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Lecture 1: Review of probability theory / Introduction to Stochastic
processes

Readings You should make sure you are comfortable with the following concepts from probability theory:

– probability space
– random variable
– expectation, integration with respect to a probability measure
– conditional probability and conditional expectation
– Law of Total Probability
– independence
– convergence of random variables (optional)
– Gaussian random variables (optional, but recommended)

These are reviewed briefly in sections 1.3–1.5 of these notes. Here are some additional references to help
review these concepts. These are suggested readings only; you should read whatever you find helpful to fill
in your background, and you are welcome to find other sources.

• Pavliotis, Appendix B, p.303-319. Skip B.5.1, and B.4 is optional.

• Lecture notes 1, 2 from 2014 (posted to NYU classes)

• Appendix A.4 from Durrett Probability: Theory and Examples, for more details on integration with
respect to a measure (posted to NYU classes)

• Koralov and Sinai (2010) Ch. 3 p. 37 for more details on integration with respect to a measure

• Koralov and Sinai (2010), Grimmett and Stirzaker (2001), Breiman (1992), and other probability
books, for more details on probability spaces / random variables

Full references are at the end of these notes.

1.1 Course plan

The course will be divided roughly equally into two parts:

Part I will focus on Stochastic processes
Part II will focus on Stochastic calculus.

Today we will give an overview of the topics we will cover, and briefly review some probability the-
ory.

1.2 Introduction: what is a stochastic process?

A stochastic process is a random function of a single variable, usually time. Specifically, let (Ω,F ,P) be a
probability space (see Section 1.3), and let T be an ordered set, called the index set.
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Definition. A stochastic process is a collection of random variables {Xt , t ∈ T}, such that for each t ∈ T ,
Xt is a random variable on (Ω,F ,P).

We will often write a stochastic process as (Xt)t∈T or simply Xt , when it is clear from the context what the
index set is and that we refer to the process, not a particular random variable.

Definition. When the index set is countable the process is called discrete-time. Examples include T = Z+,
T = {0,1, . . . ,N}, etc. When the index set contains an interval of R the process is called continuous-time.
Examples include T = R, T = [a,b], etc. An index set may also be a mixture of continuous and discrete
parts.

To highlight its two arguments, a stochastic process may be written as X(t,ω) or Xt(ω) or X(t)(ω), where
t ∈ T and ω ∈Ω.

We can think of a stochastic process in two ways:

(1) A parameterized family of random variables, given by the function t→ Xt(ω).
At each fixed t, we have a collection of random variables.

(2) A probability distribution on path space, given by the function ω → Xt(ω).
Each realization of the randomness, ω ∈Ω, gives a function of t ∈ T . Events are sets of paths, e.g. “all
paths that pass through [x,x+h] at time t0”, “all paths whose maximum value is bigger than M”, etc.
We cannot construct a probability “density” on this space, because the space is infinite-dimensional.
However, we can still talk about probabilities of events.

Here are some examples of realizations of stochastic processes:

Stochastic processes are used as models for a wide range of phenomena. Examples include:

– velocity of a particle in a smooth chaotic flow
– position of grain of pollen in a glass of water
– mean temperature of the planet
– price of a stock
– number of bees in a bee hive
– # of molecules in the reactant state of a chemical reaction
– bond angles of a folding protein
– randomly perturbed harmonic oscillator (swingset)
– size of a self-assembling viral capsid
– uncertainty in a weather prediction, depending on days in the future
– etc. You can think of many more.

Many of these examples are not inherently random. For example, we could in principle write down the
Navier-Stokes equations describing the flow of a turbulent fluid, and solve them to very high precision to
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obtain the velocity at each location in the fluid. But, even for deterministic phenomena, it still makes sense
to model them stochastically in many situations. There are several reasons for this:

– They could be very hard or impossible, to simulate to high enough precision.
– Even if we can simulate them, that doesn’t necessarily give us useful information. For example,

suppose we know where every atom is in a river, at every point in time. What have we learnt about
the river? It is often more helpful to understand patterns, or large-scale, average, emergent behaviour,
which is often best described statistically.

– The equations may be chaotic, i.e. very sensitive to small perturbations. If we don’t know the exact
initial condition then the uncertainty in the solution can be modelled stochastically.

– Often stochastic models are much more tractable, analytically and numerically, than their deterministic
counterparts, so it can be useful to approximate a deterministic system with a stochastic one.

– Some systems are inherently stochastic, like quantum mechanics, or uncertainty (if you are a Bayesian.)

Note that “stochastic” 6= “unstructured”. A stochastic process can have a lot of structure. Our goal in this
course is to understand and quantify this structure. We will be interested both in what we can say about the
process analytically, and also how we can simulate it.

We will study several kinds of stochastic processes:

• Markov chains.
We will spend some time studying Markov chains, both discrete-time and continuous-time. These are
widely used as models, and additionally they are important for this course because many of the ideas
used to understand Markov chains can be directly generalized to study diffusion processes (see below.)
Also, one of the century’s most powerful algorithms, Markov Chain Monte Carlo, is based on Markov
chains, and we will study this in the third lecture. We will not study Markov chains exhaustively (you
could take a whole course on them), but rather focus on ideas that we will see later in the course when
we study stochastic differential equations.

• Gaussian processes
These are models for a wide range of phenomena, even smooth ones, such as velocities or waves in
a fluid, the height of topography, etc. They are studied because they have many statistical proper-
ties which are analytically tractable, and because they are expected to occur generically whenever a
process is the result of a superposition of random effects, because of the Central Limit Theorem.

• Stationary processes
Stationary processes are (roughly) those whose statistics do not change with time. They are studied
when one is interested in understanding statistical “equilibrium,” or steady-state. Stationary Gaussian
processes are studied particularly widely and are easy to simulate. We will look at the stochastic ana-
logue of the Fourier transform, and you will learn how to calculate the Fourier transform of functions
which do not even live in L1!

• Brownian motion
This is perhaps the most famous stochastic process. It was originally invented to model the motion of
pollen grains, but now the basis of Stochastic Calculus.

• Diffusion processes
These are processes that are solutions to a stochastic differential equation, a stochastic analogue of an
ordinary differential equation. They are our focus in Part II of the course. Specifically, we we study:
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– How can we make sense of an equation with randomness in it? For example, how could we make
sense of this equation:

dx
dt︸︷︷︸

position of
particle in

a fluid

= u(x, t)︸ ︷︷ ︸
velocity of

fluid

+ η(t)︸︷︷︸
noise term,

e.g. unresolved velocity

.

or this one:
dN
dt︸︷︷︸

rate of change
of population

=
(

a(t)︸︷︷︸
average
growth

rate

+η(t)︸︷︷︸
noise

)
N(t)︸︷︷︸

population
size

.

Usually we want the noise term to be “as random as possible,” say completely independent from
timestep to timestep. It turns out this means we must choose the noise to be the “derivative” of
Brownian motion, and furthermore, that the Riemann integral that we usually use for defining
solutions to ODEs, is no longer well-defined. So, we will start with the fundamental issue
of defining a new kind of integral, and then show this new integral gives rise to new rules of
calculus, for example, the chain rule will change.

– How can we solve these equations? Both analytically, and also numerically. For the latter, how
can we measure how “close” we are to the true solution? We will see that adding randomness,
also adds many more ways of measuring “closeness”.

– How can we solve for statistical properties of the solution, such as its probability density at some
time, or the average time it takes to reach a boundary? We can answer questions like these by
solving elliptic PDEs. We will spend a fair amount of time studying the link between diffusion
processes and PDEs, since from the PDEs we can use an arsenal of applied math techniques to
make approximations when we can’t solve equations exactly.

• Detailed balance
Throughout the course, we will pay attention to whether the processes we study are physically rea-
sonable, i.e. whether they satisfy a condition know as detailed balance, when appropriate. Roughly,
we know that the laws of physics look “the same” forwards and backwards in time, so our stochastic
models should too.

This list is certainly not exhaustive. In particular, we will not study jump processes, point processes, or
Levy processes, although these processes arise in many modelling situations. However, after this course you
should have the tools to learn about these processes on your own.

The approach in this course will be to study these objects from an applied math perspective. This means
that we will focus on learning tools to solve concrete problems, on issues that are important in physically-
motivated problems, and on simulation techniques. It also means that we won’t necessarily prove every
statement we make. We will be rigorous when it makes sense to be, and doesn’t detract too much from
studying typical versions of these objects. However, we won’t always prove the mathematical objects we
study actually exist, we won’t worry about pathological cases that don’t arise in applications, and we will
assume all functions are as smooth as is necessary to perform the calculations we need. We will avoid mea-
sure theory, and functional analysis, as much as possible, but be warned that to make these notes rigorous,
you could spend an entire course studying the subtle details that we will gloss over.
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1.3 A brief review of some probability theory

Definition. A probability space is a triple (Ω,F ,P), where

1. Ω is the sample space, i.e. the set of all possible outcomes. Each element ω ∈Ω is a sample point. A
subset A⊂Ω is an event.

2. F is a σ -field of subsets of Ω, i.e. it satisfies1

(a) Ω ∈F , /0 ∈F ;
(b) A ∈F ⇒ Ac ∈F ;
(c) A1,A2, . . . ∈F ⇒∪∞

n=1An ∈F .

3. P is a probability measure, i.e. a set function which satisfies

(a) P( /0) = 0, P(Ω) = 1;
(b) If A1,A2, . . . are pairwise disjoint (Ai∩A j = /0 if i 6= j), then P(∪∞

n=1An) = ∑
∞
n=1 P(An).

We won’t worry too much about F in this course; we’ll assume it allows us to speak about what we want,
which is almost always true in applications.

Examples

1. Toss a fair coin n times. Then

Ω = {HH. . . H, HH. . . ,T,. . . ,TT. . . T}= {H,T}n = all strings of H,T of length n.

F = all subsets of Ω

P(A) =
|A|
2n .

For example, for n = 4, we would have P({HHHT,HHTH,HHTT}) = 3/16.

2. Spin a top, and measure its angle with North when it falls. Then

Ω = [0,2π)

F = Borel sets∩ [0,2π)

P(A) =
µ(A)
2π

, where µ = Lebesgue measure, i.e. µ([a,b]) = b−a. .

Definition. A random variable is a function X : Ω→ S⊂R such that X is F -measurable,2 i.e. X−1(B)∈F
for all Borel sets B⊂ R. The set of possible values S is called the state space.

Remark. A random variable X induces a probability measure µ on R, given by

µ(B) = P(X ∈ B) = P(X−1(B)).

The proof is straightforward and is an ELFS.3

1 If you don’t know what a σ -field is, then don’t worry about this; it is included merely for completeness. In applications, you can
think of F as the set of all events that you might possibly dream of asking about.

2Again, if you haven’t seen this before it doesn’t matter.
3Exercise Left For Student.
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Because of this remark, we often just work with random variables and the measure they induce, and forget
about the probability space underlying them.

Definition. The distribution function or cumulative distribution function of a random variable X is the
function F : R→ [0,1] given by F(x) = P(X ≤ x).

Remark. Recall that a distribution function satisfies (i) limx→−∞ F(x) = 0, limx→∞ F(x) = 1, (ii) F(x) is
monotonically increasing, and (iii) F(x) is right-continuous, i.e. limh→0 F(x+h) = F(x).

Definition. X is discrete if it takes values in some countable subset S = {x1,x2, . . .} of R. A discrete random
variable has a probability mass function (pmf) f : R→ [0,1] given by f (x) = P(X = x). We can calculate
probabilities of events A⊂ S as P(X ∈ A) = ∑xi∈A f (xi).

Definition. X is continuous if there is an integrable function f : R→ [0,∞) such that F(x) =
∫ x
−∞

f (u)du. If
this is the case, then f is called the probability density function (pdf) of X . We can calculate probabilities of
events as P(X ∈ A) =

∫
A f (u)du.

Remark. Not all random variables are continuous or discrete. They can be a mixture, or they can have
a singular part, as for the Cantor measure. The full classification is given by Lebesgue’s Decomposition
Theorem.

Definition. The expectation of a random variable X is defined as

EX =
∫

Ω

X(ω)P(dω) =
∫
R

x dF(x) =
{ ∫

R x f (x)dx X is continuous
∑x∈S x f (x) X is discrete

(1)

This definition extends naturally to functions of X as Eh(X) =
∫

h(x)dF(x).

Note that the definition above uses the notation
∫

h(x)dF(x) to represent both a continuous integral and a
discrete sum. This notation is convenient because then we don’t need to worry about whether the random
variable under consideration is continuous or discrete. If you are not familiar with this kind of integral, you
should review Section 1.5 and the references within.

Definition. The variance of X is

Var(X)≡ E(X−EX)2 = EX2− (EX)2.

These definitions extend naturally to collections of random variables, as we summarize briefly below.

Definition. X = (X1, . . . ,Xn)
t ∈Rn in a random vector or vector-valued random variable if each component

is a random variable. Then we define

(i) The mean, EX = (EX1, . . . ,EXn)
t .

(ii) The covariance matrix, cov(X ,X) = E(X−EX)(X−EX)t .

Remark. The covariance is a matrix, with components cov(X ,X)i j = cov(Xi,X j) = E(Xi−EXi)(X j−EX j)
t .

This is just the covariance between the random variables Xi,X j. For example, if X = (X1,X2)
t , then

B = cov(X ,X) =

(
var(X1) cov(X1,X2)

cov(X1,X2) var(X2)

)
.

Clearly the covariance matrix B is positive semi-definite (ELFS), a property we will exploit heavily in lec-
tures to come.
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Definition. The joint distribution function is F(x1, . . . ,xn) = P(X1 ≤ x1, . . . ,Xn ≤ xn). A continuous vector-
valued random variable has a probability density function (pdf) f (x1, . . . ,xn) which is such that P(X ∈ A) =∫

A f (x1, . . . ,xn)dx, and a discrete vector-valued random variable has a probability mass function (pmf), de-
fined in a similar way. Sometimes these are called joint pdfs or joint pmfs, to emphasize that they describe
the distribution of several random variables jointly.

Definition. Given a continuous random vector X = (X1, . . . ,Xn), the marginal pdf of a component Xi is

fXi(xi) =
∫

f (x1, . . . ,xn)dx1 · · ·dxi−1dxi+1 · · ·dxn .

That is, we integrate the joint pdf over all variables except the variable of interest. A similar definition holds
for the marginal pmf of a discrete random vector, with the integral replaced by a sum.

Important questions to ask about random variables are about independence, and also about conditional prob-
abilities.

Definition. Two events A,B ∈ F are independent if P(A∩B) = P(A)P(B). Two random variables X ,Y
are independent if, for all Borel sets A,B, the events X−1(A) and Y−1(B) are independent, i.e. P(X−1(A)∩
Y−1(B)) = P(X−1(A))P(Y−1(B)). A collection of random variables X1, . . . ,Xn is independent if for any
Borel sets B j, P

(
∩n

j=1 X−1
j (B j)

)
= ∏

n
j=1 P(X−1

j (B j)).

Remark. Continuous or discrete random variables X ,Y are independent iff the joint pdf or pmf factors, as
f (x,y) = fX (x) fY (y). A similar statement is true for a larger collection of random variables.

Definition. Given events A,B, the conditional probability of A given B is

P(A|B)≡ P(A∩B)
P(B)

. (2)

Remark. Events A,B are independent iff P(A|B) = P(A).

A very useful theorem is the following:

Law of Total Probability (LOTP). Let B1, . . . ,Bk be a sequence of events that partition the sample space:
Bi are disjoint and their union is Ω. Then, for any event A,

P(A) =
k

∑
i=1

P(A∩Bi) =
k

∑
i=1

P(A|Bi)P(Bi) . (3)

Example (Dobrow (2016) p.11) According to the Howard Hughes Medical Institute, about 7% of men and
0.4% of women are colorblind – either cannot distinguish red from green or see red and green differently
from most people. In the United States, about 49% of the population is male and 51% female (this data
simplifies by ignoring other gender categories). A person is selected at random. What is the probability they
are colorblind?

Solution Let C, M, F denote the events that a random person is colorblind, male, and female respectively.
By the LOTP,

P(C) = P(C|M)P(M)+P(C|F)P(F)

= (0.07)(0.49)+(0.004)(0.51) = 0.03634.
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We will use various other versions of conditional probability. Often we will need to condition on the value of
a random variable, for example as P(Y ∈ A|X = x) where A⊂ S is some event in the state space. When X is
discrete this is not a problem as we can simply define the conditional probability mass function to be

f (y|x)≡ P(Y = y∩X = x)
P(X = x)

=
f (x,y)
fX (x)

, (4)

for all x such that P(X = x) 6= 0, and define it to be 0 otherwise. Here f (x,y) is the joint pmf, and fX (x) =
∑y f (x,y) is the marginal pmf of X . We can then calculate the desired conditional probability using f (y|x)
as the pmf.

For a continuous random variable X this is a problem because P(X = x) = 0 for all x. However, we can
define the conditional density to be

f (y|x) = f (x,y)
fX (x)

, (5)

where fX (x) =
∫

f (x,y)dy is the marginal density of X . This definition is equivalent to (4) in a limiting
sense, if we take an appropriate decreasing sequence of set that shrink to the sets {X = x}, {Y = y}. For
example, let us define Bn = {x ≤ X ≤ x+ hn}, Cn = {y ≤ Y ≤ y+ hn}, where hn→ 0 as n→ ∞. Then the
conditional probability P(Y ∈Cn|X ∈ Bn) approaches (5) as n→ ∞. We can then use f (y|x) as a pdf when
calculating probabilities of the form P(Y ∈ A|X = x).

One must be careful when performing this limiting procedure as not all sequences of shrinking sets will give
the same answer. To be fully rigorous we should condition on a σ -algebra, not a random variable. That
is, we need to define the conditional expectation E(X |G ) where G is a σ -algebra. Then, we can define the
random variable E(Y |X) to be the random variable one obtains by conditioning on the σ -algebra generated
by X . This is beyond the scope of this course so we will not worry about these issues, but please talk to the
instructor if you would like to learn more about the possible pathologies and how to fix them.

1.4 Some useful distributions

You should be familiar with all of these distributions.

Uniform on [a,b] (continuous)

f (x) =
1

b−a
1[a,b](x), F(x) =


0 x≤ a
b−a

x a≤ b≤ x
1 x > b

You can also define a uniform distribution on a discrete state space, in a similar way.

Bernoulli distribution, parameter p (discrete)

A Bernoulli random variable is like the result of a coin toss which comes up heads with probability p (a
“success”), and tails with probability 1− p (“fail”.)

f (0) = 1− p, f (1) = p, EX = p, Var(X) = p(1− p).
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Binomial distribution, parameters n, p (discrete)

This gives the probability of getting a certain number of heads in n coin tosses with parameter p, i.e. the
probability of each number of successes in a sequence of n Bernoulli trials.

f (k) =
(

n
k

)
pk(1− p)n−k, k = 0,1, . . . ,n. EX = np, Var(X) = np(1− p).

Poisson distribution, parameter λ (discrete)

This models the number of events that occur in an interval of time, when the events occur completely
independently of each other. E.g., the number of radioactive atoms that decay in an hour, the number of
meteorites that hit the earth in a millenium, the number of deaths by horse kicks per year in the Prussian
army, etc.

f (k) =
λ ke−λ

k!
, k = 0,1,2, . . . . EX = λ , Var(X) = λ .

Exponential distribution, parameter λ (continuous)

Often used to model the waiting time between events that occur independently of each other, e.g. the time
between which two atoms decay radioactively.

f (x) = λe−λx, x≥ 0. EX = λ , Var(X) = λ .

The exponential distribution is the only continuous distribution which describes a random variable X that is
memoryless: P(X > s+ t|X > t) = P(X > s) for all s, t > 0.

Normal distribution, parameters µ , σ (continuous)

Also called the Gaussian distribution, or Bell curve. This is canonical because it occurs whenever there is a
sum of a large number of (roughly) independent random variables, by the Central Limit Theorem.

f (x) =
1√

2πσ2
e−

1
2σ2 (x−µ)2

, x ∈ R. EX = µ, Var(X) = σ
2.

1.5 Integration with respect to to a measure / Expectation

We will occasionally need to integrate a function with respect to a measure. Here is a brief review of how to
define such an integral. This follows Appendix A.4 from Durrett (2005); see this reference for more details,
including proofs that the integral is well-defined.

Let (Ω,F ,µ) be a measure space with (σ -finite) measure µ , and let f : Ω→ R be a measurable function
defined on the sample space. We wish to define the integral∫

f dµ , (6)
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for a suitable class of measurable functions f . (Sometimes we write this as
∫

f (x)µ(dx).) Sometimes Ω is a
sample space and µ is a probability measure, in which case

∫
f dµ = E f (recall (1)).

Let’s first consider some examples of measures µ . For all of the below, we will assume that Ω = R and F
is the Borel sets.

• µ is the Lebesgue measure, i.e. dµ(x) = dx. Then, the construction below is exactly the Lebesgue
integral, and we obtain ∫

f dµ =
∫

f (x)dx

where the second integral is the Lebesgue integral.

• µ is absolutely continuous with respect to the Lebesgue measure. Then we can write either dµ(x) =
g(x)dx for some integrable function g (specifically, g ∈ L1(R)), or dµ(x) = dG(x) where G(x) =∫ x gdx is the antiderivative of g. We will often use this notation when G is the cumulative distribution
function of a probability. The integral becomes∫

f dµ =
∫

f dG =
∫

f (x)g(x)dx .

• µ is supported on a countable set of points {x1,x2, . . .}, so we can formally write µ(dx) = b1δ (x1)dx+
b2δ (x2)dx+ · · · , for bi ∈ R+. The integral is∫

f dµ = b1 f (x1)+b2 f (x2)+ · · · .

In general we will often use this construction when we have a cumulative distribution function of a proba-
bility G (recall (1)), so that µ([a,b]) = G(b)−G(a). We write dµ(x) = dG(x). If G is differentiable, then
dµ(x) = G′(x)dx. The integral is ∫

f dµ =
∫

f dG = E f .

A rough definition of the integral in (6) comes from approximating it by the discrete sum over a partition
x0,x1, . . . ,xN as ∫

R
x dF(x) ≈ ∑

i
xi
(
F(xi+1)−F(xi)

)
∆xi, ∆xi = xi+1− xi.

To properly define the integral in (6) there are four steps, outlined below.

1. Let a simple function be a function of the form φ(x) = ∑
n
i=1 ai1Ai(x), where ai ∈ R, and Ai ⊂ Ω are

disjoint sets that are measurable with respect to F , and such that µ(Ai)< ∞. The function 1A(x) is an
indicator function, i.e. 1A(x) = 1 if x ∈ A, 1A(x) = 0 if x /∈ A. Here is an example:
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Define the integral for a simple function to be∫
φ(x)dµ(x) =

n

∑
i=1

aiµ(Ai) .

One can verify the integral above satisfies the following properties (see Durrett (2005) for the proofs):

(i) If φ ≥ 0 a.e.4 then
∫

φdµ ≥ 0.
(ii) For any a ∈ R,

∫
aφdµ = a ∈ φdµ .

(iii)
∫
(φ +ψ)dµ =

∫
φdµ +

∫
ψdµ .

(iv) If φ ≤ ψ a.e., then
∫

φdµ ≤
∫

ψdµ .
(v) If φ = ψ a.e., then

∫
φdµ =

∫
ψdµ .

(vi) |
∫

φdµ| ≤
∫
|φ |dµ .

2. Let f be a bounded function that is non-zero only on a set E ⊂Ω with µ(E)< ∞. Define∫
f dµ = sup

φ≤ f
φsimple

∫
φdµ = inf

ψ≥ f
ψsimple

∫
ψdµ .

To show this is well-defined, one must show the sup and inf are equal. To do this one uses the
properties (i)–(vi) above. Then, one can show that properties (i)–(vi) still hold, for bounded functions.

3. Let f ≥ 0. Define ∫
f dµ = sup{

∫
hdµ : 0≤ h≤ f , h is bounded} .

This is well-defined already; we don’t need to check anything. One can then show properties (i)–(vi)
hold for nonnegative functions.

4. Suppose
∫
| f |dµ < ∞. Let

f+(x) = f (x)∨0 and f−(x) = (− f (x))∨0 ,

where a∨b = max(a,b). Then f (x) = f+(x)− f−(x), and | f (x)|= f+(x)+ f−(x). Define∫
f dµ =

∫
f+dµ−

∫
f−dµ .

This is well-defined, since f+, f− ≤ | f |, and by property (iv). One can then show properties (i)–(vi)
hold for integrable functions.
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