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Lecture 2: Markov Chains (I)

Readings Strongly recommended:

• Grimmett and Stirzaker (2001) 6.1, 6.4-6.6

Optional:

• Hayes (2013) for a lively history and gentle introduction to Markov chains.
• Norris (1997), for a canonical reference on Markov chains.
• Koralov and Sinai (2010) 5.1-5.5, pp.67-78 (more mathematical)

We will begin by discussing Markov chains. In Lectures 2 & 3 we will discuss discrete-time Markov chains,
and Lecture 4 will introduce continuous-time Markov chains.

2.1 Setup and definitions

We consider a stochastic process (Xt)t∈T with a discrete (finite or countable) state space S, which depends
on discrete time T = {0,1,2, . . .}. We sometimes refer to the process as Xt when it is clear that we mean
the process, not the random variable. Since S is countable, we may index it with the positive or nonnegative
integers, as in S = {1,2,3, . . .}.

Definition. The process Xt = X0,X1,X2, . . . is a discrete-time Markov chain if it satisfies the Markov prop-
erty:

P(Xn+1 = s|X0 = x0,X1 = x1, . . . ,Xn = xn) = P(Xn+1 = s|Xn = xn) (1)

or all x0,xi, . . . ,s ∈ S and for all n≥ 0.

Definition. The quantities P(Xn+1 = j|Xn = i) in (1) are called the transition probabilities. It is convenient
to write them as

Pi j(n) = P(Xn+1 = j|Xn = i) . (2)

Definition. The transition matrix1 at time n is the matrix P(n) = (Pi j(n)), i.e. the (i, j)th element of P(n) is
Pi j(n).

Notice that the transition matrix has the following properties

(i) Pi j(n)≥ 0 ∀i, j (the entries are non-negative)

(ii) ∑ j Pi j(n) = 1 ∀i (the rows sum to 1)

Any matrix that satisfies (i), (ii) above is called a stochastic matrix. Hence, the transition matrix is a stochas-
tic matrix.

1 We call P a matrix even if |S|= ∞. If the state space is infinite, then we interpret products such as PQ to mean infinite matrix with
entries given by the infinite sum

(PQ)i j = ∑
k

PikQk j .
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Remark. Note that a “stochastic matrix” is not the same thing as a “random matrix”! Usually “random” can
be substituted for “stochastic” but not here. A random matrix is a matrix whose entries are random variables.
A stochastic matrix has deterministic entries.

Exercise 2.1. Show that the transition probabilities satisfy properties (i), (ii) above.

Exercise 2.2. Show that if Xt is a discrete-time Markov chain, then

P(Xn = s|X0 = x0,X1 = x1, . . . ,Xm = xm) = P(Xn = s|Xm = xm) ,

for any 0≤m < n. That is, the probabilities at the current time, depend only on the most recent known state
in the past, even if it’s not exactly one step before.

Definition. The Markov chain Xt is time-homogeneous if P(Xn+1 = j|Xn = i) = P(X1 = j|X0 = i), i.e. the
transition probabilities do not depend on time n. If this is the case, we write Pi j = P(X1 = j|X0 = i) for
the probability to go from i to j in one step, and P = (Pi j) for the transition matrix. Otherwise, it is time-
inhomogeneous.

We will mainly consider time-homogeneous Markov chains in this course, though we will occasionally
remark on how some results may be generalized to the time-inhomogeneous case.

Examples 2.1

1. Weather model. Let Xn be the state of the weather on day n in New York, which we assume is either
rainy or sunny. We could use a Markov chain as a crude model for how the weather evolves day-by-
day. The state space is S = {rain,sun}. One transition matrix might be

P =

sun rain( )
sun 0.8 0.2
rain 0.4 0.6

This says that if it is sunny today, then the chance it will be sunny tomorrow is 0.8, whereas if it is
rainy today, then the chance it will be sunny tomorrow is 0.4.

Some questions you might be interested in include: if it is sunny today, what is the probability that it
is sunny in two days? Or, what is the long-run fraction of sunny days in New York?

2. Coin flipping. Another two-state Markov chain is based on coin flips. Usually coin flips are used as the
canonical example of independent Bernoulli trials. However, Diaconis et al. (2007) studied sequences
of coin tosses empirically, and found that outcomes in a sequence of coin tosses are not independent.
Rather, they are well-modelled by a Markov chain with the following transition probabilities:

P =

heads tails( )
heads 0.51 0.49
tails 0.49 0.51

This shows that if you throw a Heads on your first toss, there is a very slightly higher chance of
throwing heads on your second, and similarly for Tails.
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3. Random walk on the line. Suppose we perform a walk on the integers, starting at some integer k. At
each step we move to one unit right with probability p or one unit left with probability 1− p. The
position of the random walker is a Markov chain, which can be constructed explicitly as

Xn =
n

∑
j=1

ξ j, ξ j =

{
+1 with probability p
−1 with probability 1− p

, ξi i.i.d.

The transition probabilities are

Pi,i+1 = p, Pi,i−1 = 1− p, Pi, j = 0 ( j 6= i±1).

The state space is S = {. . . ,−1,0,1, . . .}, which is countably infinite.

One canonical problem this models is a gambling game. A gambler starts with k$, and at each game
she2 either wins 1$ with probability p, or loses 1$ with probability 1− p. We might be interested
in questions such as: what is her average earnings after n games? What is the probability that she
wins 20$, before she goes broke? On average, how long does it take for her to go broke? We’ll show
the phenomenon called the Gambler’s Ruin, which says that even for a fair game with p = 1/2, the
gambler will go broke with probability 1.

4. Independent, identically distribute (i.i.d.) random variables. A sequence of i.i.d. random variables is
a Markov chain, albeit a somewhat trivial one. Suppose we have a discrete random variable X taking
values in S = {1,2, . . . ,k} with probability P(X = i) = pi. If we generate an i.i.d. sequence X0,X1, . . .
of random variables with this probability mass function, then it is a Markov chain with transition
matrix

P =

1 2 · · · k


1 p1 p2 · · · pk
2 p1 p2 · · · pk
...

...
...

...
k p1 p2 · · · pk

5. Random walk on a graph (undirected, unweighted). Suppose we have a graph (a set of vertices and
edge connecting them.) We can perform a random walk on the graph as follows: if we are at node i,
choose an edge uniformly at random from the set of edges leading out of the node, and move along
the edge to the node at the edge. Then repeat. If there are N nodes labelled by consecutive integers
then this is a Markov chain on state space S = {1,2, . . . ,N}.

Here is are a couple of examples:

2In these notes, I will follow the convention of using a female pronoun for even-numbered lectures, and a male pronoun for odd-
numbered lectures.
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The corresponding transition matrices are:

P =

1 2 3 4


1 0 1
2

1
2 0

2 1
3

1
3

1
3 0

3 1
3

1
3 0 1

3
4 0 0 1 0

P =

1 2 3 4 5


1 0 1
2 0 0 1

2
2 1

2 0 1
2 0 0

3 0 1
2 0 1

2 0
4 0 0 1

2 0 1
2

5 1
2 0 0 0 1

2

6. Random walk on a graph (weighted, directed).

Every Markov chain can be represented as a random walk on a weighted, directed graph. A weighted
graph has a positive real number assigned to each edge, called the edge’s “weight,” and the random
walker chooses an edge from the set of available edges, in proportion to each edge’s weight. A directed
graph assigns each edge a direction, and a walker can only move in that direction. Here is an example:

A

B C

2

1

4

2
1

3

The corresponding transition matrix is:

P =

A B C A 0 1 0
B 1

5 0 4
5

C 3
6

2
6

1
6

Such a directed graph forms the foundation for Google’s Page Rank algorithm, which has revolu-
tionized internet searches. Page Rank constructs a directed graph of the internet, where nodes are
webpages and there is a directed edge from webpage A to webpage B if A contains a link to B. Page
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Rank supposes an internet surfer clicks on links at random, and ranks pages according to the long-time
average fraction of time that the surfer spends on each page.

7. Autoregressive model of order k (AR(k)). Given constants a1, . . . ,ak ∈ R, let Yn = a1Yn−1 +a2Yn−2 +
. . .+akYn−k +Wn, where Wn are i.i.d. random variables.

This process is not a Markov chain, because it depends on the past k timesteps. However, we can form
a Markov chain by defining Xn = (Yn,Yn−1, . . . ,Yn−k+1)

T . Then

Xn = AXn−1 +Wn,

where A =


a1 a2 · · · ak
1 0 · · · 0
0 1 · · · 0
· · · · · · · · · 1 0

, and Wn = (Wn,0, . . . ,0)T . Clear the vector-valued process Xn

is a Markov chain.

8. Card shuffling. Shuffling a pack of cards can be modeled as a Markov chain. The state space S is
the set of permutations of {1,2, . . . ,52}. A shuffle takes one permutation σ ∈ S, and outputs another
permutation σ ′ ∈ S with some probability.

A simple model is the top-to-random shuffle: at each step, take a card from the top of the deck, and
put it back in at a random location. The transition matrix has elements

P(X1 = σ
′|X0 = σ) =


1
52 if σ ′ is obtained by taking an item in σ

and moving it to the top,
0 otherwise.

One can also model more complicated shuffles, such as the riffle shuffle. While the state space is
enormous (|S| = 52!) so you would not want to write down the whole transition matrix, one can still
analyze these models, and study how many shuffles are needed to make the deck “close to random”.
For example, it takes seven riffle shuffles to get close to random, but it takes 11 or 12 to get so close
that a gambler in a casino cannot exploit the deviations from randomness to win a typical game. See
the online essay Austin (line) for an accessible introduction to these ideas, and Aldous and Diaconis
(1986) for the mathematical proofs. (I first learned about the critical 7 riffle shuffles in the beautiful
Proofs from the Book, by Aigner and Ziegler.)

9. Markov chains to approximate continuous processes. Sometimes a continuous stochastic process can
be effectively modelled as a discrete one. Here is an example, from Rogers et al. (2013), where the
authors measure the separation between two particles coated with velcro-like DNA strands:
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The separation alternates between hovering near zero, and varying rapidly above zero. The authors
found it effective to model the states of the particles as a two-state Markov chain, with states “bound”
and “unbound,” depending on whether the distance between the particles was small or large. They
then constructed a theory for the transition rates between these states, based on their knowledge of the
physics of the system.

Note that such a discrete approximation of a continuous process is rarely truely Markovian, but can
nevertheless satisfy the Markov property approximately depending on the nature of the continuous
process and the sets used in the discrete approximation.

10. Language, and history of the Markov chain. Markov chains were first invented by Andrei Markov to
analyze the distribution of letters in Russian poetry (Hayes (2013)).3 He meticulously constructed a
list of the frequencies of vowel↔consonant pairs in the first 20,000 letters of Pushkin’s poem-novel
Eugene Onegin, and constructed a transition matrix from this data. His transition matrix was:

P =

vowel consonant( )
vowel 0.175 0.825

consonant 0.526 0.474

He showed that from this matrix one can calculate the average number of vowels and consonants in
the whole poem. When he realized how powerful this idea was, he spent several years developing
tools to analyze the properties of such random processes with memory.

Just for fun, here’s an example (from Hayes (2013)) based on Markov’s original work, to show how
Markov chains can be used to generate realistic-looking text. In each of these excerpts, a Markov chain
was constructed by considering the frequencies of strings of k letters from the English translation of
the novel Eugene Onegin by Pushkin, for k = 1,3,5,7, and was then run from a randomly-generated
initial condition. You can see that when k = 3, there are English-looking syllables, when k = 5 there
are English-looking words, and when k = 7 the words themselves almost fit together coherently.

3Markov actually invented Markov chains to disprove a colleague’s statement that the Law of Large Numbers can only hold for
independent sequences of random variables, and he illustrated his new ideas on this vowel/consonant example.
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2.2 Forward and backward Kolmogorov equations

Example 2.2 Consider the gambler from Example 2.1(3). Suppose she has a 0.4 chance of winning each
game, and a 0.6 chance of losing, and if she goes broke, she stops playing (so she doesn’t go into debt). The
transition matrix describing how her money evolves is

P =

0 1 2 3 · · ·


0 1 0 0 0 · · ·
1 0.6 0 0.4 0 · · ·
2 0 0.6 0 0.4 · · ·
3 0 0 0.6 0 · · ·
...

...
. . .

In this lecture we’ll answer questions such as: after playing n games, what is the probability she has gone
broke? What is the average amount of money she can expect to have after n games, or the variance of this
amount? If she plays for a very very long time (and has some probability of earning money each game if she
goes broke), what is the probability distribution of her earnings? How long does it take her, on average, to
go broke for the first time?

These questions can be answered using, respectively, the forward and backward Kolmogorov equations (this
section, Section 2.2), the limiting distribution and stationary distribution (Section 2.3), and the mean first
passage time (Section 2.4).
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In general, suppose we have a Markov chain with transition probabilities P(n), and let the probability distri-
bution at time n be α(n), as in

Xn ∼ α
(n) = (α

(n)
1 ,α

(n)
2 , . . .), where α

(n)
i = P(Xn = i) . (3)

Here α(n) is a row vector, not a column vector – this is a convention for discrete probability distributions,
which simplifies notation and makes it easier to generalize to continuous-state Markov processes. The
initial state of the chain X0 is also random variable with probability distribution α(0). We’ll consider how to
calculate α(n) from α(0), and also how to calculate E f (Xn), the expectation of a function of Xn. We do this for
a time-homogeneous Markov chain in Section 2.2.1, and extend these calculations to a time-inhomogeneous
chain in Section 2.2.2.

2.2.1 Time-homogeneous Markov chain

Suppose we have a time-homogeneous Markov chain, so that P(n) = P, and initial condition X0 = i. The
probability distribution of X1 is simply the ith row of P: P(X1 = j|X0 = i) = Pi j. At later times, we would
like to know the n-step transition probabilities P(n), defined by

P(n)
i j = P(Xn = j|X0 = i). (4)

For n = 2, we calculate

P(X2 = j|X0 = i) = ∑
k

P(X2 = j|X1 = k,X0 = i)P(X1 = k|X0 = i) Law of Total Probability

= ∑
k

P(X2 = j|X1 = k)P(X1 = k|X0 = i) Markov Property

= ∑
k

Pk jPik time-homogeneity

= (P2)i j

That is, the two-step transition matrix is P(2) = P2. This calculation illustrates a technique called first-step
analysis, where one conditions on the first step of the Markov chain and uses the Law of Total Probabil-
ity.

This calculation generalizes easily by induction:

Theorem. Let X0,X1, . . . be a time-homogeneous Markov chain with transition probabilities P. The n-step
transition probabilities are P(n) = Pn, i.e.

P(Xn = j|X0 = i) = (Pn)i j. (5)

To make the notation cleaner we will write Pn
i j = (Pn)i j. Note that Pn

i j does not equal (Pi j)
n.

Exercise 2.3. Prove this theorem, using a first-step analysis.

Example 2.3 Suppose the gambler in Example 2.2 starts with 2$. Find the probability she has 0$ after 3
games.

8



Miranda Holmes-Cerfon Applied Stochastic Analysis, Spring 2022

Solution. We start by calculating P3. We could do this by hand, but the calculations below use a computer.
To calculate P3 on a computer we truncate the transition matrix at the rows and columns corresponding to
5$, to obtain matrix P̃. Then P3 and P̃3 will differ only in rows 3 and higher, not the row we are interested
in. The 3-step transition probabilities are

P̃3 =

0 1 2 3 4 5


0 1 0 0 0 0 0
1 0.744 0 0.192 0 0.064 0
2 0.360 0.288 0 0.288 0 0.064
...

...
...

Therefore after 3 games the gambler’s money has probability distribution (0.360,0.288,0,0.288,0,0.064).
That is, the probability she has 0$ is 0.36, the probability she has 1$ is 0.288, etc. ./

From the n-step transition probabilities we can work out the probability distribution α(n) of Xn. We use
α
(n)
j = ∑i P(Xn = j|X0 = i)P(X0 = i) to obtain

α
(n) = α

(0)Pn . (6)

There is an evolution equation for α(n) that will be useful in more general situations.

Forward Kolmogorov Equation. (for a time-homogeneous, discrete-time Markov Chain)

α
(n+1) = α

(n)P. (7)

Proof.

α
(n+1)
j = ∑

i
P(Xn+1 = j|Xn = i)P(Xn = i) Law Of Total Probability

= ∑
i

Pi jα
(n)
i time-homogeneity and defn of α

(n).

Now consider what happens if we ask for the expected value of some function of the state of the Markov
chain, such as EX2

n , EX3
n , E|Xn|, etc. Can we solve derive a similar formula and evolution equation for this

quantity?

Let f : S → R be a function defined on state space, and let u(n) = (u(n)i )i∈S be a vector with compo-
nents

u(n)i = Ei f (Xn) = E[ f (Xn)|X0 = i]. (8)

You should think of u(n) as a column vector; again this is a convention whose convenience will become more
transparent later in the course. We can easily solve for u(n) using the n-step transition probabilities as

u(n)i = ∑
j

f ( j)|P(Xn = j|X0 = i)P(X0 = i) = ∑
j

u(0)j Pn
i j = (Pnu(0))i , (9)

9
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since u(0)j = f ( j). Hence,

u(n) = Pnu(0) . (10)

Also useful will be the equation for how u(n) evolves in time:

Backward Kolmogorov Equation. (for a time-homogeneous, discrete-time Markov Chain)

u(n+1) = Pu(n), u(0)i = f (i) ∀i ∈ S. (11)

Proof. One proof uses the formula above. Another, more generalizable, uses a first-step analysis:

u(n+1)
i = ∑

j
f ( j)P(Xn+1= j|X0 = i) definition of expectation

= ∑
j
∑
k

f ( j)P(Xn+1= j|X1=k,X0=i)P(X1=k|X0=i) LoTP

= ∑
j
∑
k

f ( j)P(Xn+1= j|X1=k)P(X1=k|X0=i) Markov property

= ∑
j
∑
k

f ( j)Pn
k jPik time-homogeneity

= ∑
k

∑
j

f ( j)Pn
k jPik switch order of summation

= ∑
k

u(n)(k)Pik definition of u(n)

= (Pu(n))i

We can switch the order of summation above, provided Ei| f (Xn)|< M < ∞ for each i and each n, since then
the double sum is absolutely convergent.

Example 2.4 Returning to the gambler in Example 2.2, calculate the gambler’s expected earnings after 3
games, assuming she starts with 2$.

Solution. We have that u(0) = (0,1,2,3, . . .)T , and calculate

u(3) = P3u(0) =


0

0.64
1.472

...

 ,

so the gambler’s expected earnings are u(3)2 = 1.472. ./

Remark. What is so backward about the backward equation? It gets its name from the fact that it can be used
to describe how conditional expectations propagate backwards in time. To see this, suppose that instead of
(8), which propagates the expectation of a function into the future, given a fixed starting point, we choose
a fixed time T and compute the expectation at that time, given an earlier, varying starting time. That is, for
each n≤ T , define a column vector v(n) with components

v(n)i = E[ f (XT )|Xn=i] . (12)

10
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Such a quantity is studied frequently in financial applications, where Xn may represent the price of a stock
at time n, f the value of an option to sell, T the time at which you decide (in advance) to sell a stock, and
quantities of the form (12) represent the expected payout, conditional on being in state i at time n. One is
interested in solving for v(0) and in finding the element which maximizes the expected payoff. One can show
that the vector v(n) evolves according to

v(n) = P(n)v(n+1), v(T )i = f (i) ∀i ∈ S. (13)

That is, you find v(n) by evolving it backwards in time – you are given a final condition at time T , and you
can solve for v(n) at all earlier times n≤ T . Note that the equation above holds even when the chain is time-
inhomogeneous. This same statement is not true for (11) – for a general Markov chain there is no backward
Kolmogorov equation that can be solved forward in time.

Exercise 2.4. Derive (13) for a time-inhomogeneous Markov chain, using a first-step analysis. (Another
derivation is in the next section.)

2.2.2 Time-Inhomogeneous Markov chains

The forward and backward Kolmogorov equations for a time-inhomogeneous Markov chain are derived from
the Chapman-Kolmogorov equations, a relationship satisfied by all Markov chains and Markov processes
more generally4:

Chapman-Kolmogorov Equation.

P(Xn = j|X0 = i) = ∑
k

P(Xn = j|Xm = k)P(Xm = k|X0 = i). (14)

Proof.

P(Xn = j|X0 = i) = ∑
k

P(Xn = j,Xm = k|X0 = i) Law of Total Probability

= ∑
k

P(Xn = j|Xm = k,X0 = i)P(Xm = k|X0 = i) ∵ P(A∩B|C) = P(A|B∩C)P(B|C)

= ∑
k

P(Xn = j|Xm = k)P(Xm = k|X0 = i). Markov property (see Ex.(2.2))

To use this relationship, define a function P( j, t|i,s) to be the transition probability to be in state j at time t,
given the system started in state i at time s, i.e.

P( j, t|i,s) = P(Xt = j|Xs = i). (15)

4Note that while all Markov processes satisfy a form of Chapman-Kolmogorov equations, from which many other equations can be
derived, not all processes which satisfy Chapman-Kolmogorov equations, are Markov processes. See Grimmett and Stirzaker (2001),
p.218 Example 14 for a counterexample.
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The forward Kolmogorov equation comes from considering how P( j, t|i,s) evolves in t, forward in time.
The Chapman-Kolmogorov equations imply that

P( j, t+1|i,s) = ∑
k

P(k, t|i,s)P( j, t+1|k, t). (16)

Then, since α(t) has components α
(t)
j = ∑i P( j, t|i,0)α(0)

i , we multiply (16) by α(0) on the left (contracting
it with index i) and let s = 0 to obtain

Forward Kolmogorov Equation. (general Markov chain)

α
(t+1)
j = ∑

k
α
(t)
k P( j, t+1|k, t) ⇔ α

(t+1) = α
(t)P(t) , (17)

where P(t) is the 1-step transition matrix at time t, i.e. (P(t))k j = P( j, t+1|k, t).

The backward Kolmogorov equation comes from considering how P( j, t|i,s) evolves in s, backward in time.
The Chapman-Kolmogorov equations imply that

P( j, t|i,s) = ∑
k

P( j, t|k,s+1)P(k,s+1|i,s). (18)

Now, let f : S→R, let T > 0 be a fixed time, and let u(s)i =E[ f (XT )|Xs = i] (recall (8),(12)). Notice that u(s)i =

∑k f (k)P(k,T |i,s), so multiplying (18) by the column vector ( f (1), f (2), . . .)T on the right (contracting it
with index j) and evaluating at t = T gives

Backward Kolmogorov Equation. (general Markov chain)

u(s)i = ∑
k

P(k,s+1|i,s)u(s+1)
k ⇔ u(s) = P(s)u(s+1) , (19)

where P(s) is the 1-step transition matrix at time s as above.

Remark. Equations (16), (18) for the evolution of the transition probabilities forward and backward in time,
are considered in some references to be the forward and backward Kolmogorov equations.

Exercise 2.5. Show that the product α(t)u(t) is constant, and equal to E f (XT ).

Solution. We have

α
(t)e(t) = ∑

k
α
(t)
k u(t)k = ∑

k
P(X(t) = k)E( f (XT )|Xt = k) = E f (XT ).

./

2.3 Long-time behaviour and stationary distribution

Suppose we take a Markov chain and let it run for a long time. What happens? Clearly the random variable
Xn does not generally converge to anything, because it is continually jumping around, but its probability
distribution might converge. Let’s look at some examples.

12
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Example 2.5 Consider the two-state weather model in Example 2.1(1). Suppose it is raining today. What is
the probability distribution for the weather in the future? Let’s calculate α(n) from (6), using α(0) = (0,1):

n P(sun) P(rain)
0 0 1
1 0.4000 0.6000
2 0.5600 0.4400
3 0.6240 0.3760
4 0.6496 0.3504
5 0.6598 0.3402
6 0.6639 0.3361
7 0.6656 0.3344
8 0.6662 0.3338
9 0.6665 0.3335

10 0.6666 0.3334
11 0.6666 0.3334
12 0.6667 0.3333
13 0.6667 0.3333
14 0.6667 0.3333

The probability distribution seems to converge. After 12 days, the distribution doesn’t change, to 4 digits.
You can check that the distribution it converges to does not depend on the initial condition. For example, if
we start with a sunny day, α(0) = (1,0), then α(10) = (0.6666,0.3334), α(11) = (0.6666,0.3334), etc.

Exercise 2.6. Work out the n-step transition probabilities for any initial condition analytically, and show they
converge to (2/3,1/3). (Hint: diagonalize the transition matrix.)

Does the probability always converge? Not necessarily. The following two examples illustrate situations
where it doesn’t converge.

Example 2.6 Consider a Markov chain on state space {0,1} with transition matrix

P =

(
0 1
1 0

)
.

Suppose the random walker starts at state 0. Its distribution at time n is:

n P(0) P(1)
0 1 0
1 0 1
2 1 0
3 0 1
4 1 0
...

...
...

Clearly the distribution doesn’t converge. Yet, if we start with initial distribution α(0) = (0.5,0.5), we obtain
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n P(0) P(1)
0 0.5 0.5
1 0.5 0.5
2 0.5 0.5
...

...
...

The distribution never changes!

Example 2.7 A simple symmetric random walk is a random walk on the integers with probability p = 1/2
to go left or right (see Example 2.1(3)). From the Binomial distribution, one can show that the transition
probabilities at time n are

Pn
i j =

{ (n
k

)( 1
2

)n
j = i+2k−n, k = 0,1, . . . ,n

0 o.w.

As n→ ∞, Pn
i j → 0. So Pn converges – but not to a probability distribution, rather to the function that is

identically zero. Here, the problem is that mass eventually escapes to infinity.

2.3.1 Limiting and stationary distributions

When does the distribution of a Markov chain converge? And when it does, what does it converge to, and
how can we find the limiting distribution? The answers are given by understanding the limiting distribution
and stationary distribution. We consider only time-homogeneous Markov chains.

Definition. Consider a time-homogeneous Markov chain with transition matrix P. A row vector λ is a
limiting distribution if λi ≥ 0, ∑ j λ j = 1 (so that λ is a probability distribution), and if, for every i,

lim
n→∞

(Pn)i j = λ j ∀ j ∈ S .

In other words,

Pn→


λ1 λ2 λ3 . . .
λ1 λ2 λ3 . . .
λ1 λ2 λ3 . . .
...

...
...

. . .

 as n→ ∞ .

As we saw in examples 2.6, 2.7, a limiting distribution doesn’t have to exist. If it does exist, it is unique, by
definition.

Exercise 2.7. Show that, if |S|< ∞, then λ is a limiting distribution if and only if limn→∞ α(0)Pn = λ for any
initial probability distribution α(0).

If |S| = ∞, then we could have that limn→∞ Pn exists, but is not a probability distribution. For example, for
the simple symmetric random walk in Example 2.7, limn→∞ Pn = (. . . ,0,0,0, . . .), however the zero vector
is not a probability distribution.5

5The problem is we can’t interchange a limit and sum in general: although ∑ j Pn
i j = 1, hence the limit as n→ ∞ is also 1, we have

limn→∞ ∑ j Pn
i j 6= ∑ j limn→∞ Pn

i j .
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What happens if we start a chain in a limiting distribution λ for a Markov chain with a finite state space?
Let’s calculate the distribution α(1) at the next step of the chain, starting from α(0) = λ . We have

α
(1)
j = (λP) j = ∑

k
( lim

n→∞
Pn

ik)Pk j = lim
n→∞

∑
k

Pn
ikPk j = lim

n→∞
Pn+1

i j = λ j.

We can interchange the sum and limit, because it’s a finite sum. Therefore if we start the chain in the limiting
distribution, its distribution remains there forever. This motivates the following definition:

Definition. Given a Markov chain with transition matrix P, a stationary distribution is a probability distri-
bution π which satisfies

π = πP ⇐⇒ π j = ∑
i

πiPi j ∀ j. (20)

A stationary distribution may also be called an invariant measure, invariant distribution, steady-state prob-
ability, equilibrium probability or equilibrium distribution (the latter two are from physics).

The stationary distribution is stationary in the following sense: if we start the chain in the stationary distri-
bution, X0 ∼ π , the distribution does not change: X1 ∼ π , X2 ∼ π , etc.

In applications we want to know the limiting distribution. We saw above that when |S| < ∞, a limiting
distribution is a stationary distribution, but the converse is not always true. Indeed, in Example 2.6, you can
calculate that a stationary distribution is π = (0.5,0.5), but this is not a limiting distribution.

Yes, the stationary distribution is easier to calculate than a limiting distribution: we can find it by solving a
linear system of equations. In fact, you can see that π is a left eigenvector of P corresponding to eigenvalue
1. Therefore we will restrict our focus to the stationary distribution. Some questions we might ask about π

include:

(i) Does it exist?
(ii) Is it unique?

(iii) When is it a limiting distribution, i.e. when does an arbitrary distribution converge to it?

This is the subject of a rich body of work on the limiting behaviour of Markov chains. In general there
are two broad approaches to answering such questions. One approach is probabilistic, using tools such
as recurrence times and coupling properties. Another approach uses linear algebra to study the transition
matrix, for Markov chains with a finite state space. We will survey some results using this second approach,
which should be more familiar to students from a range of applied backgrounds.

Exercise 2.8. (a) Solve for the stationary distribution for the gambler in the example at the beginning of
Section 2.2. (b) Solve again, but this time assume that if the gambler loses all her money, there is some small
probability 0.1 per game that she finds 1$ on the ground and can play again (if she doesn’t find money on
the ground, she doesn’t play that game).

Exercise 2.9. Calculate the eigenvalues and the eigenvectors of the transition matrices in Examples 2.5, 2.6.

2.3.2 Stationary distributions and linear algebra

Let’s focus on Markov chains with a finite state space, |S| = N < ∞, and ask what linear algebra tells us
about the stationary and limiting distributions associated with the transition matrix P.
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We know that P has an eigenvalue λ = 1, since the rows of P sum to 1 so we have

P


1
1
...
1

=


1
1
...
1

 ,

and therefore (1,1, . . . ,1)T is a right eigenvector. To ensure that the corresponding left eigenvector π is a
stationary distribution, we need to know that its entries are all nonnegative.

Let’s put the issue of the nonnegativity of π on hold for a moment, and ask if P has a limiting distribution.
We do this by calculating Pn. Suppose that P can be diagonalized, as

P = B−1
ΛB, where Λ =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
...

...
. . .

... 0
0 · · · 0 0 λN

 . (21)

The rows of B are left eigenvectors of P, the columns of B−1 are right eigenvectors, and the eigenvalues are
λ1,λ2, . . . ,λN ; let’s order them so that λ1 = 1. Therefore

Pn = B−1
Λ

nB, where Λ =


λ n

1 0 0 · · · 0
0 λ n

2 0 · · · 0
...

...
. . .

... 0
0 · · · 0 0 λ n

N

 . (22)

What happens as n→ ∞? For the first eigenvalue we have λ n
1 = 1. Any eigenvalue such that |λi| < 1 will

converge to zero, λ n
i → 0 as n→ ∞. Therefore, if |λi| < 1 for i ≥ 2, we have, using our knowledge of the

right and left eigenvectors corresponding to λ1,

lim
n→∞

Pn = B−1


1 0 · · · 0
0 0 · · · 0
...

...
...

...
0 0 · · · 0

B =


1
1
...
1

(π1 π2 · · · πN
)
=


π1 π2 · · · πN
π1 π2 · · · πN
...

...
...

...
π1 π2 · · · πN

 .

We argue that π must be a probability distribution: Since P has nonnegative entries, so does Pn, so π must
be nonnegative. We must also have that ∑ j π j = 1, since ∑ j Pn

i j = 1 so applying the limit and interchanging
sum and limit (for a finite sum) gives ∑ j limn→∞ Pn

i j = 1.

We have just shown that if P is diagonalizable, such that all eigenvalues except λ1 have |λi|< 1, then the left
eigenvector π corresponding to λ1 is a limiting distribution, and therefore it is also a stationary distribution.
(If P is not diagonalizable, then we can do a similar calculation using the Jordan canonical form of the
matrix, and obtain the same conclusion given similar conditions on the generalized eigenvalues.) It remains
to ask: when do all eigenvalues (or generalized eigenvalues) satisfying |λi|< 1 for i 6= 1?

We can show quite easily that all eigenvalues must have norm less than or equal to 1.
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Lemma. The spectral radius of a stochastic matrix P is 1, i.e. ρ(P) = maxλ |λ |= 1, where the maximum is
over all eigenvalues of P.

Proof. Let η be a left eigenvector with eigenvalue λ . Then ληi = ∑
N
j=1 η jPji,

|λ |
N

∑
i=1
|ηi|=

N

∑
i=1
|

N

∑
j=1

ηiPji| ≤
N

∑
i, j=1
|η j|Pji =

N

∑
j=1
|η j|.

Therefore |λ | ≤ 1.

Whew. This is good news – it shows that no eigenvalue of P has complex norm greater than 1 – but it still
doesn’t rule out the possibility that there are other eigenvalues with complex norm equal to 1. To handle this
possibility we turn to a powerful theorem from linear algebra, the Perron-Frobenius Theorem.

Definition. A matrix A is positive if it has all positive entries: Ai j > 0 for all i, j.

Remark. A is positive is not the same as A being positive-definite!

Theorem. (Perron-Frobenius Theorem.) Let M be a positive k× k matrix, with k < ∞. Then the following
statements hold:

(i) There is a positive real number λ1 which is an eigenvalue of M. All other eigenvalues λ of M satisfy
|λ |< λ1.

(ii) The eigenspace of eigenvectors associated with λ1 is one-dimensional.

(iii) There exists a positive right eigenvector v and a positive left eigenvector w associated with λ1. Fur-
thermore,

lim
n→∞

1
λ n

1
Mn = vwT ,

where the eigenvectors are normalized so that wT v = 1.

(iv) M has no other eigenvectors with nonnegative entries.

For a proof, see an advanced linear algebra textbook, such as Lax (1997), Chapter 16, or Horn and Johnson
(2012), Theorem 8.2.8. There is also a brief description of the proof in Strang (1988), Section 5.3.

We can combine the Perron-Frobenius Theorem with the Lemma above, to obtain a statement about Markov
chains.

Theorem. Let X0,X1,X2, . . . be a time-homogeneous Markov chain with a finite state space. Suppose the
transition matrix P is positive. Then there exists a unique stationary probability distribution π such that π

is positive. Furthermore, π is also a limiting distribution.

Proof. From the Lemma above, the spectral radius of P is 1. The Perron-Frobenius theorem tells us there is
a one-dimensional eigenspace associated with the eigenvalue λ1 = 1, and the corresponding left eigenvector
π is positive. Therefore, π is the unique stationary distribution.All other eigenvalues have complex norm less
than 1. Furthermore, since the corresponding right eigenvector is v=(1, . . . ,1)T , we obtain that limn→∞ Pn

i j =
π j, which is the definition of a limiting distribution.
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One can extend these results to a Markov chain such that Ps is positive, for some integer s > 0. This means
that there is a time s such that, no matter where you start, there is a non-zero probability of being at any other
state.

Theorem. Let X0,X1,X2, . . . be a time-homogeneous Markov chain with a finite state space and transition
matrix P. Suppose there exists some integer s > 0 such that Ps is positive. Then there exists a unique
stationary probability distribution π such that π is positive. Furthermore, π is also a limiting distribution.

Proof. This theorem results from a combinations of theorems and definitions from Horn and Johnson (2012),
outlined here. Since P and Ps are positive, P is irreducible and has only one nonzero eigenvalue of maximum
complex norm (Definitions 6.2.22, 8.5.0, Theorem 8.5.2). Theorem 8.4.4 (another version of the Perron-
Frobenius Theorem) shows that since P is irreducible and nonnegative, there is a one-dimensional eigenspace
associated with the eigenvalue λ1 = 1, and the corresponding left eigenvector π is positive. Theorem 8.5.1
shows that limn→∞ Pn

i j = π j, so π is a limiting distribution. (See also Koralov and Sinai (2010) p.72, for a
more direct proof that analyzes the evolution of probability and shows it converges exponentially quickly to
the stationary distribution.)

This theorem can be weakened slightly by allowing for Markov chains with some kind of periodicity. We
need to consider a chain which can move between any two states (i, j), but not necessarily at a time s that is
the same for all pairs.

Exercise 2.10. Calculate the stationary distribution for the gambler in Example 2.2, assuming that if she
goes broke, there is a 10% chance per game that she finds 1$ and can play again.

Definition. A stochastic matrix is irreducible if, for every pair (i, j) there exists an s> 0 such that (Ps)i j > 0.

There are limit theorems for irreducible chains, with slightly weaker conditions. Irreducible chains also
have a unique stationary distribution (Horn and Johnson (2012), Theorem 8.4.4). However, it is not true that
an arbitrary distribution converges to it; rather, we have that the average distribution converges (Horn and
Johnson (2012), Theorem 8.6.1):

α
(0)P̄(n)→ π as n→ ∞, where P̄(n) =

1
n

n

∑
k=1

Pk .

We need to form the average, because there may be a built-in periodicity, as in Example 2.6, where P2n = I,
and P2n+1 = P, so α(n) oscillates between two distributions, instead of converging to a fixed limit.

Exercise 2.11. Show that the transition matrix in Example 2.6 is irreducible, however there is no s such that
Ps is positive.

Remark. So far we have analyzed only Markov chains with a finite state space. There are also results for
Markov chains with infinite state spaces, which are often proved using probabilistic approaches. To state the
results, one is interested in the mean recurrence time µi of each state i, defined by

µi = E(Ti|X0 = i) (23)

where Ti = min{n ≥ 1 : Xn = i} is the first return time to i. We could have that µi is finite or infinite. If a
Markov chain is irreducible, and µi < ∞ for all states i, then there is a unique stationary distribution π given
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by πi = µ
−1
i . (Grimmett and Stirzaker (2001), Section 6.4 Theorem 3, or Norris (1997), Theorem 1.7.7.)

Furthermore, if the chain is irreducible, has stationary distribution π , and is aperiodic (there exists an s such
that Ps

ii > 0 for some state i), then π is a limiting distribution (Grimmett and Stirzaker (2001), Section 6.4
Theorem 17, or Norris (1997), Theorem 1.8.3).

2.4 Mean first passage time

Sometimes we want to ask how long it takes a Markov chain to do something: how long until the weather
turns sunny again, how long does it take a gambler to go broke, etc? Answering these questions requires
asking about the probability distributions of random times, which depend on the realization of a Markov
chain. We can’t handle question about any kind of random time, but we can handle questions about the time
it takes to hit a given subset of the state space, using tools from linear algebra.

Definition. The first-passage time of a set A⊂ S is defined by

TA = min{n≥ 0 : Xn ∈ A}.

A common quantity of interest is the average time it takes to hit set A.

Definition. The mean first passage time (mfpt) to set A starting at state i is

τi = E(TA|X0 = i). (24)

Let’s compute τi using a first-step analysis assuming (for now) that P(TA < ∞|X0 = i) = 1 for all i ∈ S. We
consider only time-homogeneous Markov chains.

For i ∈ A, we have TA = 0 so τi = 0. Consider i /∈ A. Then

τi =
∞

∑
t=1

tP(TA=t|X0=i)

=
∞

∑
t=1

∑
j∈S

tP(TA=t|X1= j)P(X1= j|X0=i) LOTP & Markov property

Because the chain is time-homogeneous, we expect that P(TA=t|X1= j) = P(TA=t−1|X0= j). To show this
explicitly, write

P(TA=t|X1= j) = P(X2 ∈ Ac, . . . ,Xt−1 ∈ Ac,Xt ∈ A|X1 = j) by definition

= P(X1 ∈ Ac, . . . ,Xt−2 ∈ Ac,Xt−1 ∈C|X0 = j) by time-homogeneity

= P(TA=t−1|X0= j).

Therefore, substituting into the above and changing the index t→ t +1, we have

τi =
∞

∑
t=0

∑
j∈S

(t +1)P(TA=t|X0= j)Pi j

= ∑
j∈S

∞

∑
t=0

tP(TA=t|X0= j)Pi j + ∑
j∈S

∞

∑
t=0

P(TA=t|X0= j)Pi j

= ∑
j∈S

τ jPi j + 1.
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The second term is 1, because ∑
∞
t=0 P(TA=t|X0= j) = 1, since this sum is the probability that TA takes any

value and we assumed P(TA < ∞) = 1, and then we sum ∑ j∈S Pi j = 1. We can interchange the order of
summation in the second step because all the terms we are adding up are nonnegative. We obtain:

Theorem. Let τ = (τi)i∈S be a vector of mean first passage times from each state i ∈ S. Then τ solves the
system of linear equations: {

τi = 0 i ∈ A
τi = 1+∑ j Pi jτ j i /∈ A.

(25)

In fact, τ is the minimal nonnegative solution to these equations, meaning that any other nonnegative solu-
tion y to (28) has yi ≥ τi for all i.

Remark. The condition about τ being the minimal nonnegative solution is required to handle Markov chains
with an infinite state space. See Norris (1997), Theorem 1.3.5.

Remark. The calculations above actually don’t depend on the assumption P(TA < ∞|X0 = i) = 1 – one can
carry through the same calculations, starting from the identity τi =∑

∞
t=1 tP(TA=t|X0=i)+∞P(Ta =∞|X0=i),

and obtain the same result (28) even without this assumption. If τi = ∞ (which can happen even when
P(TA < ∞|X0=i)=1), then there won’t exist a nonnegative solution to (28).

Equation (28) gives a way to find the mean first passage time by solving a linear system of equations. We
can write (28) as

(P′− I)τ ′ =−1 , (26)

where P′ is P with the rows and columns corresponding to elements in A removed, and τ ′ is τ with the
elements in A removed. This form of the equations will make it easier to make the connection to continuous-
time Markov chains and processes later in the course, and is convenient to use on a computer.

Note that we can’t find the mfpt from state i in isolation; we have to solve for the mfpt from all states i simul-
taneously. For systems that are not too large, this means we can use built-in linear algebra solvers to calculate
mfpts. If the problem has some extra structure, we can sometimes even find analytical solutions.

Example 2.8 Consider the gambler from the beginning of Section 2.2. Let A = {0}, the event that she has
0$. Show that the average time it takes her to go broke, starting from k$, is τk =

k
1−2p .

Solution. Solved by verifying that (28) is satisfied. Note that if the gambler were to stop when she wins
some amount M$, then the mfpt to the set B= {0,M} can be found by solving the inhomogeneous recurrence
relation in (28) to be6

τ
M
k =

k
1−2p

− M
1−2p

·

(
1−p

p

)k
−1(

1−p
p

)M
−1

(p 6= 1/2), τ
M
k = Mk− k2 (p = 1/2).

As M→ ∞, τM
k → τk. ./

Exercise 2.12. Suppose you perform a random walk on the integers where at each step you jump left or right
with equal probability, and let Xn be your position at time n. Calculate the mean first passage time τ0 to leave
the interval (−6,6), starting at X0 = 0.

6See https://web.mit.edu/neboat/Public/6.042/randomwalks.pdf
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We can calculate the probability that TA is finite, using a similar calculation.

Definition. The hitting probability of set A starting at state i is

hi = P(TA < ∞|X0 = i). (27)

Theorem. The vector of hitting probabilities h = (hi)i∈S is the minimal nonnegative solution to the system
of linear equations {

hi = 1 i ∈ A
hi = ∑ j Pi jh j i /∈ A.

(28)

Exercise 2.13. Prove the above theorem, using a first-step analysis. (See Norris (1997), Theorem 1.3.2.)

Example 2.9 Consider the gambler from the beginning of Section 2.2. Calculate the probability she even-
tually goes broke, starting from k$.

Solution. (See Norris (1997), Example 1.3.3.) We must solve the recurrence relation

h0 = 1, hi = phi+1 +(1− p)hi−1, i = 1,2, . . . .

If p 6= 1/2 the general solution is

hi =C+D
(

1− p
p

)i

for some constants C,D. For p < 1/2, the condition hi ≤ 1 requires D = 0 so hi = 1 for all i – the gambler
will always end up broke.

If p = 1/2, the recurrence relation has a general solution

hi =C+Di,

and again D = 0 so hi = 1 for all i. Therefore, even if the gambler is playing a fair game, no matter how
much money she starts with, she is certain to end up broke. This phenomenon is called the Gambler’s Ruin.

./
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