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Lecture 7: Stochastic Integration

Readings

Recommended:

• Pavliotis (2014) 3.1-3.2
• Oksendal (2005) 3.1-3.3, 4.1-4.2
• Grimmett and Stirzaker (2001) 13.7, 13.8

Optional:

• Koralov and Sinai (2010) 20.2-20.4, 20.7
• Karatzas and Shreve (1991) 3.1-3.3

7.1 Introduction

We want to start talking about phenomena that evolve stochastically. Often these models take the form of
ODEs, with forcing terms that are stochastic processes. Some examples include:

(1) A particle moving in a fluid. Its position x(t) at time t evolves in a velocity field u(x, t) as

dx
dt

= u(x, t)+η(t) ,

where η(t) is a stochastic process, representing for example diffusion, or unresolved components of
the velocity field.

(2) Polymer dynamics. Given the angles φ(t) ∈ Rm of the polymer and a potential energy U(φ), the
polymer might evolve as

dφ

dt
=−∇U(φ)+η(t) ,

where η(t) is again a stochastic forcing, representing say the random
collisions the solvent molecules make with the polymer.

(3) Stochastically forced harmonic oscillator. For example, let x(t) be the angle of a pendulum undergoing
small displacements. It could evolve as

m
d2x
dt2︸ ︷︷ ︸

acceleration

+ γ
dx
dt︸︷︷︸

damping

+ kx︸︷︷︸
restoring

force, eg spring

= η(t)︸︷︷︸
stochastic

forcing

.

(4) Population growth. Let N(t) be the population size at time t. It could evolve with a randomly perturbed
growth rate as

dN
dt

=
(

a(t)︸︷︷︸
growth

rate

+η(t)︸︷︷︸
noise

)
N(t) .
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The general form of these equations is

dXt

dt
= b(t,Xt)+σ(t,Xt)η(t), (1)

where X = (Xt)t≥0 is a stochastic process, b is the deterministic forcing, and η(t) is a stochastic process,
representing the “noise” or uncertainty in our model, which has amplitude modulated by σ .

What is a good model for the noise? We want it to be “as random as possible,” because any deterministic parts
could be modelled separately in b,σ , or by introducing additional variables to capture time-correlations. This
suggests we should choose the noise to be stationary, with

(i) Mean Eη(t) = 0;
(ii) Covariance function Cη(t) = δ (t), so that η(t1), η(t2) are uncorrelated if t1 6= t2.

Therefore η(t) should be a white noise, which was introduced in the previous lecture as the derivative of
a Brownian motion, η(t) = dWt

dt . We also showed the derivative doesn’t exist, in a classical sense. It turns
out that η(t) does exist as a “generalized” process, similar to how δ (t) is not a function, but a generalized
function. We will not pursue this analogy further (though see Koralov and Sinai (2010) Ch.17 for details
on generalized processes), but rather we will consider how one could make sense of (1) in an integrated
sense.

Consider a discrete version of (1): at time points t0 < t1 < .. ., let Xk = X(tk), and write

Xk+1−Xk ≈ b(tk,Xk)∆tk +σ(tk,Xk)ηk∆tk︸ ︷︷ ︸
∆Wk

.

If η(t) = dWt
dt , then ηk∆tk ≈ ∆Wk =Wtk+1 −Wtk . Therefore,

Xk ≈ X0 +
k−1

∑
j=0

b(t j,X j)∆t j +
k−1

∑
j=1

σ(t j,X j)∆Wj .

When does the limit of the RHS exist, as ∆t j→ 0? If it exists, then we can write the solution to (1) as

Xt = X0 +
∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs .

The solution is a sum of two integrals, each involving stochastic processes. The first integral has the
form ∫ t

0
g(s,ω)ds where g(s,ω) = b(s,Xs(ω)) ,

and ω is an element the sample space associated with the Brownian motion. Provided g(s,ω) is integrable
for each ω , this integral exists as a regular Riemann integral, and produces a random variable as its out-
put.

The second integral has the form∫ t

0
f (s,ω)dWs where f (s,ω) = σ(s,Xs(ω)).

2
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This is a new form of integral. In general it does not exist as a Riemann or Riemann-Stieltjes integral. We’ll
spend the rest of the lecture studying this integral: learning to define this integral properly, and studying
some of its properties.

To start, let’s consider an example to illustrate some of the problems that arise with defining this inte-
gral.

Example 7.1 Let f (s,ω) =Ws(ω). Consider the integral

I =
∫ t

0
WsdWs.

Let’s try to calculate I as a Riemann-Stieltjes integral. Partition the interval
[0, t] into equally-spaced points {0,∆t,2∆t, . . . ,n∆t}. Let’s approximate the
integrand using different points within each grid box, and compare approx-
imations by calculating the mean of the approximation.

(1) Approximate the integrand at the left-hand endpoint:

I(n)LH =
n−1

∑
k=0

Wk∆t
(
W(k+1)∆t −Wk∆t

)
, EI(n)LH =

n−1

∑
k=0

k∆t− k∆t = 0.

(2) Approximate the integrand at the right-hand endpoint:

I(n)RH =
n−1

∑
k=0

W(k+1)∆t
(
W(k+1)∆t −Wk∆t

)
, EI(n)RH =

n−1

∑
k=0

(k+1)∆t− k∆t = t.

(3) Approximate the integrand at the midpoint:

I(n)M =
n−1

∑
k=0

W(k+ 1
2 )∆t

(
W(k+1)∆t −Wk∆t

)
, EI(n)M =

n−1

∑
k=0

(k+
1
2
)∆t− k∆t =

t
2
.

Depending on which point is used to approximate the integrand, the means differ by an O(1) amount. Hence,
as ∆t → 0, each approximation should converge to a different random variable. Therefore the Riemann-
Stieltjes integral of the expression defining I cannot exist.

We could have guessed the approximations would be different, since the Riemann-Stieltjes integral
∫

f dg
is only guaranteed to exist if the total variation of g is finite, but we saw in the last lecture that Brownian
motion has infinite variation.

How to we get around this problem? We must decide ahead of time which point to use to approximate the
integrand. Each choice gives rise to a different integral. The two most common ones are defined heuristically
below; we will see shortly how to construct these more rigorously.

Definition. The Itô integral is the mean-square limit of the Riemann sums using the LH endpoint to evaluate
the integrand. Given a partition 0 = t0 < t1 < · · ·< tn = t, the Itô integral is∫ t

0
f (s,ω)dWs = m.s. lim

max j |∆t j |→0

n−1

∑
j=0

f (t j,ω)∆Wj .

3
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Definition. The Stratonovich integral is the mean-square limit of the Riemann sums using the trapezoidal
rule evaluate the integrand. Given a partition 0 = t0 < t1 < · · ·< tn = t, the Stratonovich integral is∫ t

0
f (s,ω)◦dWs = m.s. lim

max j |∆t j |→0

n−1

∑
j=0

f (t j,ω)+ f (t j+1,ω)

2
∆Wj .

Equivalently, the Stratonovich integral may be defined as the mean-square limit of the Riemann sums using
the midpoint rule evaluate the integrand:∫ t

0
f (s,ω)◦dWs = m.s. lim

max j |∆t j |→0

n

∑
j=0

f (t j+ 1
2
,ω)∆Wj .

One can show that the trapezoidal rule and the midpoint rule give the same limit in mean-square, and hence,
you can use either to compute the Stratonovich integral. In practice, calculations with the trapezoidal rule
are usually easier.

Most of stochastic calculus is developed around the Itô itegral, though in physical problems the Stratonovich
integral is occasionally easier to use, because we’ll show later that it transforms according to the classical
rules of calculus. It doesn’t really matter which integral you work with, as you can always convert from one
to the other.

Example 7.2 Evaluate
∫ t

0 WsdWs.

Solution. Start with a partition σ = {0 = t0 < t1 < · · · < tn = t}, let |σ | = max j ∆t j, and write the approxi-
mation using this partition as

Iσ
t =

n−1

∑
j=0

Wj∆Wj

=
1
2

n−1

∑
j=0

(W 2
j+1−W 2

j )−
1
2

n−1

∑
j=0

(Wj+1−Wj)
2 since 2Wj∆Wj = ∆(W 2

j )− (∆Wj)
2

=
1
2
(W 2

t −W 2
0 )−

1
2

Qσ
t (W ),

where Qσ
t (W ) is the quadratic variation of the Brownian motion W = (Wt)t≥0 with respect to the partition.

We showed last lecture that Qσ
t (W )

m.s.−−→ t as |σ | → 0, so

Iσ
t

m.s.−−→ 1
2

W 2
t −

1
2

t as |σ | → 0 .

./

Notice that if we had treated the integral
∫ t

0 WsdWs as a classical Riemann-Stieltjes integral, we would have
written

(Warning! Incorrect calculations) d
(

1
2

W 2
t

)
=WtdWt ,

and obtained the incorrect result
∫ t

0 d
( 1

2W 2
s
)
= 1

2W 2
t . This shows there is something fundamentally new

about the Itô integral, and it also shows we don’t expect the chain rule to hold in Itô calculus.

4
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Exercise 7.1. Show that
∫ t

0 Ws ◦dWs =
1
2W 2

t .

These exercises show that, as our calculations in Example 7.1 suggested, the Itô and Stratonovich integrals
give different results. Notice that the chain rule (via the incorrect calculations above) does give the correct
result for the Stratonovich integral.

7.2 Construction of the Itô integral

Our heuristic definition of the Itô integral is only heuristic, because we don’t yet know whether this definition
actually exists – is there a mean-square limit of the approximate integrals, as we refine the partition? And is
this limit independent of the sequence of partitions? In this section we give an overview of how to rigorously
construct the Itô integral, outlining the major steps, and filling in details when these are helpful for future
calculations. The remaining details can be found in the references, e.g. Durrett (1996); Karatzas and Shreve
(1991); Grimmett and Stirzaker (2001).

We start by precising the set of functions for which the Itô integral is well-defined. In the following, W is a
Brownian motion defined on a sample space Ω with probability measure P.

Definition. A stochastic process f (t,ω) : [0,∞)×Ω→ R is adapted to W or simply adapted if, ∀t ≥ 0,
f (t,ω) depends only on the values of Ws(ω) for s≤ t, and not on any values in the future nor on any other
stochastic processes.1 In other words, we can decide the value of f (t,ω), knowing the history of W up to
time t. A random variable X is adapted to (Ws)0≤s≤t if X1t ′≥t(t ′) is adapted, i.e. the random variable only
depends on past values of W .

Examples 7.3 Which of the following stochastic processes are adapted to W?

(i) Xt =Wt/2
(ii) Xt =W2t

(iii) Xt =
∫ t

0 Wsds .
(iv) Xt =WtVt where V is a Brownian motion independent of W
(v) Xt =Wt +ξ where ξ is a Bernoulli random variable independent of W

(vi) Xt = sin(t2 +5)+ e−t

Solution. (i), (iii), (vi) are adapted. (ii), (iv), (v) are not adapted.

Note however that when there are additional sources of randomness, as in (iv),(v), it is possible to enhance
the definition of adapted to allow Xt to depend on this additional randomness, as long as Wt remains a
Brownian motion in the enhanced probability space.

./

1 The rigorous definition of adapted is that the random variable ω→ f (t,ω) is Ft -measurable, where Ft is the σ -algebra generated
by the random variables {Ws}s≤t and which includes all the null events N = {A∈F : P(A) = 0}, where F is the σ -algebra associated
with (Wt)t≥0. That is, Ft is the smallest σ -algebra containing sets of the form {ω : Wt1 (ω) ∈ F1,Wt2 (ω) ∈ F2, . . . ,Wtk ∈ Fk}, where
t1, . . . , tk ≤ t, and Fj ⊂ R are Borel sets augmented by the null sets. See Grimmett and Stirzaker (2001), Section 13.8.
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Definition. Let V be the class of stochastic processes f : [0,∞)×Ω→ R such that f is adapted, and such
that ‖ f‖V < ∞ where the norm ‖ · ‖V is defined by 2

‖ f‖2
V := E

(∫
∞

0
f 2(t,ω)dt

)
. (2)

It can be shown that V is a Hilbert space with norm3 ‖ · ‖V (Grimmett and Stirzaker (2001), p.540, and
references therein).

We’ll define the Itô integral for f ∈ V over an infinite interval, and write this as

I( f ) =
∫

∞

0
f (s,ω)dWs . (3)

For a finite integral, simply multiply by an indicator function:
∫ t

0 f dWs =
∫

∞

0 f (s,ω)1s≤t(s)dWs. The Itô
integral I( f ) is a random variable defined on the probability space Ω. A useful way to compare integrals is
via the L2(Ω)-norm ‖ · ‖2, defined for random variables X : Ω→ R as ‖X‖2

2 = EX2. Applying this norm to
an Itô integral gives

‖I( f )‖2
2 = E

(∫
∞

0
f (t,ω)dWt

)2

. (4)

Here is the strategy for constructing the Itô integral in (3):

1. Define it for a class of “simple” functions Φ⊂ V .

2. Show that f ∈ V can be approximated by a sequence of simple functions {φn}∞
n=1 ⊂ Φ, i.e. show

there exists a sequence such that ‖φn− f‖V → 0.

3. Define I( f ) = m.s. limn→∞ I(φn), and show this limit is well-defined.

Step 1.

Definition. Let 0 = t0 < t1 < · · · < tn = T , for some T > 0. A function φ ∈ V is an adapted step function
(called simple function) if

φ(t,ω) =
n−1

∑
j=0

e j(ω)1(t j ,t j+1](t),

where random variable e j is adapted to (Ws)s≤t and has Ee2
j < ∞.

Such a function φ is piecewise constant, with constants that are ran-
dom variables depending on values of the particular Brownian path
only up to the beginning of the current time interval.

2 We are ignoring questions of measurability here. See Durrett (1996) for more details.
3Technically, it is only a norm on the set of equivalence classes obtained from the equivalence relation ψ ∼ φ whenever P(ψ =

φ) = 1.

6
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We define the Itô integral for adapted step functions as

I(φ) =
∫

∞

0
φ dWt(ω) =

n−1

∑
j=0

e j(ω)(Wt j+1(ω)−Wt j(ω)). (5)

This integral has two important properties.

Lemma (Non-anticipating property). If φ is a adapted step function, then

E
∫

∞

0
φdWt = 0 . (6)

Proof. Writing ∆Wj = Wt j+1 −Wt j , notice that e j,∆Wj are independent, because e j is adapted, so it only
depends on values of Ws for s ≤ t j, and ∆Wj only depends on values of Ws for s ∈ (t j, t j+1]. Therefore
EI(φ) = ∑ j Ee jE∆Wj = 0.

Lemma (Itô isometry for adapted step functions). If φ is a adapted step function, then

E
(∫

∞

0
φdWt

)2

= E
∫

∞

0
φ

2dt . (7)

In other words, the norms (2), (4) for Itô integrals are related by ‖I(φ)‖2 = ‖φ‖V . This relationship will be
important as it gives a way to convert between the norm ‖ · ‖V defined on adapted functions, and the norm
‖ · ‖2 defined on Itô integrals – it allows us to say that if ‖φ1−φ2‖V is small, then ‖I(φ1)− I(φ2)‖2 is also
small.

Proof.

E
(∫

∞

0
φdWt

)2

= E
(
∑

i
ei∆Wi

)2
= E

(
∑

j
e2

j(∆Wj)
2 +2 ∑

j<k
e jek∆Wj∆Wk

)
.

As before e j,∆Wj are independent. We also have that if j < k, then ∆Wk is independent of e j,ek,∆Wj.
Therefore the above equals

∑
j
Ee2

j∆t j +2 ∑
j<k

E(e jek∆Wj)E∆Wk︸ ︷︷ ︸
=0

= E∑
j

e2
j∆t j = E

∫
∞

0
φ

2dt.

Step 2.

Proposition. Given f ∈ V , there exists a sequence of adapted step functions φ = {φn}n∈N such that ‖φn−
f‖V → 0 as n→ ∞.

For a proof, see Grimmett and Stirzaker (2001), Section 13.8, or Oksendal (2005), Section 3.1.
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Step 3. Given f ∈ V and a sequence of adapted step functions φ = {φn}n∈N such that ‖φn− f‖V → 0 as
n→ ∞, the Itô integral is defined as

I( f ) = m.s. lim
n→∞

I(φn) . (8)

To show that I( f ) is well-defined, we need to show (i) that the limit exists, and (ii) that it is independent
of the particular sequence of adapted step functions. (These calculations are from Grimmett and Stirzaker
(2001), p.542.) For (i), notice that φm−φn is an adapted step function, so

‖I(φm)− I(φn)‖2 = ‖I(φm−φn)‖2 Itô integral is linear for step functions

= ‖φm−φm‖V Itô isometry for step functions, (7)

≤ ‖φm− f‖V +‖φn− f‖V triangle inequality on norm ‖ · ‖V
→ 0 as m,n→ ∞ by construction of φn.

Therefore the sequence I(φn) is a Cauchy sequence in ‖ · ‖2, so from a theorem in probability theory,4 there
is a random variable I(φ) such that I(φn)

m.s.−−→ I(φ) as n→ ∞.

To show (ii), suppose there is another sequence of adapted step functions ρ = {ρn}n∈N sch that ‖ρn− f‖V →
0 as n→ ∞, and let I(ρ) be the limit of the corresponding integrals. By the triangle inequality,

‖I(φ)− I(ρ)‖2 ≤ ‖I(φ)− I(φn)‖2 +‖I(φn)− I(ρn)‖2 +‖I(ρn)− I(ρ)‖2 .

The first and third terms on the right-hand side go to zero as n→ ∞. The second term can be written using
the Itô isometry as as

‖I(φn−ρn)‖2 = ‖φn−ρn‖ ≤ ‖φn− f‖+‖ρn− f‖ ,

which also goes to zero as n→ ∞. Therefore ‖I(φ)− I(ρ)‖2 = 0, so I(φ) = I(ρ) with probability 1.

We obtain a construction of the Itô integral, from (8).

7.3 Properties of the Itô integral

Given f ,g ∈ V , the Itô integral has the following properties.

(i) (Linearity) for a,b ∈ R,
∫

∞

0 (a f +bg)dWt) = a
∫

∞

0 f dWt +b
∫

∞

0 gdWt .

(ii) (Non-anticipating property)

E
∫

∞

0
f dWt = 0 . (9)

(iii) (Itô isometry)

E
(∫

∞

0
f (t,ω)dWt

)2

= E
∫

∞

0
f 2(t,ω)dt. (10)

Exercise 7.2. Show these properties, by showing they are true for adapted step functions, and then show they
must be true in the limit (8).

4The theorem says that if a sequence of random variables {Xn} is a Cauchy sequence, meaning that Xn−Xm
γ−→ 0 as n,m→∞, where

γ is any of the stochastic modes of convergence, then ∃ X such that Xn
γ−→ X (see e.g. Breiman (1992), Section 2.8).

8
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Another property is:

(iv) The integral It =
∫ t

0 f (s,ω)dWs can be chosen to depend continuously on t almost surely.

For a proof, see Oksendal (2005), Section 3.2.

Finally, a generalisation of the Itô isometry is

(v) For g,h ∈ V ,

E
(∫ t

0
g(s,ω)dWs

∫ t

0
h(s,ω)dWs

)
=
∫ t

0
E[g(s,ω)h(s,ω)]ds . (11)

To prove this property, apply Itô’s isometry with f = h+g.

Formally, the Itô isometry (10) and its generalisation (11) can be derived from the substitutions EdWu =
EdWv = 0, EdWudWv = δ (u−v)dudv, and the fact that g(u),h(v) are adapted, so they are each independent
of dWu, dWv respectively. That is, write

E
[(∫ t

0
g(u)dWu

)(∫ t

0
h(v)dWv

)]
=
∫ t

0

∫ t

0
E[g(u)h(v)dWudWv] .

Now decompose the integrand into different pieces, depending on the relationship between u,v. Since
1v<u(u,v)+1u<v(u,v)+1u=v(u,v)= 1, where 1A(u,v) is the indicator function for set A, we can write

E[g(u)h(v)dWudWv] = E[g(u)h(v)1v<u(u,v)dWudWv]+E[g(u)h(v)1u<v(u,v)dWudWv]

+E[g(u)h(v)1u=v(u,v)dWudWv] .

Therefore,∫ t

0

∫ t

0
E[g(u)h(v)dWudWv] =

∫ t

0

∫ t

0
(Eg(u)h(v))δ (u− v)dudv+

∫ t

0

∫ t

0
(Eg(u)h(v)1u<vdWu)(EdWv)

+
∫ t

0

∫ t

0
(Eg(u)h(v)1v<udWv)(EdWu)

=
∫ t

0
(Eg(u)h(u))du .

7.4 Itô formula

We can finally begin to make sense of the “stochastic” ODE (1). Rewrite the equation as

dXt = b(t,Xt)dt +σ(t,Xt)dWt , (12)

to see that Xt should be the solution to the following integral equation:

Xt = X0 +
∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs. (13)

In practice, one usually writes (12), to mean (13). A solution to (13) is called a diffusion process. We will
study equations of this form much more in the coming lectures. We may also consider the more general
equation

Xt = X0 +
∫ t

0
b(s,ω)ds+

∫ t

0
σ(s,ω)dWs (14)

9
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where b,σ ∈ V . A solution to (14) is called an Itô process. Clearly, a diffusion process is a particular kind
of Itô process.

Suppose we have an Itô process Xt , and suppose Yt = g(t,Xt). What equation does Yt satisfy?

If the rules of classical calculus were satisfied, we would write dYt
dt = ∂g

∂ t +
∂g
∂x

dXt
dt and so

(Incorrect!) dYt =
∂g
∂ t

(t,Xt)dt +
∂g
∂x

(t,Xt)b(t,ω)dt +
∂g
∂x

(t,Xt)σ(t,ω)dWt . (15)

We saw in Example 7.2 that this chain rule doesn’t hold for Itô integrals. Therefore, we need to develop a
new version of the chain rule that works for the Itô integral.

Itô formula. Let Xt be the solution to

dXt = b(t,ω)dt +σ(t,ω)dWt ,

where b,σ are adapted functions. Given g ∈C2([0,∞)×R), the process Yt = g(t,Xt) solves the equation

dYt =
∂g
∂ t

(t,Xt)dt +
∂g
∂x

(t,Xt)dXt +
1
2

∂ 2g
∂x2 (t,Xt)(dXt)

2 , (16)

where (dXt)
2 is computed according to the rules

dt ·dt = dt ·dWt = dWt ·dt = 0, dWt ·dWt = dt.

Specifically,

dYt =

(
∂g
∂ t

(t,Xt)+
∂g
∂x

(t,Xt)b(t,ω)+
1
2

∂ 2g
∂x2 (t,Xt)σ

2(t,ω)

)
dt +

∂g
∂x

(t,Xt)σ(t,ω)dWt . (17)

Compared to the chain rule from classical calculus (15), the Itô formula includes an extra drift term 1
2 σ2 ∂g

∂x dt.

Roughly, the Itô formula comes from Taylor-expanding g(t,Xt) near some point (t,x):

∆Y =
∂g
∂ t

∆t +
∂g
∂x

∆X +
1
2

∂ 2g
∂x2 (∆X)2 +

1
3!

∂ 3g
∂x3 (∆X)3 + . . .

To approximate ∆Y to O(∆t), one must account for the fact that ∆W ∼ O(∆t1/2), and therefore we must
go to second-order in the Taylor expansion to retain all the terms that are first-order in ∆t. We keep terms
involving (∆W )2 ∼ O(∆t), but throw out terms containing ∆t2 or ∆t∆W ∼ O(∆t3/2).

Example 7.4 Let Yt =
1
2W 2

t . What is dYt?

Solution. Let Xt =Wt , g(t,x) = 1
2 x2, Yt = g(t,Xt) =

1
2W 2

t . We know that dXt = dWt . Then

dYt =
∂g
∂x

dXt +
1
2

∂ 2g
∂x2 (dXt)

2 = XtdXt +
1
2
(dXt)

2 =WtdWt +
1
2

dt .

Let’s solve this equation to check its consistency.

Yt =
∫ t

0
WsdWs +

∫ t

0

1
2

ds =
1
2

W 2
t −

1
2

t +
1
2

t =
1
2

W 2
t .

We obtain the correct formula for Yt . ./
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Example 7.5 Let Yt = eWt . What is dYt?

Solution. Here g(t,x) = ex, so Itô’s formula yields

dYt =
∂g
∂x

dWt +
1
2

∂ 2g
∂x2 (dWt)

2 =
1
2

eWt dt + eWt dWt =
1
2

Ytdt +YtdWt .

Notice the extra drift term 1
2Ytdt that arises in Itô calculus. ./

Sketch proof of Itô’s formula. (from E et al. (2014)) Assume that g,gt ,gx,gxx,gxxx are bounded, and that b,σ
are bounded adapted step functions. When they aren’t, take limits of adapted step functions.5 Let’s show
Itô’s formula for g = g(x); the proof for g = g(t,x) is very similar. We show Itô’s formula on a bounded time
interval [0,T ].

Let {ti}N
i=1 be a partition of [0,T ]. Without loss of generality we can assume the discontinuities of b,σ lie

on the grid points of the partition.We have

Yt −Y0 = ∑
j

g(Xt j+1)−g(Xt j) ,

which holds exactly when b,σ are step functions, so by Taylor-expanding g(Xt j+1) about point Xt j , we obtain

Yt −Y0 = ∑
j

g(Xt j+1)−g(Xt j) = ∑
j

g′(Xt j)∆Xt j︸ ︷︷ ︸
Term 1

+
1
2

g′′(Xt j)(∆Xt j)
2︸ ︷︷ ︸

Term 2

+R j

 .

Here ∆Xt j = Xt j+1 −Xt j , and R j = o(|∆Xt j |2) is a remainder term in the Taylor expansion of g. It is bounded
by max(∂xg,∂xxg)

(
(∆t j)

3 +(∆t j)
2∆Wj +∆t j(∆Wj)

2 +(∆Wj)
3
)
, hence ∑ j R j can be shown to go to zero as

sup j ∆t j→ 0, using the same techniques as used in what follows.

Let’s estimate each of the remaining terms. Since b,σ are step functions, we have that ∆Xt j = b(t j)∆t j +
σ(t j)∆Wt j , without making any approximation. (When they aren’t step functions, then Taylor-expand them,
and bound the remainder terms.) Therefore

Term 1 = ∑g′(Xt j)b(t j)∆t j +∑
j

g′(t j)σ(t j)∆Wt j

m.s.−−→
∫ t

0
b(s)g′(Xs)ds+

∫ t

0
σ(s)g′(Xs)dWs as sup

j
|∆t j| → 0,

by the definition of the Itô integral. This gives us part of (16). For the second term:

Term 2 = ∑
j

g′′(Xt j)
(
b2(t j)(∆t j)

2 +2b(t j)σ(t j)∆t j∆Wt j +σ
2(t j)(∆Wt j)

2) .
5For a full proof, see Ikeda and Watanabe (1981) or Karatzas and Shreve (1991).
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Let’s bound some of these terms. Let K be a bound for b,σ ,g′′ on [0,T ].∣∣∣∣∣∑j
g′′(Xt j)b

2(t j)(∆t j)
2

∣∣∣∣∣≤ K ∑
j
|∆t j|2 ≤ KT sup

j
∆t j→ 0 a.s..∣∣∣∣∣∑j

g′′(Xt j)b(t j)σ(t j)∆t j∆Wt j+1

∣∣∣∣∣≤ K ∑
j
|∆t j∆Wt j | ≤ KT sup

j
|∆Wt j | → 0 a.s..

The fact that sup j |∆Wt j | → 0 as sup j |∆t j| → 0 follows from the Law of the Iterated Logarithm. Finally, we
have that

∑
j

g′′(Xt j)σ
2(t j)(∆Wt j)

2 m.s.−−→
∫ t

0
σ

2(s)g′′(Xs)ds as sup
j
|∆t j| → 0.

Put this all together to get the result.

7.5 Itô calculus in higher dimensions

We may wish to calculate integrals that depend on several independent Brownian motions, such as
∫

W (2)
t dW (1)

t ,∫
eW (1)

t +W (2)
t dW (3)

t , etc. The Itô integral can be extended to this case.

Definition. Let Wt =(W (1)
t , . . . ,W (n)

t )T be an n-dimensional Brownian motion. Let M =M(t,ω) be a matrix-
valued process that is adapted to Wt . The multi-dimensional Itô integral of M is

∫ T

S
MdWt =

∫ T

S

 M11 M12 · · · M1n
...

Mm1 · · · Mmn




dW (1)
t
...

dW (n)
t

 (18)

That is, the integral is a vector whose kth component is ∑
n
j=1
∫ T

S Mk j(s,ω)dW ( j)(s,ω).

Itô’s formula can be extended to higher dimensions.

Itô formula (Multidimensional). Let Xt solve

dXt = b(t,ω)dt +σ(t,ω)dWt ,

where Xt ,b ∈ Rn, σ ∈ Rn×m, Wt ∈ Rm, and b,σ are adapted to Wt . Let Yt = f (Xt), where f ∈C2(Rn). Then

dYt = ∇ f (Xt) ·dXt +
1
2
(dXt)

T
∇

2 f (Xt) dXt , (19)

where ∇2 f =
(

∂ 2 f
∂xi∂x j

)
i, j

is the Hessian matrix of f , and products of increments are evaluated using the rules

following (16) plus the additional rule

dW (i)
t ·dW (i)

t = dt , dW (i)
t ·dW ( j)

t = 0 for i 6= j .

Therefore Yt solves the equation

dYt =

(
b ·∇ f +

1
2

σσ
T : ∇

2 f
)

dt +(∇ f )T
σ dWt ,

where A : B = Tr(AT B) = ∑i, j Ai jBi j.
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Proof. Very similar to the 1d case.

Exercise 7.3. Give a heuristic justification for (19), based on Taylor-expansion as in the example in the
previous section.
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