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1 Fourier Transforms

Continuous Suppose we have a function f : R → R which is periodic, of
period Lx. The Fourier transform of f(x) is defined to be

f̂(kn) =
∫ Lx

x=0

f(x)e−iknxdx, kn = n
2π
Lx

= n∆k, n ∈ Z .

with inverse transform given by

f(x) =
∆k
2π

∞∑
kn=−∞

f̂(kn)eiknx .

In this form, Parseval’s theorem on the conservation of energy becomes∫ Lx

0

f2(x)dx =
∆k
2π

∞∑
kn=−∞

|f̂(kn)|2 .

Discrete If we only know f(x) on a finite number of equally-spaced points,
(such as is the case, for example, in a numerical representation of f), then a
discrete transform can be defined so that it becomes the continuous transform in
the limit as the number of points goes to infinity. Suppose we know the value of
f at points {xj}, with xj = j∆x = j Lx

Nx
, j = 0, 1, . . . (Nx − 1). The parameters

are defined so that ∆x = Lx

Nx
is the grid spacing and Nx is the number of points.

Then eixj(kn+Nx∆k) = eixjkn , (where ∆k = 2π
Lx

as in the continuous case), so
only the first Nx values of kn give useful information. Let the discrete Fourier
transform and its inverse be

f̂(kn) = ∆x
Nx−1∑
j=0

f(xj)e−ixjkn

f(xj) =
∆k
2π

Nx−1∑
n=0

f̂(kn)eixjkn
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Parseval’s theorem becomes

∆k
2π

Nx−1∑
n=0

|f̂(kn)|2 = ∆x
Nx−1∑
j=0

f2(xj) .

Implementation in Matlab Matlab defines its transforms to be

f̂(kn) =
Nx−1∑
j=0

f(xj)e−ixjkn

f(xj) =
1
Nx

Nx−1∑
n=0

f̂(kn)eixjkn

So the above transform can be implemented in Matlab as

FT (f) = ∆x×MatlabFT(f)

FT−1(f̂) =
1

∆x
×MatlabFT−1(f̂)

2 Dimensions The above transforms can be easily extended to 2 (or more)
dimensions. In 2 dimensions, the transforms are

f̂(k,m) = ∆x∆z
∑
x,z

f(x, z)e−i(kx+mz)

f(x, z) =
∆k∆m
(2π)2

∑
k,m

f̂(k,m)ei(kx+mz)

with energies

∆k∆m
(2π)2

∑
k,m

|f̂(k,m)|2 = ∆x∆z
∑
x,z

f2(x, z) .

2 Generating Stationary Gaussian Random Fields

2.1 Scalar-Valued Fields

Complex-valued fields Suppose we would like to generate a complex-valued
stationary scalar Gaussian random field φ(x) : [0, Lx] → C with covariance
function C(x), ie E[φ(x0)φ̄(x0 +x)] = C(x), and expected mean value 0 (a field
with non-zero mean can be constructed by adding the mean on afterwards.)
This can be done most easily in Fourier space, using Ĉ(k) = FT (C). Suppose
we are working with a finite set of points, {xj} and {kn}, defined as before.
(The x-continuous version follows by taking the limit as Nx →∞.) Let
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φ̂(k) =

√
LxĈ(k)

2
(Ak + iBk) ,

where Ak, Bk are independent Gaussian random variables with mean 0,
variance 1. Then

φ(x) = FT−1(φ̂)

is a Gaussian random field satisfying the requirements (Yaglom 1962).
Parseval’s identity holds for each realization. Taking expected values gives

∆k
2π

∑
kn

E[|φ̂(kn)|2] = ∆x
∑
xj

E[φ2(xj)] = LxC(0) , (1)

which shows that C(0) can be interpreted as the expected variance per unit
length.

Real-valued fields A real-valued field can be generated from a complex one
by taking real or imaginary parts. By definition, if φ = φ1 + iφ2 is a station-
ary complex Gaussian random field with covariance function C(x), then φ1, φ2

are independent, real-valued Gaussian random fields with identical covariance
functions C(x)/2 (eg Hida& Hitsuda, 1990). This leads to nice way to generate
samples of a real field on a computer, as one simply has to generate a complex-
valued field with covariance function 2C(x) and take its real and imaginary
parts, giving two realizations for the price of one.

Note that if φ is real-valued, then φ̂ will not be a Gaussian field, as its
Fourier transform satisfies φ̂(k) = ¯̂

φ(−k). This leads to an asymmetry in the
equations if we try to generate φ̂ on its own, as the 0-mode, negative modes,
and Nx/2-mode (if Nx is even) must be given special treatment:

φ̂(k) =
√
LxĈ(k)Ak k = 0, Nx/2

φ̂(k) =

√
LxĈ(k)

2
(Ak + iBk) 0 < k < Nx/2

φ̂(k) = ¯̂
φ(−k) k < 0

Ak, Bk are independent N(0, 1) random variables as before.

3


