
Lecture 9: Numerically solving SDEs

Readings

Recommended:

• Pavliotis [2014] Section 5.2
• Hingham [2001] – a short, simple introduction to numerically solving SDEs. It is recommended that

you read this after first trying the homework – then you can read it for clues / more background.

Optional:

• Kloeden and Platen [1999] – lots. This is the canonical textbook on numerically solving SDEs.
See e.g.:

– Ch. 5 (Itô-Taylor expansion),
– Ch 6.3 (a version of stochastic stability),
– Ch. 8 (a discussion of numerical methods for deterministic equations),
– Ch. 9 (numerical discretization of SDEs, and convergence notions),
– Ch. 10+ (a detailed discussion of specific schemes.)

Unlike the SDEs we studied last class, most SDEs don’t have explicit analytical solutions. One way to gain
information about them is to simulate them numerically. This gives only an approximation to the “true”
solutions, so the mathematical issue is to understand how close this approximation is, and to invent schemes
that approximate it more closely, given finite computational resources.

This lecture will be an introduction to the major schemes and considerations in numerical SDEs. We’ll see
a lot in common with numerically solving deterministic ODEs. On top of an ODE, we have stochasticity,
which one might expect would make the topic of numerical methods even richer. However, as we’ll see, this
stochasticity will mean that fancy high-order numerical methods are usually too hard to implement, so we’ll
end up studying only some fairly simple numerical methods that are widely used in practice.

The bible on the topic is Kloeden and Platen [1999]. A short, basic review article (Hingham [2001]) has also
been posted to the website. It is highly recommended that you read this – though it may be pedagogically
better to try to homework first, and read it if/when you get stuck.

9.1 Stochastic Itô -Taylor Expansion to derive basic schemes

We’ll start by considering the one-dimensional SDE

dXt = b(Xt)dt +σ(Xt)dWt (1)

with initial condition X0, over the interval t ∈ [0,T ]. A simple scheme comes from approximating the Itô
integral as a sum of step functions, as in the construction of the Itô integral (Lecture 7).

Definition (Euler-Maruyama (EM) Scheme). Discretize time as 0= t0 < t1 < · · ·< tN = T with ti+1−ti =∆t.
Let Yn be a numerical approximation to Xtn , calculated recursively as

Yn+1 = Yn +b(Yn)∆t +σ(Yn)δWn, (2)
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where δWn ∼ N(0,∆t) are i.i.d. random variables. Set Y0 = X0 if X0 is deterministic, otherwise choose
the initial condition to be sufficiently close to the desired one, e.g. E(|X0−Y ∆t

0 |2)1/2 ≤C(∆t)1/2 for some
constant C.

Remark. The random variable δWn can be replaced by a random variable with the same mean and variance,
such as a uniform random variable, or ξ = ±

√
∆t, which can be faster than generating Gaussian random

variables. This causes the solution to lose certain strong, pathwise convergence properties as ∆t→ 0, but its
statistical properties will converge at the same order, which is sufficient for many applications.

The Euler-Maruyama scheme is the most widely-used scheme, but also the least accurate. To derive better
methods we turn to the stochastic Itô -Taylor expansion. It is simplest to first introduce this method in the
deterministic setting, for the solution of an ODE. Suppose Xt solves

dXt

dt
= a(Xt) , (3)

where a(x) is a function with plenty of bounded, continuous derivatives. Write (3) in integral form as

Xt = X0 +
∫ t

0
a(Xs)ds. (4)

We need to approximate a(Xs) over a small interval [0, t]. We do this using the following observation. For
any continuously differentiable function f , the chain rule and (3) imply d

dt f (Xt) = a(Xt)
∂ f (Xt )

∂x , so

f (Xt) = f (X0)+
∫ t

0
L f (Xs)ds , where L = a(x)

∂

∂x
. (5)

We use this identity to rewrite a(Xs) in (4). Choosing f = a in (5) gives

a(Xs) = a(X0)+
∫ s

0
L a(Xs)ds.

Substituting into (4) gives

Xt = X0 +a(X0)
∫ t

0
ds+

∫ t

0

∫ s

0
L a(Xu)duds. (6)

and therefore
Xt = X0 +a(X0)t +R2 , R2 =

∫ t

0

∫ s

0
L a(Xu)duds.

If we ignore R2 (which we can do for example if |L a(x)| ≤ K, so |R2| ≤ 1
2 Kt2 � a(X0)t for small t), we

obtain a forward Euler approximation for Xt .

To get a better approximation, we continue the expansion, this time choosing f = L a in (5) to approximate
L a(Xu). This gives

Xt = X0 +a(X0)
∫ t

0
ds+L a(X0)

∫ t

0

∫ s

0
duds+R3, R3 =

∫ t

0

∫ s

0

∫ u

0
L 2a(Xv)dvduds.

If we ignore R3 we obtain another approximation for Xt . In general, we can approximate Xt up to any order
by writing

Xt = X0 +
r

∑
m=1

tm

m!
L ma(X0)+Rr+1, Rr+1 =

∫ t

0
· · ·
∫ sr

0
L r+1a(Xs1)ds1 · · ·dsr+1. (7)
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This is the Taylor formula in integral form. It expresses Xt as a function of only X0, t, and a remainder
term.

Now let’s consider the Stochastic Itô-Taylor expansion. Consider the SDE

Xt = X0 +
∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dWs. (8)

For any function f ∈C2, Itô’s formula gives

d f (Xt) =

(
b(Xt)

∂ f
∂x

(Xt)+
1
2

σ
2(Xt)

∂ 2 f
∂x2 (Xt)

)
dt +σ(Xt)

∂ f
∂x

(Xt)dWt .

Integrating gives the identity

f (Xt) = f (X0)+
∫ t

0
L0 f (Xs)ds+

∫ t

0
L1 f (Xs)dWs, (9)

where

L0 = b(x)
∂

∂x
+

1
2

σ
2(x)

∂ 2

∂x2 , L1 = σ(x)
∂

∂x
. (10)

Applying (9) to f = b and f = σ in (8) gives

Xt = X0 +b(X0)
∫ t

0
ds+σ(X0)

∫ t

0
dWs +R1, (11)

with

R1 =
∫ t

0

∫ s

0
L0b(Xz)dzds+

∫ t

0

∫ s

0
L1b(Xz)dWzds+

∫ t

0

∫ s

0
L0σ(Xz)dzdWs +

∫ t

0

∫ s

0
L1σ(Xz)dWzdWs.

If we ignore the remainder term R1 in (11) and evaluate the integrals analytically, we get the Euler-Maruyama
scheme, (2)

To derive more accurate schemes we continue the expansion. The terms in R1 have different orders in t
depending on the powers of dt,dWt . The lowest-order term in R1 is the last one,

∫ t
0
∫ s

0 L1σ(Xz)dWzdWs,
which we expect to be O(t); all other terms should be O(t3/2) or higher. Apply (9) to f = L1σ in R1 to
get

Xt = X0 +b(X0)
∫ t

0
ds+σ(X0)

∫ t

0
dWs +L1σ(X0)

∫ t

0

∫ s

0
dWzdWs +R2, (12)

where R2 is a remainder term (see Exercise 9.1). We can compute the double integral analytically:∫ t

0

∫ s

0
dWzdWs =

∫ t

0
WsdWs =

1
2
(W 2

t − t).

Substituting into (12) and ignoring R2 gives the Milstein scheme.

Definition (Milstein scheme). Discretize time as 0 = t0 < t1 < t2 < · · ·< tN = T with ti+1− ti = ∆t. Let Yn
be a numerical approximation to Xtn , calculated recursively as

Yn+1 = Yn +b(Yn)∆t +σ(Yn)δWn +
1
2

σ(Yn)σ
′(Yn)((δWn)

2−∆t) , (13)

where δWn ∼ N(0,∆t) are i.i.d. random variables.
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Figure 1: Numerical approximations of GBM dXt = rXtdt +αXtdWt using different timesteps ∆t. The same
realization of Brownian motion is used for each approximation.

Exercise 9.1. Write down the full expression for R2 in (12).

We could continue the Taylor expansion to derive schemes that are even more accurate. This would require
calculating integrals of the form

∫ t
0 dW i1

s1

∫ s1
0 dW i2

s2 · · ·
∫ sk−1

0 dW ik
sk , where i j ∈ {0,1}, and we use the notation

W 1
t = Wt , W 0

t = t. For scalar equations, all the Brownian motions above are the same, and these integrals
can be computed recursively – you will do this on the homework. So in principle, higher-order schemes can
be derived, though they are not often used in practice, since the advantage they give is often not worth the
extra programming.

For vector equations, deriving more accurate schemes requires calculating multiple integrals against different
Brownian motions, such as ∫ t

0

∫ s

0
dW (1)

u dW (2)
s ,

where W (1),W (2) are independent Brownian motions. There are no known analytic expressions for such
multiple integrals, even for the simplest case above. These multiple integrals can be approximated, for
example using a Karhunen-Loeve expansion or by stochastic simulation, but often for such problems, Euler-
Maruyama (or variants of it adapted to the structure of a particular problem) is often the most practical
method.

9.2 Strong and weak convergence

How can we judge a scheme’s quality? Commonly-used notions are

4



Miranda Holmes-Cerfon Applied Stochastic Analysis, Spring 2022

• Consistency – whether the mean and a notion of variance of the increment converge to those of the Itô
process with time step ∆t.

• Convergence – whether the global error over a fixed time interval [0,T ] converges to zero in some
sense with time step ∆t.

• Stability – whether the numerical method reproduces qualitatively the same long-time behaviour as
the exact solution.

For each of these, there is a strong and a weak form.

• Strong forms deal with pathwise results.
• Weak forms deal with probability distributions.

In the following, let Y ∆t = Y ∆t
0 ,Y ∆t

1 , . . . be a discrete approximation to X = (Xt)t≥0, at times 0 = t0 < t1 <
· · ·< tN = T , with maximum increment ∆t = maxi |ti+1− ti|.

Definition. Y ∆t converges strongly to X at time T with order α if there exist constants C > 0, δ0 > 0,
independent of ∆t, such that

E|Y ∆t
N −XT | ≤C(∆t)α ∀ ∆t < δ0.

Definition. Y ∆t converges weakly to X at T with order β with respect to a class of functions C if, for each
f ∈ C , there exist constants C f > 0, δ0 > 0, independent of ∆t, such that

|E f (Y ∆t
N )−E f (XT )| ≤C f (∆t)β ∀ ∆t < δ0,

The constant C f can depend on f but not on ∆t.

Remark. The set C may be taken for example to be the the set of l times continuously differentiable functions
whose derivatives up the the lth order have at most polynomial growth. This ensures the set contains all
polynomials (Kloeden and Platen [1999], p.327).

The difference between strong and weak convergence, is that strong convergence requires the individual
paths to converge as the timestep gets smaller, but for a fixed realization of Brownian motion. Therefore,
when testing for strong convergence numerically, the same realization of Brownian motion must be used
for all approximations (Figure 1). Weak convergence requires only the probability distributions to converge.
Therefore a different Brownian motion can be used for each numerical approximation, or even a random
process that is not Brownian motion but has increments with the same mean and variance.

Theorem. If C is restricted to Lipschitz continuous functions, then β ≥ α (Weak order ≥ Strong order).

Proof. Suppose f has Lipschitz constant K. Then

|E f (Y ∆t
N )−E f (XT )| ≤ E| f (Y ∆t

N )− f (XT )| same as
∣∣∣∣∫ g−h

∣∣∣∣≤ ∫ |g−h|

≤ KE|Y ∆t
N −XT |.

Therefore if Y ∆t → X with strong order α , it also converges to X with weak order at least α .
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Figure 2: Demonstrating strong (left) and weak (right) convergence for a GBM dXt = rXtdt +αXtdWt with
r = 1, a= 0.4, using the Euler-Maruyama discretization with different timesteps ∆t. Error bars are 1 standard
deviation over M independent samples, where M = 1000 for strong convergence, and M = 4×106 for weak
convergence. The total time was T = 1 and the initial condition was X0 = 1.

Theorem. Given an SDE whose coefficient functions and initial condition satisfy the same conditions re-
quired for existence and uniqueness of the solution to the SDE, plus additional smoothness conditions1, we
have

Strong Order Weak Order
Euler-Maruyama 1/2 1

Milstein 1 1

Remark. For additive noise (σ =const), the EM and Milstein schemes are equivalent, since σσ ′ = 0. There-
fore for additive noise EM will converge with strong and weak order 1.

We outline here a proof of strong convergence for Euler-Maruyama. Proving weak convergence requires the
PDE theory of diffusion processes and we leave this until later in the course.

Outline of proof of strong convergence, Euler-Maruyama. (Kloeden and Platen [1999], Theorem 10.2.2 p.342.)

The full proof is quite involved but we outline here the major steps, referring the reader to Kloeden and
Platen [1999] to fill in the details.

We list here the full set of conditions required to prove strong convergence with order 1/2 of EM. Below,

1For the full list of conditions, see the following theorems in Kloeden and Platen [1999]: Theorem 10.2.2, for strong convergence of
EM, Theorem 10.3.5 for strong convergence of Milstein, Theorem 10.6.3 for strong convergence of a general order γ scheme, Theorem
14.5.1 for weak convergence of a general order γ scheme.
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K1,K2,K3,K4 are positive constants independent of ∆t.

E|X0|2 < ∞

E(|X0−Y ∆t
0 |2)1/2 ≤ K1(∆t)1/2

b,σ are Lipschitz continuous in x with constant K2

b,σ satisfy linear growth in x with constant K3

|b(s,x)−b(t,x)|+ |σ(s,x)−σ(t,x)| ≤ K4(1+ |x|)|s− t|1/2

We work with a 1-dimensional process to simplify notation but the proof for a multidimensional process
follows the same estimates.

We compare the solution X to (1), to an interpolated process Y ∆t defined (with a slight abuse of notation) as

Y ∆t
t = Y ∆t

n +
∫ t

tn
b(tn,Y ∆t

n )ds+
∫ t

tn
σ(tn,Y ∆t

n )dWs, t ∈ [tn, tn+1], n = 0,1, . . . . (14)

This interpolation is not a linear interpolation; it keeps the irregularity in the the diffusion term.

The first step is to show that

E
(

sup
0≤s≤t

|Xs|2
)
≤C1(1+ |X0|2), (15)

where Ci hereafter denotes a constant independent of ∆t. This can be shown by deriving an SDE for |Xt |2,
estimating growth bounds, and applying Doob’s inequality2 (Kloeden and Platen [1999] Theorem 4.5.4,
Exercise 4.5.16). Similarly one can show that (Kloeden and Platen [1999], Lemma 10.8.1)

E
(

sup
0≤s≤t

|Y ∆t
s |2

)
≤C2(1+ |Y ∆t

0 |2). (16)

Next we define

Z(t) = E
(

sup
0≤s≤t

|Xs−Y ∆t
s |2

)
.

We have
Z(t)≤C3

(
|X0−Y ∆t

0 |2 +Rt +St +Tt

)
,

where, writing ns = max{n : tn ≤ s} for the number of discretization points less than s,

Rt = E

 sup
0≤s≤t

∣∣∣∣∣ ns

∑
n=0

∫ min(s,tn+1)

tn
(b(tn,Xtn)−b(tn,Y ∆t

tn ))du+
∫ min(s,tn+1)

tn
(σ(tn,Xtn)−σ(tn,Y ∆t

tn ))dWu

∣∣∣∣∣
2


St = E

 sup
0≤s≤t

∣∣∣∣∣ ns

∑
n=0

∫ min(s,tn+1)

tn
(b(tn,Xu)−b(tn,Xtn))du+

∫ min(s,tn+1)

tn
(σ(tn,Xu)−σ(tn,Xtn))dWu

∣∣∣∣∣
2


Tt = E

 sup
0≤s≤t

∣∣∣∣∣ ns

∑
n=0

∫ min(s,tn+1)

tn
(b(u,Xu)−b(tn,Xu))du+

∫ min(s,tn+1)

tn
(σ(u,Xu)−σ(tn,Xu))dWu

∣∣∣∣∣
2
 .

2Given a martingale M = (Mt)t≥0 with respect to W , Esup0≤s≤t |Mt |p ≤ p
p−1E|Mt |p.
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Using Lipschitz continuity and Doob’s inequality one can show that (Kloeden and Platen [1999], Lemma
10.8.1)

Rt ≤C4

(∫ t

0
E sup

0≤s≤u

∣∣∣b(tns ,Xtns )−b(tns ,Y
∆t

tns
)
∣∣∣2 du+

∫ t

0
E sup

0≤s≤u

∣∣∣σ(tns ,Xns)−σ(tns ,Y
∆t
ns )
∣∣∣2 dWu

)
≤ 2C4K2

2

∫ t

0
Z(u)du

We also have

St ≤C5

(∫ t

0
E sup

0≤s≤u

∣∣Xtns −Xs
∣∣2 du

)
≤C6

(
1+ |X0|2

)
∆t,

Tt ≤C7
(
1+ |X0|2

)
∆t.

Combining the estimates gives

Z(t)≤C3|X0−Y ∆t
0 |2 +C8(1+ |X0|2)∆t +C9

∫ t

0
Z(u)du.

Applying Gronwall’s inequality gives

Z(t)≤C10

(
|X0−Y ∆t

0 |2 +(1+ |X0|2)∆t
)

from which we obtain
E|XT −Y ∆t

T | ≤ K5∆t1/2.

This shows strong convergence of Y ∆t to X with order 1/2.

How can you demonstrate the order of convergence numerically? Here are some possibilities.

(1) Compare to the true solution, if it is known. For example, there are analytical solutions available for
the Ornstein-Uhlenbeck process, Geometric Brownian motion, and several other equations; these all
involve W but you can generate exact realizations of W at a finite set of time points.

(2) Compare to a very high-resolution simulation.

(3) Look at the difference between solutions as you double the resolution. We expect

‖Y ∆t −Y ∆t/2‖

‖Y ∆t/2−Y ∆t/4‖ = 2α +O(∆t),

where α is the order and ‖ · ‖ is some norm.

Options (2),(3) would show the solution converges to something, however there is no guarantee that the
solution it converges to is the correct one.

To demonstrate strong convergence, one has to compare paths with different timesteps, using the same
Brownian motion for each path. To demonstrate weak convergence, one typically picks a function, such as
f (x) = x, and then estimates E f (Y ∆t

t ) by generating many trajectories with a fixed timestep and computing
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the empirical average. See Figure 2 for an example illustrating the convergence of the Euler-Maruyama
discretization of GBM.

The numerically-measured error will also contain sampling error, since you have a finite number of samples.
Therefore, the number of samples must be large enough to make the sampling error smaller than the error
due to discretization. It is good practice to construct error bars on each estimate, for example using the
standard deviation of the estimate over independent samples.

There will also be error due to bias in the random number generator, and rounding error due to machine
precision. Interestingly it is the bias in the random number generator that becomes important first, when ∆t
is small enough and the number of samples is large enough! See Hingham [2001].

9.3 Stochastic stability

Convergence bounds the error over time intervals [0,T ] using a constant C(T ). But typically, C(T )↗ ∞

as T ↗ ∞. In many situations, such as first-passage problems, or to study long-time behaviour, we need to
simulate the equation indefinitely. In such a situation, we may ask that the numerics reproduce the correct
qualitative behaviour.

One way to do this is with the notion of asymptotic stability.3 Typically, we pick a particular class of
equations on which to study this concept. One common choice is to look at the behaviour near fixed points
of linear equations.

Recall the concept of linear stability for deterministic ODEs:

– We typically study the behaviour of dX
dt = λX , where λ is a complex number.

– The fixed point X = 0 is asymptotically stable if limt→∞ X(t) = 0. This happens for the equation above
when Re{λ}< 0.

– If we discretize, we ask when the numerical scheme reproduces this same behaviour: that Yn→ 0 as
n→ ∞. This will typically be true only for some step sizes ∆t. The set of values of λ∆t for which the
numerical scheme converges to zero forms the domain of linear stability of the scheme.

For SDEs, stability is commonly studied for a Geometric Brownian Motion,

dXt = λXtdt +µXtdWt , λ ,µ ∈ R. (17)

Such an equation arises from linearizing a nonlinear SDE about a fixed point, where the right-hand side of the
SDE is zero. Since we are now dealing with random variables, which are infinite-dimensional objects, norms
are not equivalent in general and there are different notions of “Xt → 0”. Two common ones are:

Definition. The solution Xt = 0 is mean-square stable (for a given pair λ ,µ) if limt→∞EX2
t = 0 for any X0.

Definition. The solution Xt = 0 is asymptotically stable if P(limt→∞ Xt = 0) = 1 for any X0.

Recall in Lecture 8 we found the solution to (17) to be

Xt = X0e(λ−
µ2
2 )t+µWt .

3Note that numerical stability is another concept, related to but different from that discussed here, that asks whether two nearby
trajectories tend to stay together or to diverge. See Kloeden and Platen [1999], Section 9.8.
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We showed in the lecture and homework that

• GBM is mean-square stable⇔ λ + 1
2 µ2 < 0.

• GBM is asymptotically stable⇔ λ − 1
2 µ2 < 0.

Here, for GBM, mean-square stability⇒ asymptotic stability, but not the reverse.

When does a numerical method give the same type of stability as the true solution? Consider Euler-
Maruyama, which gives the discretization

Yn+1 = Yn(1+λ∆t +µ∆Wn) .

Squaring gives
EY 2

n+1 =
(
|1+λ∆t|2 + |µ|2∆t

)
EY 2

n .

Therefore mean-square stability is equivalent to the condition

(1+λ∆t)2 +µ
2
∆t < 1 . (18)

Let y = µ2∆t and x = λ∆t. The numerical method is mean-square stable when (1+x)2+y < 1 hence

y <−x(2+ x) ⇐⇒ ∆t <
−(µ2 +2λ )

2λ 2 .

The true solution is mean-square stable when

µ
2 <−2λ ⇐⇒ y <−2x .

The region where the numerical method is mean-square stable is smaller than, and contained in, the region
where the true solution is mean-square stable, as shown in the image below.

What about asymptotic stability? The true solution is asymptotically stable when λ < 1
2 µ2. For the EM

method we write the solution as

Yn = Y0e∑
n−1
j=0 A j , A j = log(1+λ∆t +µ∆Wj)

10
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and observe that the argument of the exponential is a sum of i.i.d. random variables. From the Strong Law
of Large Numbers, we obtain that the numerical solution is asymptotically stable when

EZ log |1+∆tλ +
√

∆tµZ|< 0,

where Z ∼N(0,1) is a standard normal. The regions of stability for the true solution, and numerical solution,
are shown below.

9.4 Implicit methods

We now from the numerical analysis of deterministic equation that implicit methods often have better sta-
bility properties than explicit methods, allowing you to take significantly larger time steps, at the expense of
solving a large nonlinear system of equations. Should such implicit methods be used for SDEs?

Let’s see what would happen if we discretized (17) using a fully implicit Euler scheme [Kloeden and Platen,
1999, p.336]. We obtain

Yn+1 = Yn +λYn+1∆t +µYn+1∆Wn , (19)

which we can solve to obtain
Yn+1 = Yn

1
1−λ∆t−µ∆Wn

.

There is a problem: the factor multiplying Yn can approach ∞ or change sign. This is true no matter how
small we choose ∆t, because the probability density for ∆W has unbounded support. Indeed, E|Yn+1/Yn|=∞

as follows from the exercise below. Therefore, it is usually not possible to have a fully implicit scheme for
an SDE.

Exercise 9.2. Let S∼ N(µ,σ2), for µ,σ ∈ R, σ > 0. Show that E|S|−1 = ∞.

We can still use implicit methods on the deterministic part of the equation, or in a weak approximation.
For example, if one desires only a weakly convergent numerical approximation, then one can replace ∆W
with a bounded random variable with the same mean and variance, such as the two-point random variable
∆W̃ =±

√
∆ with equal probability. One also has to modify the drift term to obtain a consistent scheme [see

Kloeden and Platen, 1999, p.337]; showing that one has to be careful with implicit methods because of the

11
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distinctions between the various kinds of integrals. A weakly convergent fully implicit Euler approximation
would be

Yn+1 = Yn +(b−σ
∂σ

∂x
)(tn+1,Yn+1)∆t +σ(tn+1,Yn+1)∆W̃n. (20)

Exercise 9.3. (a) Show that (19) is cannot be weakly consistent, by showing that the mean of the approx-
imation is not consistent:

E

∣∣∣∣∣EY ∆
n+1−Y ∆

n

∆t
−b(tn,Y ∆

n )

∣∣∣∣∣
2

9 0 as ∆t→ 0.

(b) Show that the mean of approximation (20) is consistent, in the sense above.

If one desires a strongly convergent numerical approximation, then one can typically only use implicit meth-
ods for the deterministic parts of the equation. For example, a semi-implicit method to solve (17) would be
[Pavliotis, 2014, Section 5.2.1]

Yn+1 = Yn +(θλYn+1 +(1−θ)Yn)∆t +µYn∆Wn. (21)

This scheme is called the stochastic theta method.

Exercise 9.4. Show that when θ ∈ [ 1
2 ,1], the stochastic theta method in (21) is mean-square stable for all

time steps ∆t, provided the true solution is mean-square stable. (We say it is A-stable.) Derive the region of
mean-square stability for θ ∈ [0, 1

2 ).
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