Miranda Holmes-Cerfon Applied Stochastic Analysis, Spring 2022

Lecture 6: Brownian motion

Readings
Recommended:

e |Pavliotis|(2014)) section 1.3, 2.1-2.3
Optional:

e (Grimmett and Stirzaker| (2001)) 8.5, 8.6, 9.6, 13.1-13.3

e |[Koralov and Sinai|(2010) Ch. 18, 19.1-19.3

e [Karatzas and Shreve| (1991), 2.9 (and other bits of Chapter 2), for detailed results about Brownian
motion

6.1 Introduction

Brownian motion is perhaps the most important stochastic process we will see in this course. It is named
after Scottish botanist Robert Brown, who in 1827 noticed that pollen grains suspended in water move about
at random even when the water is still. Some people thought this motion was because grains come from
living matter and are moving about of their own accord. To rule out this explanation, Brown showed that
inanimate objects like dust particles more in the same erratic fashion. Brown was not the first person to notice
this peculiar motion — for example, it is described by a Roman Lucretius in a poem in 60 BC, and pointed
out by Dutch scientist Jan Ingenhousz in 1785 — but he was the first to investigate it systematically.

Brown’s work inspired both physicists to investigate the phenomenon. It was finally understood by Einstein
in 1905 (Einstein, |1905), who showed how the random motion could arise if water were made of many dis-
crete components, rather than forming a continuum. He argued that this indirectly confirmed that matter was
made of atoms. Smoluchowski constructed a related model in 1906 (Von Smoluchowski, |1906)), which was
experimentally verifieid by Jean Baptiste Perrin in 1908, who received the Nobel prize for his work.

Meanwhile, mathematicians realized that a function describing a particle moving according to Brownian
motion would have some bizarre properties that meant it couldn’t be constructed as a function using classical
mathematical techniques. Several mathematicians tried to invent new mathematics to construct a Brownian
motion (e.g. Theile, 1880, Bachelier, 1900), and a rigorous construction was finally given by Wiener in
1923. For this reason in mathematics Brownian motion is often called a Wiener process.

6.2 Definitions

We’ll start by asking how to construct a stochastic process that could model the erratic motion of a dust
particle or other processes that are “very random.” We’d like the process to be “as random as possible”,
because if there is any deterministic or predictable part of the process, then we could model that part in a
more conventional way. Therefore we’d like to ask for a continuous process whose derivative is independent
at each point in time — the idea being that if the derivative has some correlations, then we could predict
the value of the process at least some time into the future, and then the process wouldn’t be as random as
possible. It turns out that the best approximation for such a process is a Brownian motion.
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Figure 1: Some approximate realizations of Brownian motion. These were constructed by simulating a
random walk with i.i.d. steps with distribution N(0,v/Ar), at times Ar = 0.01. The total time of each
realization is 10 units.

We’ll first study the path properties of Brownian motion, and then we’ll look at what we can say about its
statistics. Brownian motion is our first example of a diffusion process, which we’ll study a lot in the coming
lectures, so we’ll use this lecture as an opportunity for introducing some of the tools to think about more
general Markov processes.

The most common way to define a Brownian Motion is by the following properties:

Definition (#1.). A Brownian motion or Wiener process W = (W, );>¢ is a real-valued stochastic process that
has

(i) Wo =0
(ii) Independent increments: the random variables W, — W,,, W, — W; are independent whenever u < v <
s <t (so the intervals (u,v), (s,f) are disjoint.)
(iii) Normal increments Wsr — W ~ N(0,1) for all s,z > 0.
(iv) Continuous sample paths: with probability 1, the function t — W, is continuous.

That such a process exists, and that its probability law is uniquely determined by the above properties, is
a result shown in many probability texts (e.g. |Durrett] (2005), p.373, |[Karatzas and Shreve| (1991), |Breiman
(1992))). The major difficulty is in showing property (iv): that there exists a version of Brownian motion that
is continuous everywhere, almost surely.

The properties of Brownian motion are a lot like those of the Poisson process. Property (iii) implies the
increments are stationary, so a Brownian motion has stationary, independent increments, just like the Poisson
process. The differences from the Poisson process is that the increments of Brownian motion have a normal
distribution, not a Poisson distribution, and that it is a continuous process.

! Somewhat remarkably, it is possible to replace this condition with the condition that the increments W, — W; do not depend on
t, plus a continuity condition lim,_,q w =0 for all 6§ > 0. That the increments are normal comes from the Central Limit
Theorem, by breaking up an increment over a finite interval into a sum of increments over smaller intervals. See Breiman|(1992), Ch.

12, p.248.
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With these properties we can say a lot about the trajectories and statistics of the process. For example, we
can calculate all finite dimensional distributions.

Example 6.1 Let’s calculate the two-point distributions P(W; € A,W, € B), with A,B C R and s <r. We
have

P(W; € A\ W, € B)=P(W,—W;+W, € BW; €A)

:/ P(W, — W, € B—x,W, € [x,x+dx))
XEA

= / P(W, —W,; € B—x)P(W; € [x,x+dx)) increments are independent
XEA

(—x)?
Zy(t—)s) !

- /xeA /yeB \/27r1t7—s)e V2ms

This calculation also shows that the joint density for (W, W;) is

2
_x .
e = dydx increments are normal

()= e i Lok a0
X,y) = —F/——=e e .
Pt 2m(t —s) V27s

This density is Gaussian, so (W, W;) is a two-dimensional Gaussian vector. If we define the two-point
transition density to be

1 _o=x?
p,tlx,s)dx = P(W, € [y,y+dy]|Ws; =x) = ——=¢ 209 dx )
27t —s)

to be the probability density for W; =y, given W, = x, then we can write the two-point density as

ps,t(xay) = p(y,[‘xv S)p(xvs|070) .
Example 6.2 Let’s calculate the n-point fdds. Let t; < --- <t,, and let p;, 1, .1, (x1,x2,...,X,) be the joint

density of (W;,,---,W,,). Similar calculations to our earlier example show that

ptl,rzA,...,t,,(xl,xZ,---axn) = p(x1,t1]x1,0) p(x2,t2]x1,t1) -~ p(Xns tn|Xn—1,10—1) -

That is, the joint density of BM at n different timepoints, is obtained by multiplying the two-point transition
densities together. Since these are each Gaussian, the whole product is Gaussian, and we find the n-point
fdd is a multivariate Gaussian.

Recall the definition of Brownian motion from Lecture 5:

Definition (#2.). A Brownian motion or Wiener process is a stochastic process W = (W;);>o with the fol-
lowing properties:
@ Wo=0;
(i1) Itis a Gaussian process;
(iii) It has mean m(¢) = 0 and covariance B(s,7) = min(s, 7).
(iv) It has continuous sample paths: with probability 1, the function + — W, is continuous.

Proposition. Definitions 1&2 are equivalent.
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Therefore you can work with whichever one is more convenient for the problem at hand.

Proof. (For a full proof, see |[Durrett| (2005)), p.373.) Let’s show that Definition #1 = Definition #2. Given a
Brownian motion satisfying Definition #1, we need to show that it satisfies properties (ii),(iii) of Definition
# 2. Properties (i),(iv) are included in Definition #1. Property (ii), that BM is a Gaussian process, follows
from our examples above.

It remains to check property (iii) of Definition #2. Since W; ~ N(0,7) by property (iii) of Definition #1, we
have EW; = 0. Let’s compute its covariance. For s < ¢, we have

B(s,t) = EW,W, — (EW,)(EW,) = EW,(W; — W, +W;) = (EW,)E(W, — W;) + EW] =s.

The second-last step follows since W; — W; is independent of Wy (property (ii)), and the third by the distribu-
tion of the increments (property (iii).) Therefore the BM satisfies property (iii) of Definition #2. U

Exercise 6.1. Show that Definition #2 = Definition #1.

6.3 Brownian motion as a limit of random walks

One way to construct a Brownian motion is as a limit of random walks. Let X|,X>,... be i.i.d. random
variables with mean O and variance 1. For the sake of illustration let’s suppose that X; = 1 with equal
probability; the argument below will hold for more general step distributions. Consider the sum

n
Sp=Y X;  withSy=0.
j=1

This is a simple symmetric random walk on the integers. It is a discrete-time process, but we can make a
continuous-time process by linearly interpolating between values of S),.

Consider the properties of (S;);en:

(i) ES, =0

(i) Var(S;) =t

(iii) (Sy)ren has stationary increments.
To see why, note that

St*Ss:Xerl‘F"'Xtv S s =X+ + X

Each of S; — S;,S;_; is a sum of  — s i.i.d random variables, so S; — S ~ S;_.
(iv) (S¢)ren has independent increments.
To see why, let 0 < g < r < s < t, and write

St =S =Xsp1+-+ X, Sr_Sq:Xq+l+"'+Xr-

Each of S; —§;, S, — S, is a sum of distinct, independent random variables, so they are independent.
(v) For ¢ large, S, ~ N(0,¢). This follows from the Central Limit Theorem.
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Therefore (S;);en has many of the properties of a Brownian motion. We might wonder if there is a way to
scale it so it approaches a Brownian motion in some limit.

We will construct such a limit by scaling space and time in a particular way. Suppose we scale spatial steps
by Ax, and time steps by Ar. The rescaled process is

SN = Ax Sy = Ax (X 4 X ©

We want to consider the limit of the process (StAt’Ax)teN /ar s At,Ax — 0. How should these parameters be
related? If the limit is to approach something finite, then the variance should be finite too. Since

Ax 2 Ax 2
Var(S,At’AX) = ut = we should choose ( At)

At

= constant . “)

This is an important point — for a diffusion process, space scales as the square root of time. We will call this
diffusive scaling. It will come up again and again throughout the course.

Let’s suppose the constant equals 1 so the limiting process has the same variance at a point as a Brownian
motion. We write At = 1/n, Ax = 1/4/n, and define a sequence of processes in terms of parameter n. Since
our original process was a discrete-time process, it is convenient to make a continuous-time process by
linearly interpolating between the discrete values of 7. The interpolated, rescaled process is

S nt — |nt])S
s = Sel (nt — [nt]) Sy 1 7 5
N N
~— | ——
rescaled needed for interpolation

random wal
where [n¢] means the largest integer less than or equal to nz.

Then Donsker’s Theorem or Donsker’s Invariance Principle says that S (n) = (S,(") ) refo,1] converges in distri-
butio;ﬂ to a Brownian motion W on [0, 1] (see [Durrett (1996) Section 8.5, or |[Durrett (2005) Section 7.6),
where the convergence is in the space of continuous functions. (This result also holds on any finite interval
of time, by rescaling time appropriately.) That is, given the space %([0, 1]) of continuous functions on [0, 1]
equipped with the sup-norm || f|| = sup{f(¢) : t € [0,1]}, we have that S") = w() = (Wi)rejo,1) i-e. the
associated measures on %’(]0, 1]) converge weakly

Donsker’s Theorem is a powerful theorem, which is a generalization of the Central Limit Theorem to path
space. It implies that all the finite-dimensional distributions of S”) converge to the finite-dimensional distri-
butions of a Brownian motion. It also goes further, and implies that S () converges weakly as an entire path.
That is, given a functional ¥ : €([0,1]) — R that is a.s. continuous (with respect to the measure of W (1)),
we have that

w(s®) = y(w).

Example 6.3 Let y(f) = f(1). Then y : ([0, 1]) — R is continuous, and Donsker’s theorem implies that
S gn) => Wi. This is the Central Limit Theorem.

2See the Appendix for a definition of convergence in distribution.
3Specifically: let ¢, be the measures on €([0,1]) associated with S and let ¢ be the measure associated with W Then for all
bounded continuous functions ¢ : €'([0,1]) — R, we have that [ ¢du, — [ ¢du.
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Example 6.4 Let y(f) = max{f(z) :t € [0,1]}. Again y is continuous, and we have that

max S,(”) = M; = max W,.

t€[0,1] t€[0,1]

Proving Donsker’s Theorem is a fair amount of work; see e.g. [Durrett| (1996) p.287 or |[Karatzas and Shreve
(1991) p.70. However, it is not hard to see why the finite-dimensional distributions should converge, at least
heuristically. For the one-point distributions, the Central Limit theorem gives that S,(") = N(0,7) as n — oo
(with a little bit of care with the interpolated parts.) Therefore the one-point distributions of S converge to
the one-point distributions of Brownian motion.

For the two-point distributions, we need to consider the joint distribution of pairs of random variables of the
Sut Sus — . . . I . .
form (7,’7, W) (again ignoring the interpolated parts here.) Using a similar technique as in the proof of the

CLT (i.e. considering the characteristic functions) shows that such a random vector has a distribution which

converges to N ( (8) , (mi“és’ 2 i, t)) ) .

One can treat the k-point distributions similarly, see e.g. |Karatzas and Shreve|(1991), p. 67. Showing that the
distribution of the entire process converges in some sense, for all values of ¢ at once, requires tools beyond
the Central limit theorem.

6.4 Properties of Brownian motion

Brownian motion has a number of useful and sometimes surprising properties, surveyed in this section.

6.4.1 Scaling properties

(i) (—W;)>0 is a Brownian motion (symmetry)
(i) (Wis — Wy)s>o for fixed s is a Brownian motion (translation property)
(iii) =W, with ¢ > 0 is a fixed constant, is a Brownian motion (scaling)
/e

(iv) (tWi);)r>0 is a Brownian motion (time-inversion)

Property (iii) shows that Brownian motion is like a fractal: it looks statistically “the same” at all scales,
no matter how much you zoom in, provided that space and time are scaled in the right way (again, we see
the diffusive scaling space o v/time. ) This property follows naturally from the construction of Brownian
motion as a limit of random walks.

Proof. (1), (ii), (iii) follow straightforwardly from Definition #1, by checking the required conditions are
satisfied. For example, for (iii): let X; = cV 2W,,. Then
() Xo=c Wy =0.
(i1) X; has independent increments — this is straightforward to check.
(iii) Normal increments: forz > s, X, — Xy = ¢~ V/2(Wy — Weg) ~ ¢ '2N(0,¢(t —s)) ~ N(0,z —s).
(iv) Continuity — this follows from continuity of W;.
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To check (iv), we use Definition #2 of BM as a Gaussian process. We have that tW, is Gaussian, with mean
0. It has covariance function EstW; Wy ; = st (% A %) = s At. Itis continuous for ¢ > 0. It remains to check

that it is continuous at 0. But lim;_,otW; ; = lim,_c % — 0 a.s., by a result in the next section. 0

6.4.2 Behaviour ast — o

There are several ways to characterize BM in the limit as t — oo:
Proposition. (i) lim;c @ =0a.s..
(ii) limsup,_,., \m/’t =oo, liminf; e % = —oco (both a.s.).

(iii) (Law of the Iterated Logarithm)

limsu L—l a.s limsu L—l a.s
piy V2tToglogt o H(Hp \/2tloglog 1/t o

If limsup is replaced by liminf in either of the above, the limits are —1.

Proof. (i) (from Breiman| (1992), p. 265) This follows from the Strong Law of Large Numbers. For n € N
we can write W, = (W, — W) + (W —W;) + ...+ (W, — W,_), which is a sum of i.i.d. random variables.
By the SLLN, W, /n — 0 a.s.. To obtain behaviour at non-integer ¢, let

7 = B(k+1) — B(k)|.
k OIQ?§1|(+) (k)|

Fort € [k, k+1],
W, Wi

t k

1

1
W Zy.

k+1

The first term on the RHS — 0 a.s., and Z; has the same distribution as maxg<,;<1 |W;|. It can be shown that
EZ; < oo (see this week’s homework!), and that this implies Z; /k — 0 a.s..

(ii) This follows from the Law of the Iterated Logarithm.

(iii) One only needs to show one of these limits, since they are related to each other by the time inversion
property (iv) of BM. The proof is long; see e.g. Durrett| (2005)) section 7.9 p.431, or|Breiman|(1992), p. 263,
or Karatzas and Shreve|(1991)), p. 112.

O
6.4.3 Differentiability

Theorem. With probability one, sample paths of a Brownian motion are not Lipschitz continuous (and hence
not differentiable) at any point.
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Figure 2: A sketch of @,(¢) = ¢;,(s,s+1). From (Evans| 2013).

A rigorous proof is in the Appendix. Here is a heuristic explanation for why the derivative doesn’t exist, at
least at a single point. Suppose we try to calculate the derivative as
_aw; Wiin—W;

5[—7_11111

dt h—0 h ©)

But W, — W, ~ N(0,h) so w ~ N(0, %) This random variable doesn’t converge to anything as 4 — 0,

since it is a Gaussian with a variance that blows up to infinity.

Another way to see that Brownian motion is not differentiable, is to argue that Xj, = W, , — W, is a Brownian
motion, by the translation property, and then that Y; = sX; ), for s = 1/h is a Brownian motion, by the

time-inversion property. So then % = lim,_,., Y, which doesn’t exist.

Of course, the theorem makes a much stronger argument, which is that the derivative doesn’t exist anywhere,
with probability 1. That is, for any given path, there is not even a single point at which a sample path of
Brownian motion is differentiable!

Nevertheless, in the Physics literature it is common to speak of the derivative of Brownian motion, where it
is called white noise. It turns out that even though white noise doesn’t exist in a classical sense, it is possible
to define it in a weak sense, which we’ll do when we construct stochastic integrals. Let’s pretend for a
moment that the derivative of Brownian motion exists, and see what we can learn about it. If we calculate
its mean and covariance function from @ (e.g.[Evans, 2013| p.41), we obtain:

Wiin —W, EW,.n —EW,
E& =Elim —" = = jm 2T — ¢,
h—0 h—0 h
and W, W W, W,
Cov(&, &) = IIIIE(I)E< t+hh z) ( S+hh s) = lim y(s.1).,
where

if|s—t] >h

(h—I|s—1|) if|s—t|<h’ @

On(s,1) :%[(t+h)/\(s+h)—(t+h)As—t/\(s+h)+s/\t] = {01
w2

The function ¢, (s,) is only a function of s —#, so we can also write it (with a slight abuse of notation) as
@n(t). (See Figure 2| for a sketch of @(¢).) As h — 0, the function becomes narrower and taller, but the
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area under the function remains constant, [ ¢,(¢)dr = 1. Therefore, we expect ¢y,(r) — 6(¢) as h — 0, so,
formally at least, we should have

Cov(&,,&) = BEE = 8(s—1). ®)

Therefore, & is weakly stationary, with covariance function C(¢) = 6(¢). Calculating the spectral density of
the covariance function gives

_L Y _ L
f(l)—zﬂ/me 8(t)dt = 5 forall A € R.

The spectral density is flat: all frequencies contribute equally. This is why & is called “white noise”: just
as white light is a superposition of light from all wavelengths, white noise is a superposition of random
oscillations of all frequencies.

Here are some other facts about the sample path properties of Brownian motion.

Theorem. (a) With probability 1, a Brownian sample path is locally Holder continuous with exponent y

Sor every y € (0, %)
(b) With probability 1, Brownian paths are nowhere locally Holder continuous for any exponent y > %

Proof. See|Karatzas and Shreve|(1991)), [Durrett (2005). O

6.5 Quadratic variation

Recall that the concept of total variation from analysis:

Definition. The rotal variation of a function f(¢) on an interval [a,b] is defined by
n
Vies) (f) = sup Y | £(t)) = f(ti-1)] ©)
o -

where the supremum is over all partitions ¢ = {to,#1,...,t,} of [a,p] witha=1 < < - <t, =b. If
Viap) (f) < o then f is said to be of bounded variation, and if V|, ;(f) = oo then f is said to be of infinite
variation.

If a function is of bounded variation on [a, b], then it has a derivative almost everywhere on [a, b] (i.e. except
for a set of measure zero.) Conversely, if a function is nowhere differentiable, then it must have infinite
variation on any interval.

Since Brownian motion is nowhere differentiable, it has infinite variation on any interval. However, it has
finite quadratic variation (in a mean-square sense). This will turn out to be an important property when we
construct the stochastic integral.

Definition. The quadratic variation of a function f on [0,¢] with respect to a partition o is

n—1
07 () =Y If(ti1) — f(t) > (10)
i=0
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We would like to define the quadratic variation of a Brownian motion W on [0,7] as sup, O (W). How-
ever, for a stochastic processes we need to be careful with how the supremum over partitions is calculated,
since not all types of stochastic convergence will give a finite result. We will use the following notion of
convergence.

Definition. A sequence of random variables X|,X>, ... converges in mean-square to another random variable
X, written X, = X or m.s.limy,_e.X, = X, if E|X, —X|> = 0as n — oo.

Remark. Convergence in mean-square implies convergence in probability, which in turn implies convergence
in distribution. Convergence in mean-square does not imply almost sure convergence nor vice versa. (Almost
sure convergence does imply convergence in probability and hence convergence in distribution.)

Lemma. Let |0| = maxo<j<u—1 |tit+1 — ti|. The quadratic variation of Brownian motion QF (W) converges
in mean-square to t as |c| — 0:

2 m.s.

n—1
Z |‘/Vli+1 7‘/Vti| — 1.
i=0

We can write this result formally as (AW )? = Ar. We see the diffusive scaling yet again.

Proof. (From [Koralov and Sinai| (2010), p. 269.) Write AW; =W, —W,, and At; = ;1 — ;. Then

n—1

2
2 n—1 n—1
]E(Q,"(W) 4) —E (Z AW? Ati> — Y E@W? — A6+ Y. E(AW? — AL) (AW — Arj).
5 = ij=0i2]

Now, we have
E(AW? — At) (AW — Atj) = EAGAL; — AtiAt — Atilt; + AtAL

since AW;, AW; are independent for i # j. Therefore

2(0rw) *f)z = ’EE(AWI.Z — A

0
n—1
< Y EAW +Ar since (a — b)? < a* +b* for a,b > 0
i=0
n—1
:4ZAti2 since E(W, — W,)* = 3]r — s
i=0

n—1

= 0;23§4(1+] 1)2%(h+1 t;

=4tlc| —0 as|o|—0.

6.6 Brownian motion as a Markov process

Suppose we know the value of Brownian motion for all times up to some time s. What can we say about W;
for r > s? Since W, = W, + (W; — W), and the increment W; — W; is independent of all observations up to

10
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time s, we can obtain the distribution of W; using only our knowledge of Wy, and not any earlier observations.
In other words, we can write

P(VVI €F|VVT,,,1:-X}1713"'7VVI():XO) :P(VVIH GFH|VVI,,,1:-XII*1)’ (11)

where 7 <t < --- < t,, and conditioning on points is defined as P(W; € F|W, =y) = limg\ o P(W; € F|W; €
[v,y+€))/¢, and similarly for conditioning on multiple points.

Transition density To describe the transition probabilities for a Markov process with a discrete state space,
we had a transition matrix P(¢) or P(s,t). For a process with a continuous state space, we need a transition
density p(y,t|x,s), which is the function such that

P(X; €A|X; =x) = / p(y,tlx,s)dx.
XEA

We calculated earlier (see (2)) that the transition density for Brownian motion is

1 _ =02

X, §) = ——e 29,
p(yilx,s) I

This function is time-homogeneous: p(y,t|x,s) = p(y,t —s|x,0) for all ¢, s. It satisfies the Chapman-Kolmogorov
equations:

p(y,tlx,s) = / Rp(y,t\z,u)p(z,u|x,s)dz, s<u<t. (12)
€

You can check this relation by direct calculation using the transition densities for Brownian motion. It also
holds for a general Markov process with transition density p(y,z|x,s) (see[Pavliotis| (2014}, p.35 for a formal

proof).

Let’s consider how probabilities and expectations for a continuous process, are related to those of a discrete
process. Consider expectations first. For a discrete Markov process, we calculated expectations as E, f(X;) =
P0,)u®, where u® = (£(1), f(2),...)T. That is, we multiplied the transition matrix by a vector on the
right, summing over the rows. For a continuous Markov process, we calculate expectations as

1&ﬂx>=[}@mu¢mowy

That is, we integrate a function f, against the first variable of the transition density.

Now consider probabilities. For a discrete Markov process, we calculated the probability distribution at
time ¢ as w(z) = p(r)P(¢): we multiplied the transition matrix on the left by a row vector, summing over
the columns. For a continuous process, the probability density at time ¢, p(y,t)dy = P(X; € [y,y +dy)), is
obtained from the initial density pg as

p0:1) = [ p(rtlx.0)poa)ax.
X
Now we integrate against the second variable in the transition density. So in the density p(y,f|x,s), the

variable x is analogous to the columns of the transition matrix, and y is analogous to the rows of the transition
matrix.

11
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Infinitesimal generator Recall that the fundamental quantity that characterized a continuous-time Markov
chain was its generator. From the generator we obtained the forward and backward equations, describing
how probability and statistics respectively evolve. Let’s look at how these ideas generalize to a continuous
Markov process, focusing on the specific case of Brownian motion.

Definition. The infinitesimal generator of a Markov process is the operator .£ acting on functions in L =
{f :IIf|l < oo} with norm || f|| = sup, | f(x)], is defined by

(Lf)(x) = lim 2K =) 13)

t—0 t
The set D(.Z’) C L* on which this limit exists is the domain of .Z.

Remark. The convergence above is understood as the norm convergence, i.e.

Exf(Xt) _f —g(X)|| -0

for some function g, which is identified as .Z’f.

Let’s calculate the generator of Brownian motion (following Varadhan, [2007). We have that

1 2
e 2dz.
V2T

oo 1 v o
Exf(Xt):/_wf(y)\/?me_( s dy:/_wf(erZ\ﬁ)

The infinitesimal generator is

(ff)(x)z}i_r}r(l)[i f(x“\f)_f(x) L o5z, (14)

Suppose f is bounded and has three bounded derivatives, so we can expand it using Taylor’s formula
as

Pl 290 = 00 = VA () + )+ 2R

where the remainder term satisfies |R(¢,z)| < C|z|® for some constant C. Substituting this expansion into
(T4) and calculating the integral directly shows that

1, _1&f

1
LI=3" =5q2 (13

The generator of Brownian motion is the Laplacian operator.

Remark. Note the analogy to the generator for a continuous-time Markov chain: recall the generator was a
matrix, acting on vectors. Here, the generator is a functional, but it is still a linear operator. This will be true
for Markov processes in general: their evolution can be described by a generator, which is always a linear
functional. For diffusion processes the functional is a partial differential operator; for processes containing
jumps the generator is an integral operator. The Hille-Yosida theorem provides the conditions for a closed
linear operator .Z on a Banach space to be the infinitesimal generator of a Markov process.

12
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Forward and backward equations Now let’s use the generator to obtain the backward equation. Let
u(x,t) =E, f(X;). We seek an evolution equation for . It will be convenient to introduce the operator

Tf(x) = Eof(X,) = /y FO)p(tlx,0)dy, (16)

so that 7; f(x) = u(x,t). The domain of T; is the set of bounded, measurable functions f : R — R. We claim
that

Tyuf = (Lo T)f a7

Remark. This is the semigroup property for the set of operators {7;},>0, and hence the set is called the
transition semigroup (Durrett, 1996, Chapter 7), (Varadhanl 2007). The transition semigroup is obtained

from the generator as T = e = +1.% + %,2”2 +

Property is a succinct form of the Chapman-Kolmogorov equations (I2)); notice the relationship to the
Chapman-Kolmogorov equations P(s+t) = P(s)P(t) for Markov chains. To show it, we calculate

Tyiaf =Ef (%i25) = [ F0)P01-+ sl 0)dy

://f(y)p(y,t+s\z,s)p(z,s|x,0)dzdy Chapman-Kolmogorov equations (12))

—//f p(3,t]2,0)p(z, s|x,0)dzdy time-homogeneity
= /p Z,8/x,0) [/f p(y,t|z,0) dy} dz Fubini’s theorem
=T(T.f).

We use this property to derive the backward equation:

u(vt) . Ef () ~Eof(X) _ . Tunf ~Tof
ot h—0 h h—0 h
o (Lo T)f-Tf . Twu—u
= lim = lim
h—0 h h—0 h
=Zu.

We obtain the Kolmogorov backward equation for a continuous Markov process, M = Zu. Therefore,
the backward equation for Brownian motion is the heat equation,

Ju 19?
S =ggme  un0)=f(). (18)

You can also verify this directly for Brownian motion, by computing derivatives of its transition density,
since (formally at least),

1 92 1 9%u
/f p(y,t[x,0)dy = /f zazp(wlxo)dy—iﬁ-

13
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Now let’s consider how the probability density p (x,7) evolves, assuming some initial density p(x,0) = po(x).
Our argument will be purely formal; it needs assumptions on each of the functions involved to be made
rigorous.

First, notice that by time-homogeneity, p(y,|x,s) = p(y,t —s|x,0), and therefore o, p(y,t|x,s) = —dsp(y,t|x, s).
Next, let T > 0, let f € D(.¥), and let

v(x,8) = Ex=cf(Xr).
One can verify that v satisfies the backward equation dyv = —Zv with v(x,T) = f(x).

Consider the inner product (p(x,s)v(x,s)). Our strategy will be to show this inner product is constant in s,
and therefore since v satisfies the backward equation, p must satisfy its adjoint, the forward equation.

For the inner product, we have

(p(r.5)v(x.5) = [[[ FOIPOTIx5)p(x.slz 0)po()dzdsdx = [[ 1)p(:T1z,0)po(2)dzdsy.

We moved x to the inner integral and used the Chapman-Kolmogorov equations. Therefore (p (x,s)v(x,s))
is independent of s. Taking % we have

/ dsv(x,s)p (x,s)dx = —/v(x, 5)95p (x,5)dx.

By the backward equation, we have

/8Sv(x,s)p(x,s)dx:/,Zv(x,s)p(x,s)dx:/v(x,s)f*p(x,s)dx,

where .Z* is the formal adjoint of .Z, i.e. the operator such that (£ f, g) = (f,.£*, g), for all for all functions
feD(Z)and g €L, and where s(f,g) = [ f(x)g(x)dx is the L? inner product. Therefore

/v(x,s)f*p(x,s)dx: /v(x,s)asp(x,s)dx.

Choosing T = s (which affects the definition of v but not p), so that v(x,s) = v(x,T) = f(x), and then we
have that [ f(x).Z*p(x,s)dx = [ f(x)dsp(x,s)dx. By choosing f(x) to approximate a 6-function, we have
that

dsp(x,s) = L p(x,s).

This is the Kolmogorov forward equation for a continuous Markov process. For Brownian motion, .2 =

2 . .
z* a—z, so the forward equation is

_1

2 Jx
dp 19?

C=35m. PO =pu).

In terms of the transition probabilities p(x,#|y,s) the forward equation is

dp_19%p
ot 20x%’
You can check that the latter equation holds directly from the explicit form of p(x,z[y,s). In general, you
won’t have an explicit formula for the transition probabilities, so you will obtain them by solving the corre-

sponding PDEs.

p(x,0[y,0) = 5(x—y).
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6.7 Appendix
6.7.1 Convergence in distribution

Here is the definition of convergence in distribution (see e.g. [Durrett|(1996), Chapter 8, Theorem 1.1.)

Definition. Consider a sequence of random variables X1, X5, ... defined on a sequence of probability spaces
{(Qu,F,,Py) }5r_, and taking values in some metric space (S,p). Let (Q,.%, P) be another probability space,
on which another random variable X is defined, which takes values in (S,p). Then {X,} | converges in

distribution, or converges weakly to X, written X, 4 X, if B, f(X,) = Ef(X) for all bounded, continuous,
real-valued functions f, where [E,,,[E denote expectations with respect to the measures associated with X,, X
respectively.

If X,,, X are real-valued (i.e. not path-valued) then an equivalent definition is that F,,(x) — F(x) at each point
of continuity of F(x), where F,, F are the cumulative distribution functions of the random variables.

6.7.2 Brownian motion is not differentiable

Proof of the non-differentiability of Brownian motion. This proof is from |Breiman| (1992), p. 261, in turn
from Dvoretsky, Erdos, and Kakutani (1961. The same proof is presented in |Durrett| (2005)), p 377.
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Notice that if a function x(z) has a derivative x’'(s), with [’ (s)| < B at some point s € [0, 1], then there is an
no such that for n > ny,
x(1) —x(s)| < 2Bt =], if [[t—s[ <2/n. (19)
Let
A, ={o:thereisans € [0,1] s.t. [W; —W,| < 2Bt —s| when |t —s| < 2/n}.

The A, increase with n, and the limit set A includes the set of all sample paths on [0, 1] having a derivative
at any point which is less than 8 in absolute value. If holds, then let k be the largest integer such that

k/n <s, so that
<2
n

Vi ZmaX{‘Wm =W |, (Wi — Wi
n n n n

) Wi — Wi
n n

Therefore, if we let
6
C,= {B() . at least one y; < ﬁ} ,
n

then A, C C,,. To show P(A) = 0, which implies the theorem, it is sufficient to get lim, P(C,) = 0. But

CnZnL_j{B(') e < 65},

k=1
SO

n—2
P(Cy) < Z P (max{‘Wm — Wi
k:l n n

) )

Wi1 — Wi
n n

Wi — Wi

<)

6
<nP <max{|W3/n 7W2/n’ ) |W2/n7W1/n| ) |Wl/n|} < nﬁ>

=nP <|Wl/n| < 6f>3

n 3
:,,< [n /"’ﬁ/ ean/zdx)
27 J—6p /n

65 3
:n< ! / e_"z/z”dx)
V2rn J-6B

The final integral converges to 0 as n — oo, so P(W;,) — 0.
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