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1 Fourier Transforms

Continuous Suppose we have a function f : R — R which is periodic, of
period L,. The Fourier transform of f(z) is defined to be
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with inverse transform given by
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In this form, Parseval’s theorem on the conservation of energy becomes
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Discrete If we only know f(z) on a finite number of equally-spaced points,
(such as is the case, for example, in a numerical representation of f), then a
discrete transform can be defined so that it becomes the continuous transform in
the limit as the number of points goes to infinity. Suppose we know the value of
f at points {z;}, with z; = jAzx = j%’ j=0,1,... (N, —1). The parameters
are defined so that Ax = ]I(]—; is the grid spacing and N, is the number of points.

Then @i (kntNa2k) = eizskn - (where Ak = 2T as in the continuous case), so

only the first IV, values of k,, give useful information. Let the discrete Fourier
transform and its inverse be
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Parseval’s theorem becomes
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Implementation in Matlab Matlab defines its transforms to be
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So the above transform can be implemented in Matlab as
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2 Dimensions The above transforms can be easily extended to 2 (or more)
dimensions. In 2 dimensions, the transforms are
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2 Generating Stationary Gaussian Random Fields

2.1 Scalar-Valued Fields

Complex-valued fields Suppose we would like to generate a complex-valued
stationary scalar Gaussian random field ¢(z) : [0,L,] — C with covariance
function C(z), ie E[p(z0)¢(xo + )] = C(x), and expected mean value 0 (a field
with non-zero mean can be constructed by adding the mean on afterwards.)
This can be done most easily in Fourier space, using é(k) = FT(C). Suppose
we are working with a finite set of points, {x;} and {k,}, defined as before.

(The z-continuous version follows by taking the limit as N, — 00.) Let
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where Ay, By are independent Gaussian random variables with mean 0,
variance 1. Then

¢(z) = FT'(9)

is a Gaussian random field satisfying the requirements (Yaglom 1962).
Parseval’s identity holds for each realization. Taking expected values gives
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which shows that C(0) can be interpreted as the expected variance per unit
length.

Real-valued fields A real-valued field can be generated from a complex one
by taking real or imaginary parts. By definition, if ¢ = ¢1 + i¢s is a station-
ary complex Gaussian random field with covariance function C(z), then ¢1, ¢o
are independent, real-valued Gaussian random fields with identical covariance
functions C(z)/2 (eg Hida& Hitsuda, 1990). This leads to nice way to generate
samples of a real field on a computer, as one simply has to generate a complex-
valued field with covariance function 2C(x) and take its real and imaginary
parts, giving two realizations for the price of one.

Note that if ¢ is real-valued, then qg will not be a Gaussian field, as its
Fourier transform satisfies ¢(k) = ¢(—k). This leads to an asymmetry in the
equations if we try to generate ¢3 on its own, as the 0-mode, negative modes,
and N, /2-mode (if N, is even) must be given special treatment:

(k) = \/L.C(k)A, k=0, Ny/2

d(k) = Lz;(k)(AkﬂLin) 0<k<N,/2
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Ay, By, are independent N (0, 1) random variables as before.



