
Lecture 8: Stochastic Differential Equations

Readings

Recommended:

• Pavliotis (2014) 3.2-3.5
• Oksendal (2005) Ch. 5

Optional:

• Gardiner (2009) 4.3-4.5
• Oksendal (2005) 7.1,7.2 (on Markov property)
• Koralov and Sinai (2010) 21.4 (on Markov property)

In this lecture we will study stochastic differential equations (SDEs), which have the form

dXt = b(Xt , t)dt +σ(Xt , t)dWt , X0 = ξ (1)

where Xt ,b∈Rn, σ ∈Rn×n, and W is an n-dimensional Brownian motion. The initial condition ξ is assumed
indepedent of W . We write the solution as X = (Xt)t≥0. An SDE may equivalently be written as

dx
dt

= b(x, t)+σ(x, t)η(t)

where η(t) is a white noise: a stationary Gaussian process with mean 0 and covariance function Eη(s)η(t)=
δ (t− s). Recall that (1) is short-hand for the integral equation

Xt =
∫ t

0
b(Xs,s)ds+

∫ t

0
σ(Xs,s)dWs +ξ . (2)

Each term in (1) has a different interpretation.

• The term b(Xt , t)dt is called the drift term. It describes the deterministic part of the equation. When
this is the only term, we obtain an ODE.

• The term σ(Xt , t)dWt is called the diffusion term. It describes random motion proportional to a Brow-
nian motion. Over small times, this term causes the probability to spread out diffusively with a diffu-
sivity locally proportional to σ2.

Often we will consider time-homogeneous SDEs, where b,σ only depend on x. Any time-inhomogeneous
SDE can be converted to a time-homogeneous one by introducing an additional variable Y = t.

If the diffusion term is constant in x, i.e. ∂σ

∂x = 0, then the noise is said to be additive. If the diffusion term
depends on x, ∂σ

∂x 6= 0, the noise is said to be multiplicative. Equations with multiplicative noise have to be
treated more carefully then equations with additive noise.

We learned how to define the integrals in the expressions above last class. In this one we’ll look at properties
of the solutions themselves. We will ask: when do solutions exist? Are they unique? And how can we
actually solve them, to extract useful information?
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8.1 Existence and uniqueness

Theorem. Given equation (1), suppose b ∈Rn, σ ∈Rn×m satisfy global Lipschitz and linear growth condi-
tions:

|b(x, t)−b(y, t)|+ |σ(x, t)−σ(y, t)| ≤ K|x− y|
|b(x, t)|+ |σ(x, t)| ≤ K(1+ |x|)

for all x,y ∈ Rn, t ∈ [0,T ], and some constant K > 0. Assume the initial value X0 = ξ is a random variable
with Eξ 2 < ∞ and which is independent of W. Then (1) has a unique solution X, such that X is continuous
with probability 1, X is adapted1 to W, and E

∫ T
0 |Xt |2dt < ∞.

“Unique” means that if X (1),X (2) are two strong solutions, then P(X (1)(t,ω) = X (2)(t,ω) for all t) = 1. That
is, the two solutions are equal everywhere with probability 1. This is different from the statement that X (1),
X (2) are versions of each other – you should think about how.

Remark. The global Lipschitz condition and linear growth condition ask for constants K that are independent
of t. If b,σ are functions of x only, then the Lipschitz condition implies the linear growth condition. When
b,σ are also functions of t, the Lipschitz condition implies the linear growth condition only with additional
assumptions on how b,σ behave with t – for example, if they are continuous in t, or bounded in t.

This theorem bears a lot in common with similar theorems regarding the existence and uniqueness to the
solution to an ODE. Counterexamples that show the necessity of each of the conditions of the theorem that
apply to ODEs, can also be used for SDEs.

Example 8.1 To construct an equation whose solution is not unique, we drop the condition of Lipschitz
continuity. Consider the ODE

dXt = 3X2/3
t dt , X0 = 0,

which has solutions Xt =

{
0 t ≤ a,
(t−a)3 t > a

, for any a > 0. This doesn’t violate the theorem because

b(x) = 3x2/3 is not Lipschitz continuous at 0. For a similar example involving a Brownian motion, consider

dXt = 3X1/3
t dt +3X2/3

t dWt , X0 = 0.

This has (at least) two solutions: Xt = 0, and Xt =W 3
t .

Example 8.2 To construct an equation which has no global solution, we drop the linear growth conditions.
Consider

dXt = X2
t dt, X0 = x0.

The solution is Xt =
1

1
x0
−t

, which blows up at t = 1
x0

.

Remark. In the example above, the drift b(x) = x2 is not globally Lipschitz continuous. It is locally Lips-
chitz continuous, however, which is sufficient to show uniqueness (Karatzas and Shreve (1991), Section 5
Theorem 2.5).

1Actualy we ask for something slightly stronger, namely that X be progressively measurable with respect to F , the filtration
generated by (Wt)t≥0
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Proof (Uniqueness). (Evans (2013), Section 5.B.3) Let X , X̂ be two strong solutions to (1). Then for 0≤ t ≤
T ,

Xt − X̂t =
∫ t

0

(
b(Xs,s)−b(X̂s,s)

)
ds+

∫ t

0

(
σ(Xs,s)−σ(X̂s,s)

)
dWs .

Square each side, use (a+b)2 ≤ 2a2 +2b2, and take expectations to get

E|Xt − X̂t |2 ≤ 2E
∣∣∣∣∫ t

0

(
b(Xs,s)−b(X̂s,s)

)
ds
∣∣∣∣2 +2E

∣∣∣∣∫ t

0

(
σ(Xs,s)−σ(X̂s,s)

)
dWs

∣∣∣∣2 .

We estimate the first term on the right-hand side using the the Cauchy-Schwarz inequality
∣∣∫ t

0 f ds
∣∣2 ≤

t
∫ t

0 | f |2ds. We then use the Lipschitz continuity of b. The result is

E
∣∣∣∣∫ t

0

(
b(Xs,s)−b(X̂s,s)

)
ds
∣∣∣∣2 ≤ TE

∫ t

0

∣∣b(Xs,s)−b(X̂s,s)
∣∣2 ds≤ K2T

∫ t

0
E|Xs− X̂s|2ds .

Now we estimate the second term using the Itô isometry and the Lipschitz continuity of σ :

E
∣∣∣∣∫ t

0

(
σ(Xs,s)−σ(X̂s,s)

)
dWs

∣∣∣∣2 = ∫ t

0
E|σ(Xs,x)−σ(X̂s,s)|2ds≤ K2

∫ t

0
E|Xs− X̂s|2ds .

Putting these estimates together shows that

E|Xt − X̂t |2 ≤C
∫ t

0
E|Xs− X̂s|2ds

for some constant C, for 0≤ t ≤ T . Now we can use Gronwall’s Inequality, which says that if we are given
a function f and nonnegative numbers a,b≥ 0 such that

f (t)≤ a+b
∫ t

0
f (s)ds, then f (t)≤ aebt .

The proof is given in the appendix. Applying Gronwall’s Inequality with f (t) =E|Xt− X̂t |2 and a = 0, b =C
shows that

E|Xt − X̂t |2 = 0 for all 0≤ t ≤ T .

Therefore for each fixed t ∈ [0,T ] we have that Xt = X̂t a.s., i.e. P({ω ∈Ω : Xt(ω) 6= X̂t(ω)}) = 0. It remains
to show that Xt = X̂t for all t simultaneously, except for ω in a set of measure 0.

We can argue that Xr = X̂r for all rational 0≤ r ≤ T , almost surely. This is because for any countable set of
t-values, such as an enumeration of the rationals {t1, t2, . . .}, we have

P({ω : Xt(ω) 6= X̂t(ω) ∃ t ∈ {t1, t2, . . .}) =
⋃

i

P({ω : Xti(ω) 6= X̂ti(ω)}) = 0.

Therefore P({ω : Xt(ω) = X̂t(ω) ∀ t ∈ {t1, t2, . . .}) = 1. By assumption X , X̂ have continuous sample paths
almost surely, so we can extend the equality to all values of t using the fact that the rationals form a dense
set in R, and therefore P(Xt = X̂t ∀ t ∈ [0,T ]) = 1.
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Proof (Existence). (Evans (2013), Section 5.B.3 and Varadhan (2007), Thm 6.1 p.88) The proof is based on
Picard iteration, as for the typical ODE existence proof. For simpler notation we consider a 1-dimensional
SDE but the proof is almost identical in higher dimensions. Let the 0th iterate be X0

t = ξ , and define the
(n+1)th iterate be

Xn+1
t = X0 +

∫ t

0
b(Xn

s ,s)ds+
∫ t

0
σ(Xn

s ,s)dWs , n = 1,2, . . . , 0≤ t ≤ T.

One can verify (by induction) that Xn+t is adapted (and progressively measurable), continuous almost surely,
and has sup0≤t≤T E|Xn+1

t |2 < ∞. This implies that E
∫ T

0 |σ(Xn+1
s ,s)|2ds < ∞ so the next iterate is well-

defined. Let the mean-squared difference between successive iterates be

Dn(t) = E|Xn+1
t −Xn

t |2 .

We claim that

Dn(t)≤ (Mt)n+1

n!
for some constant M depending on K,T,ξ . We prove this by induction. For n = 0,

D0(t) = E|X1
t −X0

t |2 ≤ 2E
∣∣∣∣∫ t

0
K(1+ |ξ |)ds

∣∣∣∣2 +2E
∫ t

0
K2(1+ |ξ |2)ds ≤ tM

for some M large enough. Next assume the claim holds for n−1, and calculate

Dn(t) = E
∣∣∣∣∫ t

0
(b(Xn

s ,s)−b(Xn−1
s ,s))ds+

∫ t

0
(σ(Xn

s ,s)−σ(Xn−1
s ,s))dWs

∣∣∣∣2
≤ 2T K2E

∫ t

0
|Xn

s −Xn−1
s |2ds+2K2E

∫ 2

0
|Xn

s −Xn−1
s |2ds

following the same calculations as in the proof of uniqueness. Therefore by the induction hypothesis,

Dn(t) ≤ 2K2(1+T )
∫ t

0

Mnsn

n!
ds ≤ (Mt)n+1

n!
,

provided M ≥ 2K2(1+T ).

Now, using the triangle inequality on norm ‖ f‖L2(P) = (E f 2)1/2 gives that

‖ sup
0≤t≤T

|Xn+1
t −Xn

t |‖L2(P) ≤ ‖ sup
0≤t≤T

|Y n
t |‖L2(P)+‖ sup

0≤t≤T
|Zn

t |‖L2(P),

where

Y n
t =

∫ t

0
(σ(Xn

s ,s)−σ(Xn−1
s ,s))dWs, Zn

t =
∫ t

0
(b(Xn

s ,s)−b(Xn−1
s ,s))ds .

We bound the first term using Doob’s maximal inequality (a variant of Doob’s martingale inequality),
which says that, given a process M = (Mt)t≥0 which is a martingale2 with respect to W , we have that

2E|Mt |< ∞ and E(Mt |(Wu)0≤u≤s) = Ms for all s≤ t.
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‖sup0≤s≤t Ms‖L2(P) ≤ 2‖Mt‖L2(P). Applying this inequality to Y n
t , which can be shown to be a martingale,

gives

‖ sup
0≤t≤T

|Y n
t |‖L2(P) ≤ 2‖Y n

T ‖L2(P) = 2
(
E
∫ T

0
|σ(Xn

s ,s)−σ(Xn−1
s ,s)|2ds

)1/2

≤ 2K
(∫ T

0
E|Xn

s −Xn−1
s |2ds

)1/2

= 2K
(∫ T

0
Dn−1(s)ds

)1/2

≤C

√
(MT )n

n!
by the claim,

for some constant C. Using Cauchy-Schwartz and other familiar calculations, one can show that

‖ sup
0≤t≤T

|Zn
t |‖L2(P) ≤ A

(∫ T

0
Dn−1(s)ds

)1/2

≤C

√
(MT )n

n!
,

for some constant A and then some constant C.

Therefore,

∑
n

∥∥∥∥ sup
0≤t≤T

|Xn+1
t −Xn

t |
∥∥∥∥

L2(P)

< ∞ ,

so ∑n Xn+1
t −Xn

t converges uniformly on every finite interval. Therefore Xn converges to a limit X , which is
adapted (and progressively measurable), and almost surely continuous. One can check that X is a solution to
(1), by passing to the limit in the integrals defining Xn. Finally, one can verify that E

∫ T
0 X(t)2dt < ∞ using

induction to obtain E|Xn+1(t)|2 ≤C(1+E|ξ 2|)eCt , then the same bound for E|X(t)|2 (see Evans (2013)).

8.2 Examples of SDEs and their solutions

Example 8.3 (Ornstein-Uhlenbeck process) Let a,σ ∈ R be constants, and let Xt ∈ R. The Ornstein-
Uhlenbeck process (OU process) is the solution X to

dXt =−aXtdt +σdWt , X0 = ξ , (3)

where ξ is independent of (Wt)t≥0.

Here are some examples of simulated trajectories with α = σ = 1 and initial condition ξ = 5:
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The process initially decays exponentially quickly, and when it gets close to zero it fluctuates around zero.

Let’s solve explicitly for the solution. Multiply both sides by eat and integrate from 0 to t:

eatdXt +aeatXtdt︸ ︷︷ ︸
=d(eat Xt )

= σeatdWt ⇒ eatXt −X0 =
∫ t

0
σeasdWs .

This gives solution

Xt = e−atX0 + σ

∫ t

0
e−a(t−s)dWs . (4)

The first term shows the initial condition is “forgotten” exponentially quickly. The second term represents
the stochastic fluctuations, and is similar to the convolution of an exponential kernel with Brownian motion,
e−at ∗Wt , except the convolution only looks at values in the past. This term is Gaussian, since it is a linear
functional applied to a Gaussian process. Hence, if X0 is Gaussian, then X is Gaussian.

From (4) we can calculate the moments of Xt . The mean is

EXt = e−atEX0.

The mean decays exponentially to 0, EXt → 0 as t→ ∞. The covariance is

B(s, t) = EXsXt −EXsEXt = e−ase−at(EX2
0 − (EX0)

2)+σ

∫ s

0

∫ t

0
e−a(t−v)e−a(s−u) EdWudWv︸ ︷︷ ︸

=δ (u−v)dudv

= e−a(s+t)Var(X0)+σ
2
∫ s∧t

0
e−a(s−u)e−a(t−u)du

= e−a(s+t)Var(X0)+
σ2

2a
e−a(s+t)

(
e2a(s∧t)−1

)
= e−a(s+t)Var(X0)+

σ2

2a

(
e−a|s−t|− e−a(s+t)

)
.

If s, t → ∞ with s− t fixed, the covariance approaches B(s, t)→ σ2

2a e−a|s−t|, the covariance function for a
weakly stationary process.

Now, consider what happens if we take the distribution of X0 to be normal, with the long-time mean and
variance, X0 ∼ N(0, σ2

2a ). The mean and covariance at all times are

EXt = 0 , B(s, t) =
σ2

2a
e−a|s−t| .

We obtain a weakly stationary process. Since X is Gaussian, it is also strongly stationary. Since it is strongly
stationary, the one-point distributions are constant with time. Therefore Xt ∼ N(0, σ2

2a ) for all t ≥ 0. Such a
distribution, which doesn’t change with time, is called a stationary distribution. We found it here by a clever
guess, but later we will learn a systematic way to find stationary distributions.

It turns out the Ornstein-Uhlenbeck process with initial condition as above is the only process that is station-
ary, Markov, Gaussian, and that has continuous paths. It comes up in a lot of models, since it arises from
linearizing many SDEs.
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Example 8.4 (Geometric Brownian Motion) Consider the equation one-dimensional SDE

dNt = rNtdt +αNtdWt , N0 = ξ . (5)

This process, called a Geometric Brownian motion (GBM), models for example population growth, where
Nt is the population size at time t, r is the average growth rate, and αdWt captures fluctuations in the growth
rate. It also models the stock market, where Nt is the price of an asset, r is the interest rate, and α is the
volatility. The difference from the OU process is in the diffusion term – now the noise is multiplicative.

To solve (5) divide by Nt :
dNt

Nt
= rdt +αdWt .

It would be nice to write the LHS as d(logNt) but we can’t, since we need to use Itô’s formula. Instead, we
calculate

d(logNt) =
1
Nt

dNt −
(dNt)

2

2N2
t

=
1
Nt

dNt −
α2

2
dt .

Now substitute for dNt using the equation to get

d(logNt) = (r− α2

2
)dt +αdWt .

Integrate and take the exponential to find the solution as

Nt = N0e(r−
α2
2 )t+αWt . (6)

Let’s look at properties of this solution. First, let’s calculate the mean, ENt . It is possible to calculate this
from (6) (see Exercise 8.1) but a simpler calculation starts with (5) directly, writes it in integral form, takes
the expectation, and uses the nonanticipating property, to obtain an integral equation,

ENt =
∫ t

0
rENsds+EN0 .

This equation can be solved by taking the time derivative and solving the corresponding ODE, to obtain

ENt = (EN0)ert . (7)

Therefore, the mean grows with the average growth rate.

Exercise 8.1. Another way to derive (7) is to find the mean of Yt = eαWt , by calculating dYt to express Yt as

an Itô integral, and then using the non-anticipating property. Do this, to show that EYt = e
α2
2 t .

What happens to the trajectories themselves? Do they also increase with the average rate? Recall the Law
of the Iterated Logarithm, which says that

lim sup
t→∞

Wt√
2t log log t

= 1 a.s. .

This implies that the supremum of eαWt grows as eα
√

2t log log t as t → ∞, which is slower than linear in
the exponential. Therefore the trajectory behaviour depends on the deterministic growth rate r− α2

2 in the
exponential:
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Figure 1: Trajectories of GBM with different parameters. Left: r > α2/2, so that Nt → ∞ a.s.. Right:
r < α2/2, so that Nt → ∞ a.s.. However, ENt → 0 almost surely, which is possible because trajectories
exhibit rare but excursions to large values. Each plot shows 6 independent trajectories.

• If r > α2

2 , then Nt → ∞ a.s. as t→ ∞.

• If r < α2

2 , then Nt → 0 a.s..

• If r = α2

2 , then Nt will fluctuate between values that are arbitrarily large and arbitrarily close to zero,
a.s..

Notice that the mean and the trajectory do not always behave the same way at ∞. If 0< r < α2

2 , then ENt→∞

while Nt → 0 a.s.! This apparent paradox arises because increasingly large (but rare) fluctuations dominate
the expectation (Figure 1). It is worth pausing to think about this.

Example 8.5 (Stochastically forced harmonic oscillator)

Consider an ODE for a forced, damped harmonic oscillator X :

m
d2Xt

dt2 + kXt + γ
dXt

dt
= f (t) . (8)

Here m is the oscillator’s mass, k is its spring constant, γ is a damping coefficient modeling frictional damp-
ing, and f (t) is the external forcing. The oscillator X could represent for example the angle of a pendulum,
such as a swing, under small perturbations from its rest state.

From mechanics, we know that when an undamped (γ = 0) harmonic oscillator is forced periodically,
f (t) = sinλ t, then when the forcing frequency does not equal the resonant frequency, λ 6= k̃ =

√
k/m,

the oscillations will be bounded, and usually quite small – if you pump your legs on a swing too quickly or
too slowly, the swing doesn’t move very much. However, when the frequency of the forcing exactly equals
the resonant frequency, f (t) = sin(k̃ t), the oscillations will grow without bound – on a frictionless swingset,
you could make the swing go all the way around the swingset.

What happens when the forcing is stochastic? If you pump your legs completely at random, will you swing?

We answer this by letting f (t) = ση(t), where η(t) is a white noise, and finding the solution to (8). This

8
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Figure 2: Trajectories of a harmonic oscillator, both without (left, γ = 0) and with (right, γ 6= 0) damping.
Each plot shows 4 independent solutions to (8), over a time period equal to 10 natural periods (T = 10 ·2π/k),
with parameters given in the title.

equation is a second-order ODE but we can write it as an SDE by letting Vt =
dXt
dt :

dXt =Vtdt
mdVt = (−kXt − γVt)dt +σdW2

=⇒ d
(

Xt
Vt

)
=

(
0 1
− k

m − γ

m

)
︸ ︷︷ ︸

−A

(
Xt
Vt

)
dt +

(
0 0
0 σ

m

)
︸ ︷︷ ︸

B

(
dW (1)

t

dW (2)
t

)
.

This equation has the form
dUt =−AUtdt +BdWt ,

where U =

(
Xt
Vt

)
, Wt =

(
W (1)

t

W (2)
t

)
, and A, B are constant matrices. This is a 2-dimensional Ornstein-

Uhlenbeck process. We can solve it in the same way as in Example 8.3, using an integrating factor:

d(eAtUt) = eAtdUt +AeAtUt

= eAt(−AUtdt +BdWt)+AeAtUt

= eAtBdWt

⇒ Ut = e−AtU0 +
∫ t

0
e−A(t−s)BdWs.

Consider how the solution behaves under different assumptions on the damping.

• Case γ = 0 (no damping). Then A has eigenvalues λ = ±ik̃ and corresponding eigenvectors u1 =
(1,−ik̃)T , u2 = (1, ik̃)T . Then eAt =UeDtU−1, with U = (u1 u2), D = diag(ik̃,−ik̃). Therefore

eAt =

(
cos k̃t − 1

k̃
sin k̃t

−k̃ sin k̃t cos k̃t

)
.

If the oscillator initially starts at rest, X0 = 0, X ′0 = 0, then

Xt =
σ

mk̃

∫ t

0
sin k̃(s− t)dW (2)

t .
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Figure 3: Spectral density for a stationary swing, with small damping (γ small, left), and large damping γ

large, middle). Right: trajectories with large damping parameter.

What happens to this solution as t → ∞? We claim it grows without bound. To see why, calculate
the variance of the solution, observing first that EXt = 0 by the nonanticipating property of the Itô
integral. The variance therefore is

EX2
t =

σ

mk̃

∫ t

0
(sin k̃(s− t))2ds (Itô isometry)

=
σ

mk̃

(
t
2
− sin2k̃t

4k̃

)
∼ σ

mk̃
t
2

→ ∞ as t→ ∞.

A stochastically forced swingset will swing! If you pump your legs completely at random, you can
make a frictionless swing go as high as you want. It is somewhat remarkable that although you are
forcing all frequencies equally, and all of these frequencies except one are non-resonant, you still have
enough forcing near the resonant frequency to make the oscillations grow.

• Case γ 6= 0 (with damping). In this case the eigenvalues of A have a real and imaginary part. The
real part is negative and leads to exponential damping. The imaginary part leads to oscillations, with
a frequency that is slightly shifted from the resonant frequency k̃.

Exercise 8.2. Write down the solution to (8) explicitly, when γ 6= 0.

One way to gain insight into the properties of the solution is to assume that a stationary solution
exists, to look for its covariance function C(t), and then calculate the spectral density f (λ ). To this
aim, consider (8) at times 0 and t, and multiply these equations together to get(

mX ′′t + kXt + γX ′t
)(

mX ′′0 + kX0 + γX ′0
)
= σ

2
η(t)η(0) .

Now take the expectation, and use the relationships

EX ′t X0 =−EXtX ′0 =C′(t) , EX ′t X ′0 =−C′′(t) , EXtX ′′0 = EX ′′t X0 =C′′(t) ,

EX ′′t X ′0 =−EX ′t X ′′0 =C′′′(t) , EX ′′t X ′′0 =C(4)(t) .
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These relationships are obtained by differentiating C(t) = EXt+sXs = EXsXs−t in time. We get

m2C(4)(t)+ k2C(t)− γ
2C′′(t)+2mkC′′(t) = σ

2
δ (t) .

Taking the Fourier transform of this equations gives an equation for the spectral density f (λ ):

m2
λ

4 f (λ )+ k2 f (λ )+ γ
2
λ

2 f (λ )−2mkλ
2 f (λ ) =

σ2

2π
.

Solving for f (λ ) gives

f (λ ) =
1

2π

σ2

(mλ 2− k)2 +λ 2γ2 .

This spectral density is plotted in Figure 3 for small and large damping γ . For small enough damping,

the density has a peak at λ̃ =
√

k
m −

γ2

2m2 , which is less than the resonant frequency
√

k/m. The

swing swings, with random oscillations near frequency λ̃ , but the oscillations stay bounded. For large
damping, the density is peaked at λ̃ = 0, and trajectories are much more jagged (Figure 3). Notice
that when γ = 0 the spectral density is not integrable, so we wouldn’t expect a stationary solution.

8.3 Stratonovich Integral

The Stratonovich integral is another useful stochastic integral. There is a simple formula that relates it to the
Itô integral.

Theorem. Suppose X solves the Stratonovich equation

dXt = b(t,Xt)dt +σ(t,Xt)◦dWt . (9)

Then X also solves the Itô equation

dXt =

(
b(t,Xt)+

1
2

σ(t,Xt)
∂

∂x
σ(t,Xt)

)
dt +σ(t,Xt)dWt . (10)

Conversely, suppose X solves the Itô equation

dXt = b(t,Xt)dt +σ(t,Xt)dWt . (11)

Then X also solves the Stratonovich equation

dXt =

(
b(t,Xt)−

1
2

σ(t,Xt)
∂

∂x
σ(t,Xt)

)
dt +σ(t,Xt)◦dWt . (12)

Therefore, a Stratonovich SDE is equivalent to an Itô SDE with an additional drift term. The drift arises
only when the noise is multiplicative, and it depends on the rate of change of the magnitude of the noise.
Heuristically, there is an extra drift because the Stratonovich integral can “see” into the future so it needs to
account for the changing magnitude of the noise.

11
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Remark. To transform a Stratonovich SDE to an Itô SDE and vice versa, the diffusion term σ must be
differentiable. However, we do not need such an assumption to show existence and uniqueness of the
solutions to the SDEs.

Proof sketch. (Pavliotis (2014), p.62.) Here is a sketch of the proof. To make it rigorous, one needs to
control the error terms; this is left as an exercise.

Suppose X solves (9), which recall is shorthand for the integral equation

Xt =
∫ t

0
b(s,Xs)ds+

∫
σ(s,Xs)◦dWs.

The Riemann integral is unaffected by the definition of the stochastic integral. Therefore we consider how
the Stratonovich integral in the expression above, can be transformed into an Itô integral. Let {t j}n

j=0 be
a partition of [0, t] and write σ j ≡ σ(t j,Xt j) (and similarly for W,X), with increments ∆Wj = Wt j+1 −Wt j ,
∆X j = Xt j+1 −Xt j , ∆t j = t j+1− t j. Let ∆t = sup j ∆t j. The Stratonovich integral is∫ t

0
σ(s,Xs)◦dWs = m.s. lim

∆t→0
∑

j

[
σ j +σ j+1

2

]
(Wj+1−Wj) . (13)

Now we estimate σ j+1 using a Taylor expansion about σ j, keeping only terms up to O(
√

∆t j), since we will
be multiplying them by ∆Wj.

σ j+1 = σ j +
∂σ j

∂x
∆X j +O((∆X j)

2)

= σ j +
∂σ j

∂x

(
b j∆t j +

(
σ j +σ j+1

2

)
∆Wj +O(∆t)

)
+O(∆t j) using (9) to approximate ∆X j

= σ j +
∂σ j

∂x

(
b j∆t j +

(
σ j +σ j +

∂σ j
∂x ∆X j)

2

)
∆Wj

)
+O(∆t j) substitute for σ j+1 from first line

= σ j +
∂σ j

∂x
σ j∆Wj +O(∆t j) .

Now substitute the approximation for σ j+1 into (13) to obtain∫ t

0
σ(s,Xs)◦dWs = m.s. lim

∆t→0
∑

j

(
σ j +

1
2

∂σ j

∂x
σ j∆Wj

)
∆Wj + O((∆t j)

3/2)

=
∫ t

0
σ(s,Xs)dWs +

∫ t

0

1
2

∂σ(s,Xs)

∂x
σ(s,Xs)ds .

This gives us the extra drift term in (10). Therefore X also solves the Itô equation (10).

Example 8.6 (Geometric Brownian Motion, revisited) Consider the Stratonovich equation

dNt = rNtdt +αNt ◦dWt .

This is equivalent to the Itô equation

dNt = (r+
1
2

α
2)Ntdt +αNtdWt ,

12
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whose solution we found earlier to be Nt = N0ert+αWt . This is also the solution we would have found using
the regular chain rule, d(logNt) = dNt/Nt .

Why use the Stratonovich integral? There are several advantages:

• The regular chain rule holds, i.e. d f (Xt) = f ′(Xt) ◦ dXt . We will investigate this more on the home-
work.

• If you start with smooth, non-white noise in a one-dimensional ODE, and take a limit to make the
noise white, you typically end up with a Stratonovich integral. That is, consider an ODE of the form

dxε

dt
= b(xε , t)+σ(xε , t)ξ ε(t) ,

where ξ ε is a family of stationary stochastic processes parameterized by ε > 0, and such that as ε→ 0
their covariance functions approach the covariance function for white noise, Cε(t)→ δ (t). Then xε(t)
approaches the solution to the Stratonovich SDE dXt = b(Xt , t)+σ(Xt , t)◦dWt . (See Pavliotis (2014),
Section 5.1, for an example where ξ ε is a family of Ornstein-Uhlenbeck processes, and see Evans
(2013), p.119, for an example with general ξ ε where the solution to the SDE can be worked out
explicitly.)

• If you restrict your process to lie on a submanifold of Rn, the most natural way to do this is through
the Stratonovich integral. For example, “Brownian motion” on the surface of a d-dimensional sphere
is the solution to

dXt = P(Xt)◦dBt ,

where B ∈ Rd is a d-dimensional Brownian motion and P(x) is the orthogonal projection matrix onto
the tangent space to the surface of the unit sphere at point x on the unit sphere.

What are the disadvantages?

• The Itô isometry no longer holds.
• The non-anticipating property no longer holds; the Stratonovich integral “looks into the future.”

These losses make rigorously analyzing the Stratonovich integral significantly harder. Mathematically, the
Itô integral is a “martingale” but the Stratonovich integral is not; since there are many powerful tools de-
veloped for matingales it is more convenient to use the Itô integral to develop the theory of diffusion pro-
cesses.

Does it matter which integral you use? Not really – you can usually convert from one to the other.

In multiple dimensions the conversion is given as follows

Theorem. Given Xt ,Wt ,b ∈ Rn, σ ∈ Rn×m. The Stratonovich equation

dXt = b(t,Xt)dt +σ(t,Xt)◦dWt (14)

is equivalent to the Itô equation

dXt = (b(t,Xt)+h(t,Xt))dt +σ(t,Xt)dWt . (15)

The additional drift term is

h =
1
2
(
∇ · (σσ

T )−σ∇ ·σT ) , with components hi =
1
2

n

∑
j=1

m

∑
k=1

σ jk
∂σik

∂x j
. (16)

13
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The additional drift also satisfies the relationship h · v = 1
2 σT : ∇(σT v) for all v ∈ Rn.

Example 8.7 To apply the Itô -Stratonovich conversion, it is very important that Xt solves an SDE – the
coefficients of the equation, must depend only on Xt , t and not on any other processes. For example, suppose
you are given the following one-dimensional equation:

dYt = b(Xt)◦dWt , where dXt = α(Xt)dt +β (Xt)dWt . (17)

(The same Brownian motion is used for both processes.) It is tempting, but wrong, to convert the equation
for Yt to Itô form using the conversion rule for a one-dimensional diffusion, as

(Incorrect!) dYt =
1
2

b′(Xt)b(Xt)dt +b(Xt)dWt .

In fact, the conversion rule is

dYt =
1
2

b′(Xt)β (Xt)dt +b(Xt)dWt , (18)

which can be shown using the multidimensional conversion rule.

Exercise 8.3. Derive the Itô equation (18) for Y defined in Example 8.7 above. Do this in two ways: (i) start
from a discrete approximation of the integrals, as in the derivation of the Stratonivich conversion rule; and
(ii) use the Stratonovich conversion rule for multidimensional diffusions.

Remark. Here is a more general approach to the Stratonovich integral. Given processes3 Xt ,Yt , the Stratonovich
integral is defined in terms of the Itô integral as∫ t

0
Yt ◦dXt =

∫ t

0
YtdXt +

1
2
〈X ,Y 〉t .

Here 〈X ,Y 〉t is the quadratic covariation of Xt ,Yt , defined as

〈X ,Y 〉t = m.s. lim
∆t→0

∑
j:t j<t

(X j+1−X j)(Yj+1−Yj) .

The quadratic covariation satisfies 〈X ,Y 〉t = 1
2 ([X +Y ]t − [X ]t − [Y ]t), where [X ]t = 〈X ,X〉t is the quadratic

variation of X . For an Itô process Xt =
∫ t

0 f (s)ds+
∫ t

0 g(s)dWs, we have that [X ]t =
∫ t

0 g2(s)ds.

Consider Example 8.7. To apply this formalism we must calculate 〈b(X),W 〉t . Defining Zt = b(Xt), we have
from the Itô formula that

Zt =
∫ t

0
(b′(Xs)α(Xs)+

1
2

b′′(Xs)β
2(Xs))ds+

∫ t

0
b′(Xs)β (Xs)dWt .

The quadratic covariation is 〈Z,W 〉t =
∫ t

0 b′(Xs)β (Xs)ds, giving

Yt = Y0 +
∫ t

0
b(Xt)dWt +

1
2

∫ t

0
b′(Xs)β (Xs)ds ⇔ dYt = b(Xt)dWt +

1
2

b′(Xt)β (Xt)dt .

3Xt ,Yt must be continuous semimartingales, with respect to the filtration generated by Wt . A process Xt is a semimartingale if it
can be decomposed as Xt = Mt +At , where Mt is a local martingale, and At is a progressively measurable process of locally bounded
variation.

14
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8.4 Appendix

Theorem (Gronwall’s Inequality). Let φ(t), b(t)≥ 0 be nonnegative, continuous functions defined for 0≤
t ≤ T , and let a≥ 0 be a constant. If

φ(t)≤ a+
∫ t

0
b(s)φ(s)ds for all 0≤ t ≤ T ,

then
φ(t)≤ ae

∫ t
0 b(s)ds for all 0≤ t ≤ T .

Proof. (Theorem and proof as stated in Evans (2013), section 5.B.3) Let Φ(t) = a+
∫ t

0 b(s)φ(s)ds. Then
Φ′ = bφ ≤ bΦ, so (

e−
∫ t

0 bds
Φ

)′
= (Φ′−bΦ)e−

∫ t
0 bds ≤ (bφ −bφ)−

∫ t
0 bds = 0 .

Therefore
Φ(t)e−

∫ t
0 bds ≤Φ(0) = a =⇒ φ(t)≤Φ(t)≤ ae

∫ t
0 bds .
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