so |L f | ≤M. Therefore

Ex
∣∣∣∣∫ T

0
1{t≤(τ∧T )}L f

∣∣∣∣≤ME(τ ∧T ) ≤ MEτ < ∞,

so applying the Dominated Convergence Theorem to the identity above gives (11).

Remark. The condition Eτ < ∞ is critical. See the homework for a case where this fails.

We would like to apply Dynkin’s formula to the function u(Xt) in (8). To do so we must show ExτΩ is
finite.

Lemma. Given the assumptions in (8),
sup
x∈Ω

Ex
τΩ < ∞ . (12)

Proof. [Friedman, 2004, part of Theorem 6.5.1] Let h(x) = −Aeλx1 . We can choose A,λ large enough so
that

L h =−a11Aλ
2eλx1 −b1Aλeλx1 ≤−1 in Ω.

Therefore, by Itô’s formula,
Exh(Xτ∧T )−h(x)≤−Ex(τ ∧T ).

Since |h(x)| ≤ K in Ω, using the triangle inequality we obtain Ex(τ ∧T ) ≤ 2K. Take T → ∞ and use the
monotone convergence theorem to obtain Exτ ≤ 2K.

Remark. The proof above didn’t require very many assumptions. In particular, it didn’t require the uniform
ellipticity of a nor any smoothness conditions on ∂D or the coefficients of L . The proof only required that
a11 > 0 in Ω, and that the coefficients of L be Lipschitz continuous in Ω to ensure a unique process X exists.
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Remark. The key part of the proof was to construct a function h satisfying L h ≤ −1. An alternative
proof could choose h to be the solution to L h =−1, which is known to exist under the assumptions given.
However, a subtlety is that this equation is usually only guaranteed to hold in Ω, and not (without further
assumptions) at ∂Ω. Therefore, one has to either extend the solution to a larger domain Ω′ ⊃ Ω, arguing
that the PDE has sufficient regularity that one can do so, or else consider a sequence of domains Ωε ⊂ Ω,
and consider the result in the limit

⋃
ε Ωε . See Koralov and Sinai [2010], Theorem 21.11 for the former

approach, and Friedman [2004], Section 6.5 for an example of the latter.

Finally, we are ready to show our main result.

Proof of Boundary-value theorem, (9). [Koralov and Sinai, 2010, Theorem 21.11] We may use Dynkin’s
formula since ExτΩ < ∞. If u ∈C2(Ω), then it can be extended to a C2 function with compact support on Rd

(see Appendix 11.4.1, to which we may apply Dynkin’s formula:

Exu(XτΩ
)−u(x) = Ex

∫
τΩ

0
L u(Xt)dt.

Solving for u(x) and noting that u(Xt) = f (Xt) for Xt ∈Ω, and u(XτΩ
) = g(XτΩ

), gives the desired result.

If u /∈C2(Ω), then instead we construct a sequence of domains Ω1 ⊂Ω2 ⊂ ·· · ⊂Ω with smooth boundaries,
such that Ωn ⊂ Ω and

⋃
n Ωn = Ω. Let τn be the stopping times corresponding to domains Ωn. Then

limn→∞ τn = τΩ almost surely. We may apply Dynkin’s formula to u in each Ωn, to obtain (9) with τn instead
of τΩ, and then use the Dominated Convergence Theorem to obtain (9).

Example 11.3 (MFPT) Let g(x) = 1, f (x) = 0. Then

u(x) = Ex
∫

τΩ

0
1dt = Ex

τΩ.

We recover (5), the equation we derived in the previous section for the MFPT.

Example 11.4 (Mean-Value Theorem for harmonic functions) Suppose u : Rd → R is harmonic: ∆u = 0.
Recall the Mean Value Theorem says that

u(x) =
1

Area(∂B(x,r))

∫
∂B(x,r)

u(y)dS(y) ,

where B(x,r) is the ball of radius r centered at x, ∂B(x,r) is its boundary, and dS(y) is the surface measure
on ∂B(x,r). Let’s show this theorem using stochastic processes.

Let dXt = dWt , so the generator of Xt is L f = 1
2 ∆ f . Suppose we are given a function u such that ∆u = 0 in

some domain Ω, and let B(x,r)⊂Ω. By the boundary-value theorem,

u(x) = Exu(XτB) ,

where τB is the first hitting time of ∂B(x,r) for Xt . Since Brownian motion is spatially isotropic, the
distribution of first hitting points {XτB} is uniform on ∂B(x,r), so

Exu(XτB) =
1

Area(∂B(x,r))

∫
∂B(x,r)

u(y)dS(y) .
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Remark. It is possible to mix boundary conditions, for example to let u(x) = g(x) on Γ⊂ ∂Ω, ux(x) = 0 on
∂Ω\Γ. This corresponds to stopping the process at Γ, and reflecting it at ∂Ω\Γ. The stopping time must be
τΓ, the first time the process hits Γ. See Evans [2013].

11.3 Feynman-Kac formula*

Consider the following PDE for a function v(x, t) : Rd×R→ R:

∂tv = L v− c(x)v, v(x,0) = f (x), (13)

where L v= b(x) ·∇v+a(x) : ∇2v. We ask that c(x)≥ 0, which helps ensures the existence of a unique weak
solution to (13) (Evans [2010]). This is similar to the backward equation, but with an extra term −c(x)v.
We expressed the solution to the backward equation using an ensemble of trajectories of a diffusion process.
Can we similarly express v using an ensemble of trajectories? Let’s examine some special cases first.

• Without the term −c(x)v, (13) is simply the backward equation, whose solution can be represented as

v(x, t) = Ex f (Xt) , (14)

where Xt solves the SDE (1).

• Without the diffusion term a : ∇2v, (13) is a first-order PDE

∂tv = b(x) ·∇v− c(x)v , v(x,0) = f (x).

This equation can be solved by the method of characteristics. A characteristic x(s) starting at point x0
solves the ODE

dx
ds

= b(x) , x(0) = x0.

Let t > s and definez(s) = v(x(s), t− s). This function evolves as

dz
ds

=−∂tv+b(x) ·∇v = c(x)z , z(0) = v(x, t) .

We can solve to get z(t) = z(0)e
∫ t

0 c(s)ds. Using that z(t) = f (x(t)) gives

v(x, t) = z(0) = e−
∫ t

0 c(x(s))ds f (x(t)) . (15)

From this expression for the solution along each characteristic x(s), we can piece together the solution
anywhere in space.

When all the terms are included, we get a combination of (14), (15), called the Feynman-Kac formula.

Theorem (Feynman-Kac, time-homogeneous). Let f ∈ C2
0(Rd), c ∈ C(Rd), c(x) ≥ 0. The solution to the

PDE
∂tv = b(x) ·∇v+a(x) : ∇

2v− c(x)v, v(x,0) = f (x), (16)

is given by
v(x, t) = Ex

[
e−

∫ t
0 c(Xs)ds f (Xt)

]
, (17)

where Xt solves the SDE (1).
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Proof. This proof is very similar to our proof of the backward equation from an earlier lecture. Let v(x, t)
be the solution to the PDE (16), which we assume exists and is twice differentiable. Let

Z1(s) = e−
∫ s

0 c(Xr)dr , Z2(s) = v(Xs, t− s) .

From the Itô product rule, we have d(Z1Z2) = Z1dZ2 +Z2dZ1 +dZ1dZ2. We calculate:

dZ1(s) =−Z1c ds

dZ2(s) = (−vt +b ·∇v+a : ∇
2v)ds+σ ·∇v ·dWs

= (−vt +L v)+σ · v ·dWs.

dZ1(s)dZ2(s) = 0.

All functions above are evaluated at (Xs, t− s), but we omit the function arguments for clarity. Therefore

d (Z1(s)Z2(s)) = Z1 (−vt +L v− vc)︸ ︷︷ ︸
=0, since v solves (16)

ds+σ ·∇v dWs = σ ·∇v dWs .

Integrating in time and taking expectation gives

Ex(Z1(t)Z2(t)) = ExZ1(0)Z2(0) .

But Z1(0)Z2(0) = v(x, t), and Z1(t)Z2(t) = e−
∫ t

0 c(Xr)drv(Xt ,0) = e−
∫ t

0 c(Xr)dr f (Xt). Therefore

Ex[e−
∫ t

0 c(Xr)dr f (Xt)] = Ex(Z1(t)Z2(t)) = ExZ1(0)Z2(0) = v(x, t) .

As we saw for the backward equation, trajectories of a diffusion process can be thought of as characteristics
for the second-order, parabolic equation (17).

Remark. In many applications, particularly in finance, the Feynman-Kac formula is presented for a time-
inhomogeneous process. In this case, one has to solve a PDE backwards in time. See Appendix, section
11.4.2 for the theorem statement and proof.

In the PDE (13), what does c(x) represent physically? We claim it represents the “killing rate,” i.e. the
rate at which trajectories disappear, given they are at x. Physically, this could happen by chemicals being
adsorbed to a surface with a rate depending on location, gamblers being kicked out of a casino with a rate
that depends on how much money they have, etc. To why this interpretation is reasonable, suppose that we
kill the process Xt at rate c(x), so

P(Xt is killed in [t, t +h]) = c(Xt)h+o(h) .

Then, by dividing the time interval [0, t] into a fine partition {t0, t1, . . .} with ti = ih for h small, we esti-
mate

P(Xt survives until t)≈ (1− c(Xt1)h)(1− c(Xt2)h) · · ·(1− c(Xtn)h) → e−
∫ t

0 c(Xs)ds as h→ 0 .

Therefore,
v(x, t) = Ex [ f (Xt)P(Xt is alive at time t)] = Ex [ f (Xt)1[0,ξ )(t)

]
,
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where ξ (ω) is the random time at which Xt(ω) is killed. Therefore v(x, t) is the average of f (Xt), weighted
by the probability that the trajectory is still alive at time t. (See Oksendal [2005], Section 8.2 (p.145), or
Evans [2013], Section 6.B.)

The Feynman-Kac formula was first developed in quantum mechanics to evaluate certain functionals of
Brownian motion. It was constructed heuristically by Feynman and then rigorously by Kac, after he saw a
lecture by Feynman and realized they were thinking about the same thing in different languages. Now, it
is also heavily used in finance, where it has found use in pricing financial instruments, for example via the
Black-Scholes equation.

Example 11.5 The Black-Scholes equation comes from considering the proper price of an option to buy a
stock. Let S(t) be the price of a stock at time t, which is assumed to behave as a geometric Brownian motion

dS = µSdt +σSdWt , S(0) = s0,

where µ is the drift in price, and σ 6= 0 is the volatility. A European call option is the right to buy one share
of the stock at price p at time T . One is interested in determining the “proper price” of the option, i.e. the
price where on average both the buyer and seller break even. The proper price at time t given S(t) = s is
given by a function u(s, t).

It is assumed that the interest rate is constant, r > 0, so that 1$ in the bank at t = 0 is worth erT at t = T , or
conversely that 1$ at t = T is worth e−rT at t = 0. By asking that options be “self-financing” by a portfolio
of bonds that grow as dB = rBdt, and by considering how to price options so as to create no arbitrage
opportunities for others, one arrives at the Black-Scholes equation Evans [2013]

ut + rsus +
σ2

2
s2uss− ru = 0, 0≤ t ≤ T,

u(0, t) = 0 0≤ t ≤ T,

u(s,T ) = (s− p)+ s > 0.

This looks formally like the Feynman-Kac formula, although the derivation is quite different. Notably, the
drift µ does not appear in the equation.
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11.4 Appendix

11.4.1 Collected results about PDEs

The following results concern an operator

Lu = a(x) : ∇
2u+b(x) ·∇u+ c(x) f .

We are interested in the solution to the boundary-value problem

Lu = f in Ω, u = g on ∂Ω. (18)

Let C2,1(Ω) be the space of functions on Ω which are twice continuously differentiable whose derivatives
up to 2nd order are Lipschitz continuous.

Recall that Ω which satisfies the exterior sphere condition if for each ξ ∈ ∂Ω, there exists a ball B = BR(y)
such that B̄∩ Ω̄ = ξ . If ∂Ω is C2, it satisfies this condition.

Theorem (Gilbarg et al. [1977], Theorem 6.13). Given an open bounded domain Ω which satisfies the
exterior sphere condition. Suppose L is uniformly elliptic on Ω, with c ≤ 0. Further suppose f and the
coefficients of L are bounded and Lipschitz continuous in Ω, and g is continuous on ∂Ω. Then there is a
unique solution u ∈C2,1(Ω)∩C(Ω̄) to (18).

Remark. The conditions of this theorem can be weakened. Let Ck,α(Ω) denote the space of functions on
Ω that are k times continuously differentiable whose derivatives up to kth order are Hölder continuous with
exponent α ∈ (0,1]. The theorem says that if f and the coefficients of L are bounded and in C0,α(Ω) (with
all other conditions the same), then u ∈C2,α(Ω)∩C(Ω̄).

By strengthening the conditions on the coefficients, we obtain a solution that is twice continuously differen-
tiable up to the boundary.

Theorem (Gilbarg et al. [1977], Theorem 6.14). Given an open bounded domain Ω which is a C2,1 domain.
Suppose L is uniformly elliptic on Ω with c ≤ 0. Further suppose f and the coefficients of L are Lipschitz
continuous on Ω̄, and g ∈C2,1(Ω̄). Then there is a unique solution u ∈C2,1(Ω̄) to (8).

Given a solution up to the boundary, it can be extended a little bit beyond the boundary.

Theorem (Gilbarg et al. [1977], Lemma 6.37). Let Ω be a C2,1 domain and let Ω′ be an open set containing
Ω̄. Suppose u ∈C2,1(Ω̄). Then there exists a function w ∈C2,1(Ω′) such that w = u in Ω.

10
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11.4.2 Feynman-Kac, time-inhomogeneous

Theorem (Feynman-Kac, time-inhomogeneous). The solution to the PDE

ut +L u− c(x, t)u = 0, u(x,T ) = f (x), (19)

where L u = b(x, t) ·∇u+a(x, t) : ∇2u, can be expressed as

u(x, t) = EXt=x
[
e−

∫ T
t c(Xs,s)ds f (XT )

]
.

Here Xt is a process that solves

dXt = b(Xt , t)dt +σ(Xt , t)dWt , Xt = x ,

and σ(x, t) is a matrix such that 1
2 σ(x, t)σT (x, t) = a(x, t).

Proof. This is essentially the same as for the time-homogeneous case. For simplicity, let’s consider the one-
dimensional case x ∈ R; the multi-dimensional case is very similar. Let u(x, t) be the solution to the above
PDE. Let

Z1(s) = e−
∫ s
t c(Xr ,r)dr , Z2(s) = u(Xs,s) .

From the Itô product rule, we have d(Z1Z2) = Z1dZ2 +Z2dZ1 +dZ1dZ2. We calculate:

dZ1 =−Z1cds

dZ2 = (us +bux +auxx)ds+σuxdWs

= (us +L u)ds+σuxdWt .

dZ1dZ2 = 0.

Inserting these into the product rule gives

d
(

e−
∫ s
t c(Xr ,r)dru(Xs,s)

)
= Z1dZ2 +Z2dZ1

= Z1 [(us +L u)ds+σuxdWs]−Z1ucds

= Z1σuxdWs +Z1 (us +L u− cu)︸ ︷︷ ︸
=0, by construction

ds

The RHS has expected value 0, so the expectation of the product Z1Z2 is constant with time. Therefore

EXt=x[Z1(T )Z2(T )] = EXt=x[z1(t)z2(t)] .

But EXt=x[Z1(T )Z2(T )]=EXt=x
[
e−

∫ T
t c(Xs,s)ds f (XT )

]
, and EXt=x[z1(t)z2(t)]=EXt=xu(Xt , t)= u(x, t). Putting

these together gives the result.

11
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11.4.3 Stopping times

Many of the applications we will consider involve random times. We need to know what kinds of random
times we are allowed to work with, and how formulas such as Itô’s formula, isometry, etc must be adapted
when the time in the limits of integration is random. Some of this section is based on [Evans, 2013, Chapter
6], which contains some nice examples and simple proofs of the statements below.

Definition. A random variable τ : Ω→ [0,∞] is called a stopping time with respect to a Brownian motion
(Wt)t≥0 if the event {τ ≤ t} can be decided using only the values of (Ws)0≤s≤t .

Remark. The rigorous definition is that τ is a stopping time with respect to the filtration {Ft} if

{τ ≤ t} ∈Ft for all t ≥ 0 ,

that is, the set of all ω ∈Ω such that τ(ω)≤ t is Ft -measurable.

Theorem (Properties of stopping times). Let τ1,τ2 be two stopping times. Then

(i) {τi = t} ∈Ft , for all times t ≥ 0.
(ii) τ1∧ τ2 = min(τ1,τ2) and τ1∨ τ2 = max(τ1,τ2) are both stopping times.

Proof. (i) {τi = t} = {τi ≤ t}− {τi < t}, both of which are measurable in Ft (Exercise: show that
{τi < t} is Ft -measurable, by writing it as a countable union of measurable sets.)

(ii) {τ1∧ τ2 ≤ t}= {τ1 ≤ t}∪{τ2 ≤ t} ∈Ft . Similar calculations hold for the max.

Examples 11.6

1. τ = c, where c is a constant, is a stopping time.

2. Let Xt the the solution to an SDE, and let E be a nonempty open or closed subset of Rd . Then

τ = inf{t ≥ 0 | Xt ∈ E} (20)

is a stopping time. (Set τ = ∞ for sample paths that never hit E.) For a proof, see [Evans, 2013,
Section 6.A].

This is called the first-passage time to set E.

3. If τE is a first-passage time, then τE ∧ T is a stopping time. This is a technique used to construct
stopping times with finite expected values.

4. The random variable
σ = sup{t ≥ 0 | Xt ∈ E},

representing the last time that Xt hits E, is not a stopping time. Heuristically, this is because {σ ≤ t}
depends on the whole future of the process, so cannot depend on only Xs for s ≤ t / cannot be Ft -
measurable.
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